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Abstract: In this study, we combined electrospinning of a large amount of halloysite (HNT, 95%)
with nitriding to produce N-HNT-TiO2 composite nanofibers (N-H95T5 hereafter) to be used for
acetaminophen (ACT) photodegradation. Investigation of the morphological and structural properties
of the obtained materials did not highlight any significant difference in their morphological features
and confirmed that nitrogen was evenly distributed in the samples. Photocatalytic tests under visible
light showed that acetaminophen photodegraded faster in the presence of samples with nitrogen
(N-H95T5) than without (H95T5 nanofibers). Moreover, the N-H95T5 nanocomposite photocatalytic
activity did not change after repeated utilization (five cycles). The addition of scavengers during
photocatalytic tests showed the key implication of OH•−, O2

•− and h+ radicals in acetaminophen
degradation. These results indicated that N–H95T5 composite nanofibers could be considered a
cheap multifunctional material for photodegradation and could open new prospects for preparing
tunable photocatalysts.

Keywords: halloysite nanotubes; TiO2 nanofibers; electrospinning; nitriding; photocatalysis; acetaminophen

1. Introduction

Water pollution is a major problem leading to health and environmental issues [1].
With proper water treatment, such as by heterogeneous photocatalysis, it is possible to
reduce water pollution by degrading pollutants [2–4]. TiO2 is the most used material in
water purification systems because of its low cost, low toxicity, relatively high efficiency,
and high chemical and thermal stability [5,6]. However, two of its major drawbacks are the
limited recovery after water treatment and the rapid recombination of the photogenerated
charges [7]. Therefore, substantial research has been conducted to optimize TiO2 photocat-
alytic activity [8,9]. For instance, doping and surface modification have been studied to
improve the utilization of sunlight. TiO2 has been doped using metal ions (e.g., Pd [10,11],
Ag [12,13], Pt [10]), non-metal ions (e.g., B, N, Cu, Ni), and semi-conductors (e.g., BN, ZnO,
CuO) [14–17] to enhance its photocatalytic activity.

According to the atomic orbital theory, nitrogen doping increases the amount of
nitrogen in the first energy level N 1s and in the O 2p orbital of TiO2. This allows for
increasing the number of electrons in the conduction band and the number of holes in the
valence band and limiting the in situ recombination of electron-hole pairs after excitation
with visible light [18]. In nitrogen-doped TiO2, the semiconductor bandgap is reduced
(thus facilitating the photocatalyst activation), the light response range is broadened,
and the number of photogenerated carriers is increased [19,20]. Recently, Asahi et al.
showed that TiO2 optical absorbance into the visible light region is enhanced after nitrogen
doping [21]. Nitrogen-doped TiO2 (N-TiO2) can be prepared using different methods,
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such as hydrothermal synthesis and calcination in the presence of NH3 [22] and by post-
synthesis nitriding at 500 ◦C. In the last study, the authors highlighted the improved activity
of N-TiO2 for acetone oxidation under visible light [23]. Moreover, nitrogen doping by
treatment with ammonium nitrate in water at pH 5.87 strongly increased N-TiO2-mediated
degradation of 2,4-dichlorophenol following exposure to visible light [24]. These findings
indicate that nitrogen doping improves TiO2 photocatalytic activity by promoting hydroxyl
and superoxide radical production.

Recently, Abid et al. prepared TiO2-based composite nanofibers with 95% halloysite
(H95T5) and demonstrated that these nanocomposites degraded 91% of acetaminophen
under visible light irradiation in 360 min [25]. Here, we explored the preparation and
photocatalytic performance of nitrogen-doped H95T5 (N-H95T5) composite nanofibers.
We found that these new nitrogen-doped nanocomposites eliminated more than 95%
of acetaminophen in the presence of visible light in only 270 min. We then used high-
performance liquid chromatography (HPLC) and toxicity assays to determine the interme-
diates and reaction products generated during the photocatalytic process and their toxicity
and found out that the percentage of bacterial luminescence inhibition by ACT decreased
to 6% after 24 h using N-H95T5 compared to 52% with H95T5 [25]. We identified the main
reactive species explaining acetaminophen degradation using scavenger tests.

2. Materials and Methods
2.1. Materials

All chemicals listed in Table 1 were used without further purification.

Table 1. Materials used in this work, suppliers, mass fraction purity, and CAS number.

