Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. EDBM Experimental Results
2.2. Simulation of a Triple Effect Evaporation
2.3. SEC Calculations
2.4. CF Calculations
3. Results and Discussion
3.1. EDBM Experimental Results
3.2. Simulation Results of a Triple Effect NaOH Evaporation Process
3.3. SEC Results
3.4. CF Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jones, E.; Qadir, M.; Van Vliet, M.T.H.; Smakhtin, V.; Kang, S. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Palomar, P.; Losada, I.J. Impacts of Brine Discharge on the Marine Environment. Modelling as a Predictive Tool. In Desalination, Trends and Technologies; IntechOpen: London, UK, 2011; ISBN 978-953-307-311-8. [Google Scholar]
- Elsaid, K.; Kamil, M.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Environmental impact of desalination technologies: A review. Sci. Total Environ. 2020, 748, 141528. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy use for membrane seawater desalination–current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Sola, I.; Fernández-Torquemada, Y.; Forcada, A.; Valle, C.; del Pilar-Ruso, Y.; González-Correa, J.M.; Sánchez-Lizaso, J.L. Sustainable desalination: Long-term monitoring of brine discharge in the marine environment. Mar. Pollut. Bull. 2020, 161, 111813. [Google Scholar] [CrossRef]
- Sola, I.; Zarzo, D.; Carratalá, A.; Fernández-Torquemada, Y.; De-la-Ossa-Carretero, J.A.; Del-Pilar-Ruso, Y.; Sánchez-Lizaso, J.L. Review of the management of brine discharges in Spain. Ocean Coast. Manag. 2020, 196, 105301. [Google Scholar] [CrossRef]
- Sánchez-Lizaso, J.L.; Romero, J.; Ruiz, J.; Gacia, E.; Buceta, J.L.; Invers, O.; Fernández Torquemada, Y.; Mas, J.; Ruiz-Mateo, A.; Manzanera, M. Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: Recommendations to minimize the impact of brine discharges from desalination plants. Desalination 2008, 221, 602–607. [Google Scholar] [CrossRef]
- Gacia, E.; Invers, O.; Manzanera, M.; Ballesteros, E.; Romero, J. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuar. Coast. Shelf Sci. 2007, 72, 579–590. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Yang, D.R.; Hong, S. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 2019, 254, 113652. [Google Scholar] [CrossRef]
- Zarzo, D.; Prats, D. Desalination and energy consumption. What can we expect in the near future? Desalination 2018, 427, 1–9. [Google Scholar] [CrossRef]
- Missimer, T.M.; Maliva, R.G. Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls. Desalination 2018, 434, 198–215. [Google Scholar] [CrossRef]
- Pérez-González, A.; Urtiaga, A.M.; Ibáñez, R.; Ortiz, I. State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res. 2012, 46, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Comisión Europea. Un Pacto Verde Europeo. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_es (accessed on 25 June 2020).
- United Nations. United Nations Transforming our world: The 2030 Agenda for Sustainable Development. Gen. Assem. 70 Sess. 2015, 16301, 1–35. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Zhang, Y.; Jegatheesan, V. A review of resource recovery from seawater desalination brine. Rev. Environ. Sci. Bio/Technol. 2021, 20, 333–361. [Google Scholar] [CrossRef]
- Kumar, A.; Naidu, G.; Fukuda, H.; Du, F.; Vigneswaran, S.; Drioli, E.; Lienhard, J.H. Metals Recovery from Seawater Desalination Brines: Technologies, Opportunities, and Challenges. ACS Sustain. Chem. Eng. 2021, 9, 7704–7712. [Google Scholar] [CrossRef]
- Ortiz-Albo, P.; Torres-Ortega, S.; González Prieto, M.; Urtiaga, A.; Ibañez, R. Techno-Economic Feasibility Analysis for Minor Elements Valorization from Desalination Concentrates. Sep. Purif. Rev. 2019, 48, 220–241. [Google Scholar] [CrossRef]
- Bello, A.S.; Zouari, N.; Da’ana, D.A.; Hahladakis, J.N.; Al-Ghouti, M.A. An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies. J. Environ. Manage. 2021, 288, 112358. [Google Scholar] [CrossRef]
- Tristán, C.; Fallanza, M.; Ibáñez, R.; Ortiz, I. Recovery of salinity gradient energy in desalination plants by reverse electrodialysis. Desalination 2020, 496, 114699. [Google Scholar] [CrossRef]
- Pärnamäe, R.; Gurreri, L.; Post, J.; van Egmond, W.J.; Culcasi, A.; Saakes, M.; Cen, J.; Goosen, E.; Tamburini, A.; Vermaas, D.A.; et al. The acid–base flow battery: Sustainable energy storage via reversible water dissociation with bipolar membranes. Membranes 2020, 10, 409. [Google Scholar] [CrossRef]
- Herrero-Gonzalez, M.; Ibañez, R. Chemical and Energy Recovery Alternatives in SWRO Desalination through Electro-Membrane Technologies. Appl. Sci. 2021, 11, 8100. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery–Analysis, challenges and prospects. J. Environ. Chem. Eng. 2020, 8, 104418. [Google Scholar] [CrossRef]
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. Sci. Total Environ. 2022, 806, 150692. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, G.; Lancioni, N.; Akyol, Ç.; Eusebi, A.L.; Fatone, F. Brine treatment technologies towards minimum/zero liquid discharge and resource recovery: State of the art and techno-economic assessment. J. Environ. Manage. 2021, 300, 113681. [Google Scholar] [CrossRef]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Gonzalez, M.; Diaz-Guridi, P.; Dominguez-Ramos, A.; Irabien, A.; Ibañez, R. Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes. Sep. Purif. Technol. 2020, 242, 116785. [Google Scholar] [CrossRef]
- UN Comtrade | International Trade Statistics Database. Available online: https://comtrade.un.org/ (accessed on 31 August 2021).
