N-Doped HNT/TiO2 Nanocomposite by Electrospinning for Acetaminophen Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of N-H95T5 Composite Nanofibers
2.3. Structural Characterizations
2.4. Electrochemical Activity
2.5. Photocatalytic Activity
2.6. Kinetics
2.7. Micro-Toxicity Tests
3. Results and Discussion
3.1. H95T5 and N-H95T5 Morphology and Structure
3.2. Electrochemical Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bozkir, V. A Moral Failure: Billions of People with No Access to Clean Drinking Water; Inter Press Service: Rome, Italy, 2021. [Google Scholar]
- Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Rauf, M.A.; Ashraf, S.S. Fundamental Principles and Application of Heterogeneous Photocatalytic Degradation of Dyes in Solution. Chem. Eng. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Rauf, M.A.; Meetani, M.A.; Khaleel, A.; Ahmed, A. Photocatalytic Degradation of Methylene Blue Using a Mixed Catalyst and Product Analysis by LC/MS. Chem. Eng. J. 2010, 157, 373–378. [Google Scholar] [CrossRef]
- Coy, E.; Siuzdak, K.; Pavlenko, M.; Załęski, K.; Graniel, O.; Ziółek, M.; Balme, S.; Miele, P.; Weber, M.; Bechelany, M.; et al. Enhancing Photocatalytic Performance and Solar Absorption by Schottky Nanodiodes Heterojunctions in Mechanically Resilient Palladium Coated TiO2/Si Nanopillars by Atomic Layer Deposition. Chem. Eng. J. 2020, 392, 123702. [Google Scholar] [CrossRef]
- Moma, J.; Baloyi, J. Modified Titanium Dioxide for Photocatalytic Applications. In Photocatalysts—Applications and Attributes; Bahadar Khan, S., Akhtar, K., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Low Cost Adsorbents for the Removal of Organic Pollutants from Wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Li, D.; Yi, Y.; Liu, R.; Wu, Y.; Dong, X.; Shi, X.; Deng, H. Incorporation of Rectorite into Porous Polycaprolactone/TiO2 Nanofibrous Mats for Enhancing Photocatalysis Properties towards Organic Dye Pollution. Compos. Commun. 2019, 15, 58–63. [Google Scholar] [CrossRef]
- Wu, H.; Inaba, T.; Wang, Z.-M.; Endo, T. Photocatalytic TiO2@CS-Embedded Cellulose Nanofiber Mixed Matrix Membrane. Appl. Catal. B Environ. 2020, 276, 119111. [Google Scholar] [CrossRef]
- Nasr, O.; Mohamed, O.; Al-Shirbini, A.-S.; Abdel-Wahab, A.-M. Photocatalytic Degradation of Acetaminophen over Ag, Au and Pt Loaded TiO2 Using Solar Light. J. Photochem. Photobiol. Chem. 2019, 374, 185–193. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, C.; Bai, S.; Chen, S.; Long, R.; Song, L.; Li, Z.; Xiong, Y. Hydriding Pd Cocatalysts: An Approach to Giant Enhancement on Photocatalytic CO2 Reduction into CH4. Nano Res. 2017, 10, 3396–3406. [Google Scholar] [CrossRef]
- Nasr, M.; Soussan, L.; Viter, R.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. High Photodegradation and Antibacterial Activity of BN–Ag/TiO2 Composite Nanofibers under Visible Light. New J. Chem. 2018, 42, 1250–1259. [Google Scholar] [CrossRef]
- Khojasteh, H.; Salavati-Niasari, M.; Sangsefidi, F.S. Photocatalytic Evaluation of RGO/TiO2NWs/Pd-Ag Nanocomposite as an Improved Catalyst for Efficient Dye Degradation. J. Alloys Compd. 2018, 746, 611–618. [Google Scholar] [CrossRef]