Material Supplier/Source Purity CAS Number

Halloysite (HNT) Tamra (Nefza District, NW Tunisia) - -

Titanium tetraisopropoxide (TTIP) Sigma–Aldrich 97% 546-68-9

Polyvinyl pyrrolidone (PVP) Sigma–Aldrich Mw = 1,300,000 9003-39-8

Sodium chloride Sigma–Aldrich ≥99% 7647-14-5

Silver nitrate Sigma–Aldrich ≥99% 7761-88-8

Acetaminophen (ACT) Sigma–Aldrich ≥99% 103-90-2

2-propanol (IPA) Sigma–Aldrich 99.9%, 67-63-0

p-benzoquinone (BQ) Sigma–Aldrich ≥99.5%, 106-51-4

Ethylenediaminetetraacetic acid (EDTA) Sigma–Aldrich 99.995%, 60-00-4

Acetic acid VWR chemicals - 64-19-7

Ethanol VWR chemicals ≥99.8%, 64-17-5

Deionized water Milli-Q® Academic >18.2 MΩ

2.2. Preparation of N-H95T5 Composite Nanofibers

N-H95T5 samples were prepared by electrospinning and nitriding following previ-
ously described protocols [25,26]. Polyvinylpyrrolidone solution was prepared by dissolv-
ing PVP powder into ethanol solution. Then, halloysite was added to TiO2 prepared by
hydrolyzing titanium tetraisopropoxide into a mixture of acetic acid and ethanol. The
precursor mixture was stirred for 1 h at room temperature and electrospun. The obtained
nanofibers were left exposed to air overnight to hydrolyze followed by heating at 400 ◦C for
4 h in air and sintering in a tubular furnace at 500 ◦C for 1 h (under nitrogen atmosphere).

2.3. Structural Characterizations

The samples’ structures, phase, and crystallinity were determined by scanning electron mi-
croscopy (SEM; Hitachi S-4800) and transmission electron microscopy (TEM; JEOL ARM 200F).
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Surface and micropore areas were described using the Brunauer-Emmett-Teller (BET)
method, with different data points and relative pressures (P/Po) from 0 to 1. Their struc-
tural and crystallinity properties, elemental composition, and oxidation states were ana-
lyzed by X-ray diffraction (XRD; PANAlytical Xpert-PRO diffractometer equipped with
an X’celerator detector using Ni-filtered Cu-radiation), Fourier-transform infrared spec-
troscopy (FT-IR) was recorded with the NEXUS instrument, equipped with an attenuated
total reflection accessory in the frequency range of 400–4000 cm−1, Raman (Horiba Xplora,
532 nm), and X-ray photoelectron spectroscopy (XPS) with an ESCALAB 250 spectrometer
(Thermo Electron; excitation source: Al Kα monochromatic source, 1486.6 eV), respectively.

2.4. Electrochemical Activity

Electrochemical impedance spectroscopy was performed as previously published [25,27].

2.5. Photocatalytic Activity

For photocatalytic activity testing, acetaminophen degradation in the presence of
different samples and of visible light was carried out as in our previous work [25] and
quantified with Equation (1) [28].

Degradation efficiency (%) = [(C0 − C)/C0] × 100, (1)

where C0 and C are the pollutant concentrations before and after irradiation.
Acetaminophen was chosen for these tests because it is consumed in all countries of

the world, has been detected in water samples from different origins, and is very stable
in water [14,17,25,29–32].

2.6. Kinetics

Acetaminophen photocatalytic degradation kinetic data were fitted using a pseudo-
first-order kinetic model [33]:

ln (C0/C) = Kapp t, (2)

where C0 is the initial concentration, C is the concentration at time t, and Kapp is the
apparent rate constant.

2.7. Micro-Toxicity Tests

To assess the toxicity of the solution during acetaminophen photodegradation, micro-
toxicity tests were carried out using the bioluminescent marine bacterium Vibrio fischeri as
described in [25].

3. Results and Discussion
3.1. H95T5 and N-H95T5 Morphology and Structure

H95T5 and N-H95T5 morphological features were characterized by SEM. In both
samples, nanofibers were uniform, continuous, and randomly oriented (Figure S1a,b). This
confirmed that the introduction of nitrogen did not change TiO2 shape, in good agreement
with the literature [22,25,34].

Crystallinity analysis of H95T5 and N-H95T5 by XRD showed (Figure S2) the char-
acteristic 001 reflection of HNT (7.18 Å) at 2θ, and TiO2 anatase phase with tetragonal
arrangement reflections at nearly 2θ = 25.36, 37.7, 48.06, 54.01, 55.00, 62.49, 68.61, 69.68,
and 74.85◦ ascribed to the (101), (112), (200), (105), (211), (204), (116), (220), and (215) Miller
plans, respectively [25]. XRD patterns indicated that the main TiO2 reflection was shifted
from the initial position after nitriding. Likewise, no significant difference was found between
H95T5 and N-H95T5 by Raman and Fourier-transform infrared spectroscopy (Figure S3).

High-resolution TEM (Figure 1a–c) indicated that N-H95T5 nanofibers had a rough
and large surface area with a lattice spacing of 0.350 nm, fully consistent with the distance
of the (101) crystalline plane of the TiO2 anatase [25,35,36]. Doping with nitrogen changed
neither the morphology of N-H95T5 compared with H95T5 [25] nor the crystal lattice
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values (selected area electron diffraction images). In fact, elemental mapping can be
used for qualitative (the type of elements) as well as quantitative (the percentage of the
concentration of each element of the sample) analysis. In N-H95T5, there are more than
four elements. Then, it is recommended to proceed with the quantitative analysis by
indicating the concentration of elements by a change in color: from blue (low concentration)
to red (high concentration) to green in the middle. Figure 1d–i confirmed the homogenous
distribution of nitrogen with T, O, Al, and Si elements.
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Figure 1. TEM images (a–c) and STEM-EDX chemical mapping of N-H95T5 (d–i).

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

N-H95T5 surface structure and chemical state were investigated by XPS. The survey
spectrum of H95T5 and N-H95T5 (Figure 2a) contained the dominant signals of Ti 2p and O 1s
and the weak signals of C 1s, Al 2p, and Si 2p. In comparison, nitrogen content can be
detected in the nitrogen-treated H95T5 sample. Figure S4 shows the N 1s peak for these
samples before and after nitriding. For further analysis of the chemical structure of the
N-H95T5 samples, high-resolution spectrum of XPS was used to identify the elements
present in the N-H95T5 nanofibers in three areas. The Ti 2p region near 460 eV (Figure 2b),
the N 1s region near 400 eV (Figure 2c), and the O 1s region near 530 eV (Figure 2d).

The Ti 2p spectrum (Figure 2b) presented two peaks (458.73 and 464.43 eV: Ti 2p3/2 and
Ti 2p1/2). After deconvolution of the N 1s peak, only one peak was detected with binding
energy at 399.82 eV (Figure 2c). The N 1s binding energy peak was broad, ranging from
396.32 eV to 403.91 eV and centered at 399.82 eV, which was greater than the typical binding
energy of 397.2 eV in Ti-N; therefore, Ti-N bonds were excluded and this peak could be
assigned to the presence of O-Ti-N linkage [37,38]. In the O 1s spectrum (Figure 2d), the
peaks at 529.84 and 531.50 eV were assigned to O-Ti and O-H. respectively. The XPS spectra
displayed a third peak that shifted to a higher binding energy (+0.7 eV) after nitriding
(Table 2). This bond could be attributed to the Ti-O-N or O-Ti-N bonds mainly on the
surface [39,40]. The XPS spectra confirmed nitrogen distribution into H95T5 nanofibers.

Nitrogen is commonly used for BET surface analysis because of its high purity and
strong interaction with most solids. Since the interaction between gas and solid phases is
generally weak, the surface is cooled with liquid N2 to obtain detectable levels of adsorption.
A known amount of nitrogen gas is then gradually released into the sample cell. Relative
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pressures less than atmospheric pressure are achieved by creating conditions of partial
vacuum. After the adsorption layer is formed, the sample is removed from the nitrogen
atmosphere and heated at room temperature to release the adsorbed nitrogen from the
material and quantify it. Heating from −200 ◦C to 25 ◦C has no great effect on the surface
morphology and architecture of N-H95T5 nanofibers. Figure 3 demonstrates that the
N-H95T5 exhibited a type IV isotherm and a type H2 hysteresis loop at a lower relative
pressure region [41]. The BET method gave specific surface area values of 36.6 m2/g for
H95T5 and 67.85 m2/g for N-H95T5. This increase was due to nitrogen incorporation in
TiO2 nanofibers and should be beneficial for photocatalytic activity by creating more active
adsorption sites [42].
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Table 2. Deconvoluted peaks of O 1s and Ti 2p.