- Nasr, M.; Viter, R.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Enhanced Photocatalytic Performance of Novel Electrospun BN/TiO2 Composite Nanofibers. New J. Chem. 2017, 41, 81–89. [Google Scholar] [CrossRef]
- Lee, C.-G.; Na, K.-H.; Kim, W.-T.; Park, D.-C.; Yang, W.-H.; Choi, W.-Y. TiO2/ZnO Nanofibers Prepared by Electrospinning and Their Photocatalytic Degradation of Methylene Blue Compared with TiO2 Nanofibers. Appl. Sci. 2019, 9, 3404. [Google Scholar] [CrossRef]
- Park, S.-M.; Razzaq, A.; Park, Y.H.; Sorcar, S.; Park, Y.; Grimes, C.A.; In, S.-I. Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1, 868–875. [Google Scholar] [CrossRef]
- Sayegh, S.; Tanos, F.; Nada, A.; Lesage, G.; Zaviska, F.; Petit, E.; Rouessac, V.; Yatsunskiy, I.; Coy, E.; Viter, R.; et al. Tunable TiO2-BN-Pd Nanofibers by Combining Electrospinning and Atomic Layer Deposition to Enhance Photodegradation of Acetaminophen. Dalton Trans. 2022, 51, 2674–2695. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, X.; Xing, Z.; Yang, L. Synthesis and Characterization of N-Doped TiO2 and Its Enhanced Visible-Light Photocatalytic Activity. Arab. J. Chem. 2016, 9, S1706–S1711. [Google Scholar] [CrossRef]
- Sudhakar, V.; Krishnamoorthy, K. Enhancing the Device Efficiency by Filling the Traps in Photoanodes. J. Mater. Chem. C 2019, 7, 14632–14638. [Google Scholar] [CrossRef]
- Isari, A.A.; Hayati, F.; Kakavandi, B.; Rostami, M.; Motevassel, M.; Dehghanifard, E. N, Cu Co-Doped TiO2@functionalized SWCNT Photocatalyst Coupled with Ultrasound and Visible-Light: An Effective Sono-Photocatalysis Process for Pharmaceutical Wastewaters Treatment. Chem. Eng. J. 2020, 392, 123685. [Google Scholar] [CrossRef]
- Dong, F.; Wang, H.; Wu, Z.; Qiu, J. Marked Enhancement of Photocatalytic Activity and Photochemical Stability of N–Doped TiO2 Nanocrystals by Fe3+/Fe2+ Surface Modification. J. Colloid Interface Sci. 2010, 343, 200–208. [Google Scholar] [CrossRef]
- Huang, J.; Dou, L.; Li, J.; Zhong, J.; Li, M.; Wang, T. Excellent Visible Light Responsive Photocatalytic Behavior of N-Doped TiO2 toward Decontamination of Organic Pollutants. J. Hazard. Mater. 2021, 403, 123857. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Long, J.; Gu, Q.; Ding, Z.; Fu, X. Nitrogen-Doped Titanium Dioxide Visible Light Photocatalyst: Spectroscopic Identification of Photoactive Centers. J. Catal. 2010, 276, 201–214. [Google Scholar] [CrossRef]
- Xing, M.; Zhang, J.; Chen, F. New Approaches to Prepare Nitrogen-Doped TiO2 Photocatalysts and Study on Their Photocatalytic Activities in Visible Light. Appl. Catal. B Environ. 2009, 89, 563–569. [Google Scholar] [CrossRef]
- Abid, M.; Sayegh, S.; Iatsunskyi, I.; Coy, E.; Lesage, G.; Ramanavicius, A.; Ben Haj Amara, A.; Bechelany, M. Design of Halloysite-Based Nanocomposites by Electrospinning for Water Treatment. Colloids Surf. Physicochem. Eng. Asp. 2022, 651, 129696. [Google Scholar] [CrossRef]
- Abi Younes, P.; Sayegh, S.; Nada, A.A.; Weber, M.; Iatsunskyi, I.; Coy, E.; Abboud, N.; Bechelany, M. Elaboration of Porous Alumina Nanofibers by Electrospinning and Molecular Layer Deposition for Organic Pollutant Removal. Colloids Surf. Physicochem. Eng. Asp. 2021, 628, 127274. [Google Scholar] [CrossRef]