H95T5 Position N-H95T5 Position

O 1s O-Ti 529.7 O 1s N-O-Ti 529.84

O 1s O-H O=C 531.1 O 1s O-H 531.50

O 1s O-Si O-C 532.0 O 1s O-Ti 532.70

Ti 2p3/2 TiO2 458.5 Ti 2p3/2 TiO2 458.73

Ti 2p1/2 TiO2 464.2 Ti 2p1/2 TiO2 464.43 eV

3.2. Electrochemical Activity

Electrochemical impedance spectroscopy with the previously described model was
used to investigate N-H95T5 electrochemical activity [25]. Figure 4a,b show that the
impedance arc radius of electrodes in the dark was much bigger than that under visible
light irradiation, which indicated that there were few electrons across the electrolyte
interfaces in the dark. While under visible light, the arc radius of the N-doped H95T5
electrode was smaller than that of the undoped electrode. This demonstrated that the
N-H95T5 displayed greater separation efficiency of photogenerated electron-hole pairs and
faster charge transfer than H95T5. It can be seen that the resistance of N-H95t5 decreased
by 89% after its exposure to visible light irradiation compared with 85% for H95T5. Charge
transfer rate was 10% faster and photogenerated electron-hole separation improved, as
indicated by the lower R2 value (1148 Ω for N-H95T5 versus 1280 Ω for H95T5). This
indicates that heat treatment with an inert nitrogen atmosphere is a promising way to
improve the efficiency of photocatalyst.
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Then, acetaminophen degradation quantification in the presence of N-H95T5 or H95T5
and visible light for 4.5 h (Figure 5a) showed an increase in photocatalytic efficiency with
N-H95T5 at the end of the experiment (83% and 95% of acetaminophen degraded with
H95T5 and with N-H95T5, respectively). These data suggest that nitrogen doping increases
oxygen vacancies that promote the trapping of photoinduced electrons and that act as a
reactive center for photocatalysis [23,43].

Table 3 summarizes the degradation activity of previously studied photocatalysts for
organic pollutants in water, highlighting the comparable performance of N-H95T5.

Acetaminophen degradation kinetics was explained by a pseudo first-order reaction
(curve linearity and linear coefficient R2~1) (Figure 5b). The lower electron-hole recombina-
tion rate explained the enhanced acetaminophen degradation with N-H95T5.
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Visible Light 
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Degradation 
Efficiency 

(%) 

Degradation 
Time (min) 

Ref. 

Acetaminophen 
(ACT) (10 mg/L) 

N-H95T5 
(0.5 g/L) 

Electrospinning + ni-
triding 

Halogen li-
near lamp 95 270 

This 
work 

ACT (10 mg/L) H95T5 
(0.5 g/L) 

Sol-gel 
+ 

electrospinning 

Halogen li-
near lamp 

91 360 [25] 

Rhodamine B 
(10 mg/L) 

N-TiO2 
(1g/L) 

Sol-gel + ammonia 
treatment 

500 W mer-
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Figure 5. Degradation rate of acetaminophen in the presence of H95T5 and N-H95T5 upon exposure
to visible light (a) and acetaminophen degradation kinetics (b). Data are the mean value of three
measurements and the relative error is lower than ±5%.

Table 3. Photocatalytic activity of different photocatalysts.

Pollutant (mg/L) Photocatalyst (g/L) Synthesis Technique Visible Light
Source

Degradation
Efficiency (%)

Degradation
Time (min) Ref.

Acetaminophen (ACT)
(10 mg/L) N-H95T5 (0.5 g/L) Electrospinning + nitriding Halogen

linear lamp 95 270 This work

ACT (10 mg/L) H95T5 (0.5 g/L) Sol-gel + electrospinning Halogen
linear lamp 91 360 [25]

Rhodamine B
(10 mg/L) N-TiO2 (1g/L) Sol-gel + ammonia treatment 500 W

mercury lamp 90 120 [22]

Gaseous toluene N–TiO2
Sol-gel + ammonia

atmosphere treatment

150 W Xe
lamp with an

IR cutter
48 60 [21]

Rhodamine B
(20 mg/L)

N-TiO2 (1g/L) Microemulsion−
hydrothermal method

1000 W
halogen lamp

96 60
[44]

2,4-dichlorophenol
(2,4-DCP) (100 mg/L) 56 300

Methyl Orange (MO)
(20 mg/L)

N-TiO2-400
(0.062 g/L)

Precipitation +
ammonium hydroxide Visible light 52 836 [45]

2,4-DCP (100 mg/L) N-TiO2 (1g/L) Sol-gel+ NH4NO3/NH3 H2O 1000 W
halogen lamp 52 300 [24]

ACT (5 mg/L) N-TiO2-NTs (0.5g/L) ALD + nitriding Halogen
linear lamp 98 90 [34]