- Kawrani, S.; Nada, A.A.; Bekheet, M.F.; Boulos, M.; Viter, R.; Roualdes, S.; Miele, P.; Cornu, D.; Bechelany, M. Enhancement of Calcium Copper Titanium Oxide Photoelectrochemical Performance Using Boron Nitride Nanosheets. Chem. Eng. J. 2020, 389, 124326. [Google Scholar] [CrossRef]
- Martins, P.; Kappert, S.; Nga Le, H.; Sebastian, V.; Kühn, K.; Alves, M.; Pereira, L.; Cuniberti, G.; Melle-Franco, M.; Lanceros-Méndez, S. Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin. Catalysts 2020, 10, 234. [Google Scholar] [CrossRef]
- Nasr, M.; Balme, S.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Enhanced Visible-Light Photocatalytic Performance of Electrospun RGO/TiO2 Composite Nanofibers. J. Phys. Chem. C 2017, 121, 261–269. [Google Scholar] [CrossRef]
- Papoulis, D.; Komarneni, S.; Panagiotaras, D.; Stathatos, E.; Toli, D.; Christoforidis, K.C.; Fernández-García, M.; Li, H.; Yin, S.; Sato, T.; et al. Halloysite–TiO2 Nanocomposites: Synthesis, Characterization and Photocatalytic Activity. Appl. Catal. B Environ. 2013, 132–133, 416–422. [Google Scholar] [CrossRef]
- Danfá, S.; Martins, R.C.; Quina, M.J.; Gomes, J. Supported TiO2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review. Molecules 2021, 26, 5363. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Grimm, M.; Meyers, J.; Dietrich, C.; Gläser, R.; Schulze, A. Photoactive Microfiltration Membranes via Directed Synthesis of TiO2 Nanoparticles on the Polymer Surface for Removal of Drugs from Water. J. Membr. Sci. 2015, 478, 49–57. [Google Scholar] [CrossRef]
- Konstantinou, I. Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways. Appl. Catal. B Environ. 2003, 42, 319–335. [Google Scholar] [CrossRef]
- Sayegh, S.; Abid, M.; Tanos, F.; Cretin, M.; Lesage, G.; Zaviska, F.; Petit, E.; Navarra, B.; Iatsunskyi, I.; Coy, E.; et al. N-Doped TiO2 Nanotubes Synthesized by Atomic Layer Deposition for Acetaminophen Degradation. Colloids Surf. Physicochem. Eng. Asp. 2022, 655, 130213. [Google Scholar] [CrossRef]
- Addamo, M.; Bellardita, M.; Di Paola, A.; Palmisano, L. Preparation and Photoactivity of Nanostructured Anatase, Rutile and Brookite TiO2 Thin Films. Chem. Commun. 2006, 4943–4945. [Google Scholar] [CrossRef] [PubMed]
- Bumajdad, A.; Madkour, M.; Abdel-Moneam, Y.; El-Kemary, M. Nanostructured Mesoporous Au/TiO2 for Photocatalytic Degradation of a Textile Dye: The Effect of Size Similarity of the Deposited Au with That of TiO2 Pores. J. Mater. Sci. 2014, 49, 1743–1754. [Google Scholar] [CrossRef]
- Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M.C.; Giamello, E. N-Doped TiO2: Theory and Experiment. Chem. Phys. 2007, 339, 44–56. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Pugazhenthiran, N.; Mangalaraja, R.V.; Guesh, K.; Contreras, D.; Anandan, S. Contemporary Achievements of Visible Light-Driven Nanocatalysts for the Environmental Applications. In Photocatalytic Functional Materials for Environmental Remediation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 69–129. [Google Scholar] [CrossRef]
- Chen, X.; Burda, C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. J. Phys. Chem. B 2004, 108, 15446–15449. [Google Scholar] [CrossRef]
- Yu, Y.P.; Xing, X.J.; Xu, L.M.; Wu, S.X.; Li, S.W. N-Derived Signals in the X-ray Photoelectron Spectra of N-Doped Anatase TiO2. J. Appl. Phys. 2009, 105, 123535. [Google Scholar] [CrossRef]
- Yang, S.; Chen, G.; Lv, C.; Li, C.; Yin, N.; Yang, F.; Xue, L. Evolution of Nanopore Structure in Lacustrine Organic-Rich Shales during Thermal Maturation from Hydrous Pyrolysis, Minhe Basin, Northwest China. Energy Explor. Exploit. 2018, 36, 265–281. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, Y.; Liu, T. Enhanced Visible-Light Photocatalytic Performance of Electrospun Carbon-Doped TiO2/Halloysite Nanotube Hybrid Nanofibers. J. Colloid Interface Sci. 2015, 439, 62–68. [Google Scholar] [CrossRef]
- Vaiano, V.; Sannino, D.; Sacco, O. Heterogeneous Photocatalysis. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 285–301. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity. J. Phys. Chem. C 2007, 111, 6976–6982. [Google Scholar] [CrossRef]
- Fang, J.; Wang, F.; Qian, K.; Bao, H.; Jiang, Z.; Huang, W. Bifunctional N-Doped Mesoporous TiO2 Photocatalysts. J. Phys. Chem. C 2008, 112, 18150–18156. [Google Scholar] [CrossRef]
- Divyasri, Y.V.; Lakshmana Reddy, N.; Lee, K.; Sakar, M.; Navakoteswara Rao, V.; Venkatramu, V.; Shankar, M.V.; Gangi Reddy, N.C. Optimization of N Doping in TiO2 Nanotubes for the Enhanced Solar Light Mediated Photocatalytic H2 Production and Dye Degradation. Environ. Pollut. 2021, 269, 116170. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.S.; Jadhav, T.; Bhosale, M.; Jadhav, C.H.; Pawar, V.C. Structural and Optical Properties of N-Doped TiO2 Nanomaterials. Mater. Today Proc. 2021, 43, 2763–2767. [Google Scholar] [CrossRef]
- Noorisepehr, M.; Kakavandi, B.; Isari, A.A.; Ghanbari, F.; Dehghanifard, E.; Ghomi, N.; Kamrani, F. Sulfate Radical-Based Oxidative Degradation of Acetaminophen over an Efficient Hybrid System: Peroxydisulfate Decomposed by Ferroferric Oxide Nanocatalyst Anchored on Activated Carbon and UV Light. Sep. Purif. Technol. 2020, 250, 116950. [Google Scholar] [CrossRef]
- Gómez-Avilés, A.; Peñas-Garzón, M.; Bedia, J.; Rodriguez, J.J.; Belver, C. C-Modified TiO2 Using Lignin as Carbon Precursor for the Solar Photocatalytic Degradation of Acetaminophen. Chem. Eng. J. 2019, 358, 1574–1582. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Le, T.X.H.; Nguyen, T.V.; Amadou Yacouba, Z.; Zoungrana, L.; Avril, F.; Nguyen, D.L.; Petit, E.; Mendret, J.; Bonniol, V.; Bechelany, M.; et al. Correlation between Degradation Pathway and Toxicity of Acetaminophen and Its By-Products by Using the Electro-Fenton Process in Aqueous Media. Chemosphere 2017, 172, 1–9. [Google Scholar] [CrossRef]
Material | Supplier/Source | Purity | CAS Number |
---|---|---|---|
Halloysite (HNT) | Tamra (Nefza District, NW Tunisia) | - | - |
Titanium tetraisopropoxide (TTIP) | Sigma–Aldrich | 97% | 546-68-9 |
Polyvinyl pyrrolidone (PVP) | Sigma–Aldrich | Mw = 1,300,000 | 9003-39-8 |
Sodium chloride | Sigma–Aldrich | ≥99% | 7647-14-5 |
Silver nitrate | Sigma–Aldrich | ≥99% | 7761-88-8 |
Acetaminophen (ACT) | Sigma–Aldrich | ≥99% | 103-90-2 |