MO (9.8 mg/L) N-TiO2 (1g/L) Solid state dispersion + urea Solar light 91 90 [46]

Methylene Blue (MB)
(10 mg/L)

N-TiO2
(1g/L) Wet chemical method + urea Visible light 72 180 [47]

After the photocatalysis experiment, the photocatalyst was removed by filtration,
washed with deionized water several times, and dried at 80 ◦C for 12 h, then treated for
15 min at 500 ◦C to remove all impurities and water molecules. Then, the catalyst was
analyzed by BET. The BET method gave specific surface area values of 678,512 m2/g for
N-H95T5 and 60.8532 m2/g for regenerated N-H95T5. A loss of 11% was found but the
obtained value remained higher than raw H95T5.

N-H95T5 reusability was confirmed by monitoring acetaminophen (10 mg/L, pH 7)
degradation over five cycles (same conditions as before). After each experiment, N-H95T5
was filtered, washed in water, and dried (100 ◦C for 12 h). Acetaminophen degradation
reached 95.45% in the first run and then was 93.54%, 92.11%, 86.95%, and 83.04% (Figure 6a).
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The decrease of 17% after five consecutive cycles could be related to nitrogen loss after
each run or to the accumulation of degradation by-products on the catalyst surface that
decrease the number of available active sites [48]. Despite this loss of activity after five
cycles, N-H95T5 can be considered a promising stable catalyst for industrial applications.
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Then, acetaminophen degradation assays were performed using the same experimen-
tal conditions, but in the presence of N-H95T5 and different scavengers (0.06M [49]) to de-
termine what reactive radicals are implicated in this photocatalytic process [49] (Figure 6b).
The addition of isopropanol (•OH scavenger) strongly decreased the acetaminophen degrada-
tion rate. The strongest inhibitory effects were obtained with benzoquinone (O2

•− scavenger)
and with EDTA (h+ scavenger). Therefore, all three radical types are implicated in
acetaminophen photodegradation [17,25].

Lastly, toxicity assays were performed to monitor the formation of harmful by-
products during acetaminophen degradation. When Vibrio fischeri was incubated with
N-H95T5 and acetaminophen, its natural fluorescence was inhibited by 27% after 15 min
and up to 86% after 2 h of exposure to visible light to induce acetaminophen degradation
(Figure 6c). Fluorescence inhibition progressively decreased: 83% at 6 h, 65% at 8 h, 42%
at 12 h, 12% at 20 h, and 6% at 24 h. This indicates that after 24 h, the toxic aromatic
by-products generated during acetaminophen photodegradation were transformed into
nontoxic compounds [33,50,51].

4. Conclusions

This study describes the fabrication of H95T5 and N-H95T5 composite nanofibers
by combining electrospinning and nitriding. After doping with nitrogen, no significant
difference was found between H95T5 and N-H95T5 by Raman, FT-IR, XRD, and SEM.
In addition, nitrogen was homogeneously distributed with T, O, Al, and Si as proved by
elemental mapping. In the XPS survey spectrum, Ti 2p and O 1s were the dominant signals,
while C 1s, Al 2p, Si 2p, and N 1s were weaker. The charge transfer rate was faster and
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electron-hole separation was improved by nitrogen doping. Nitrogen doping also enhanced
the catalytic properties of the prepared sample, with a degradation rate of 0.0089 min−1.
Recyclability tests were promising, as indicated by the loss of only 17% of activity after
five cycles. The scavenging experiments revealed that •OH, h+ and O2

•− were strongly
implicated in acetaminophen photodegradation. Toxicity (i.e., V. fischeri fluorescence
inhibition) was high in the first 4h of acetaminophen photodegradation in the presence
of N-H95T5, due to the generation of aromatic by-products (1,4-benzoquinone, benzoic
acid, and benzaldehyde) that were later transformed into nontoxic compounds. This study
has confirmed that a cheap photocatalyst with low TiO2 and nitrogen concentrations can
be used for the degradation of organic molecules and has opened prospects for mass
production and practical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13020204/s1, Figure S1: SEM micrographs showing
H95T5 (a) and N-H95T5 nanocomposite fibers (b); Figure S2: XRD patterns of H95T5 and N-H95T5
nanocomposite fibers; Figure S3: FT-IR spectra (a) and Raman spectra (b) of H95T5 and N-H95T5
nanofibers; Figure S4: XPS survey spectra of H95T5 and N-H95T5 from 420 to 380 ev.
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