2-propanol (IPA) | Sigma–Aldrich | 99.9%, | 67-63-0 |
p-benzoquinone (BQ) | Sigma–Aldrich | ≥99.5%, | 106-51-4 |
Ethylenediaminetetraacetic acid (EDTA) | Sigma–Aldrich | 99.995%, | 60-00-4 |
Acetic acid | VWR chemicals | - | 64-19-7 |
Ethanol | VWR chemicals | ≥99.8%, | 64-17-5 |
Deionized water | Milli-Q® Academic | >18.2 MΩ |
H95T5 | Position | N-H95T5 | Position |
---|---|---|---|
O 1s O-Ti | 529.7 | O 1s N-O-Ti | 529.84 |
O 1s O-H O=C | 531.1 | O 1s O-H | 531.50 |
O 1s O-Si O-C | 532.0 | O 1s O-Ti | 532.70 |
Ti 2p3/2 TiO2 | 458.5 | Ti 2p3/2 TiO2 | 458.73 |
Ti 2p1/2 TiO2 | 464.2 | Ti 2p1/2 TiO2 | 464.43 eV |
Pollutant (mg/L) | Photocatalyst (g/L) | Synthesis Technique | Visible Light Source | Degradation Efficiency (%) | Degradation Time (min) | Ref. |
---|---|---|---|---|---|---|
Acetaminophen (ACT) (10 mg/L) | N-H95T5 (0.5 g/L) | Electrospinning + nitriding | Halogen linear lamp | 95 | 270 | This work |
ACT (10 mg/L) | H95T5 (0.5 g/L) | Sol-gel + electrospinning | Halogen linear lamp | 91 | 360 | [25] |
Rhodamine B (10 mg/L) | N-TiO2 (1g/L) | Sol-gel + ammonia treatment | 500 W mercury lamp | 90 | 120 | [22] |
Gaseous toluene | N–TiO2 | Sol-gel + ammonia atmosphere treatment | 150 W Xe lamp with an IR cutter | 48 | 60 | [21] |
Rhodamine B (20 mg/L) | N-TiO2 (1g/L) | Microemulsion− hydrothermal method | 1000 W halogen lamp | 96 | 60 | [44] |
2,4-dichlorophenol (2,4-DCP) (100 mg/L) | 56 | 300 | ||||
Methyl Orange (MO) (20 mg/L) | N-TiO2-400 (0.062 g/L) | Precipitation + ammonium hydroxide | Visible light | 52 | 836 | [45] |
2,4-DCP (100 mg/L) | N-TiO2 (1g/L) | Sol-gel+ NH4NO3/NH3 H2O | 1000 W halogen lamp | 52 | 300 | [24] |
ACT (5 mg/L) | N-TiO2-NTs (0.5g/L) | ALD + nitriding | Halogen linear lamp | 98 | 90 | [34] |
MO (9.8 mg/L) | N-TiO2 (1g/L) | Solid state dispersion + urea | Solar light | 91 | 90 | [46] |
Methylene Blue (MB) (10 mg/L) | N-TiO2 (1g/L) | Wet chemical method + urea | Visible light | 72 | 180 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, M.; Makhoul, E.; Tanos, F.; Iatsunskyi, I.; Coy, E.; Lesage, G.; Cretin, M.; Cornu, D.; Ben Haj Amara, A.; Bechelany, M. N-Doped HNT/TiO2 Nanocomposite by Electrospinning for Acetaminophen Degradation. Membranes 2023, 13, 204. https://doi.org/10.3390/membranes13020204
Abid M, Makhoul E, Tanos F, Iatsunskyi I, Coy E, Lesage G, Cretin M, Cornu D, Ben Haj Amara A, Bechelany M. N-Doped HNT/TiO2 Nanocomposite by Electrospinning for Acetaminophen Degradation. Membranes. 2023; 13(2):204. https://doi.org/10.3390/membranes13020204
Chicago/Turabian StyleAbid, Mahmoud, Elissa Makhoul, Fida Tanos, Igor Iatsunskyi, Emerson Coy, Geoffroy Lesage, Marc Cretin, David Cornu, Abdesslem Ben Haj Amara, and Mikhael Bechelany. 2023. "N-Doped HNT/TiO2 Nanocomposite by Electrospinning for Acetaminophen Degradation" Membranes 13, no. 2: 204. https://doi.org/10.3390/membranes13020204
APA StyleAbid, M., Makhoul, E., Tanos, F., Iatsunskyi, I., Coy, E., Lesage, G., Cretin, M., Cornu, D., Ben Haj Amara, A., & Bechelany, M. (2023). N-Doped HNT/TiO2 Nanocomposite by Electrospinning for Acetaminophen Degradation. Membranes, 13(2), 204. https://doi.org/10.3390/membranes13020204