- Du, F.; Warsinger, D.M.; Urmi, T.I.; Thiel, G.P.; Kumar, A.; Lienhard, J.H. Sodium Hydroxide Production from Seawater Desalination Brine: Process Design and Energy Efficiency. Environ. Sci. Technol. 2018, 52, 5949–5958. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Phillips, K.R.; Thiel, G.P.; Schröder, U.; Lienhard, J.H. Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nat. Catal. 2019, 2, 106–113. [Google Scholar] [CrossRef]
- Reig, M.; Valderrama, C.; Gibert, O.; Cortina, J.L. Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: Monovalent-divalent ions separation and acid and base production. Desalination 2016, 399, 88–95. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Fan, A.; Fu, L.; Gao, C. An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. J. Memb. Sci. 2014, 449, 119–126. [Google Scholar] [CrossRef]
- Ghyselbrecht, K.; Silva, A.; Van der Bruggen, B.; Boussu, K.; Meesschaert, B.; Pinoy, L. Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. J. Environ. Manage. 2014, 140, 69–75. [Google Scholar] [CrossRef]
- Tran, A.T.K.; Mondal, P.; Lin, J.; Meesschaert, B.; Pinoy, L.; Van der Bruggen, B. Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor. J. Memb. Sci. 2015, 473, 118–127. [Google Scholar] [CrossRef]
- León, T.; López, J.; Torres, R.; Grau, J.; Jofre, L.; Cortina, J.-L. Describing ion transport and water splitting in an electrodialysis stack with bipolar membranes by a 2-D model: Experimental validation. J. Memb. Sci. 2022, 660, 120835. [Google Scholar] [CrossRef]
- Al-Dhubhani, E.; Pärnamäe, R.; Post, J.W.; Saakes, M.; Tedesco, M. Performance of five commercial bipolar membranes under forward and reverse bias conditions for acid-base flow battery applications. J. Memb. Sci. 2021, 640, 119748. [Google Scholar] [CrossRef]
- Culcasi, A.; Gurreri, L.; Cipollina, A.; Tamburini, A.; Micale, G. A comprehensive multi-scale model for bipolar membrane electrodialysis (BMED). Chem. Eng. J. 2022, 437, 135317. [Google Scholar] [CrossRef]
- Herrero-Gonzalez, M.; Diaz-Guridi, P.; Dominguez-Ramos, A.; Ibañez, R.; Irabien, A. Photovoltaic solar electrodialysis with bipolar membranes. Desalination 2018, 433, 155–163. [Google Scholar] [CrossRef]
- Herrero-Gonzalez, M.; Admon, N.; Dominguez-Ramos, A.; Ibañez, R.; Wolfson, A.; Irabien, A. Environmental sustainability assessment of seawater reverse osmosis brine valorization by means of electrodialysis with bipolar membranes. Environ. Sci. Pollut. Res. 2020, 27, 1256–1266. [Google Scholar] [CrossRef]
- Herrero-Gonzalez, M.; Wolfson, A.; Dominguez-Ramos, A.; Ibañez, R.; Irabien, A. Monetizing Environmental Footprints: Index Development and Application to a Solar-Powered Chemicals Self-Supplied Desalination Plant. ACS Sustain. Chem. Eng. 2018, 6, 14533–14541. [Google Scholar] [CrossRef]
- Aspentech Aspen Plus v10 2019. Available online: https://www.aspentech.com/ (accessed on 4 August 2022).
- PVGIS JRC’s Directorate C: Energy, Transport and Climate-PVGIS-European Commission. Available online: http://re.jrc.ec.europa.eu/pvgis/ (accessed on 21 April 2017).
- Kurt, C.; Bittner, J. Sodium Hydroxide. Ullmann’s Encycl. Ind. Chem. 2012, 371–382. [Google Scholar] [CrossRef]
- Kuhnlein, H.; Kung, H.R.; Molnar, G. Process and Apparatus for the Concentration of an Alkaline Solution. U.S. Patent No. 4,383,887, 1983. [Google Scholar]
- McCabe, W.L.; Smith, J.C.; Harriott., P. Unit Operations of Chemical Engineering, 4th ed.; McGraw Hill: Madrid, Spain, 1991. [Google Scholar]
- IEA International Energy Agency. Available online: http://www.iea.org/ (accessed on 13 July 2017).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
Code | Energy Source | Current Density | NaOH | SECEDBM | |
---|---|---|---|---|---|
A·m−2 | mol·L−1 | %wt. | kWh·kg−1 NaOH | ||
Exp-G500 | Grid Mix | 500 | 2.95 | 7.81 | 11.6 |
Exp-G750 | Grid Mix | 750 | 3.63 | 9.63 | 16.5 |
Exp-G1000 | Grid Mix | 1000 | 3.63 | 9.63 | 23.4 |
Exp-PV500 | Solar PV | 500 | 3.10 | 8.21 | 15.5 |
Exp-PV750 | Solar PV | 750 | 3.34 | 8.84 | 20.2 |
Exp-PV1000 | Solar PV | 1000 | 3.65 | 9.66 | 22.6 |
NaOH in Feed (%wt.) | SECEDBM (kWh·kg−1 NaOH) | SECEV (kWh·kg−1 NaOH) | |||||
---|---|---|---|---|---|---|---|
Exp-G500 | Exp-G750 | Exp-G1000 | Exp-PV500 | Exp-PV750 | Exp-PV1000 | ||
7.00 | 11.2 | 17.1 | 20.2 | 14.4 | 18.7 | 19.0 | 21.9 |
7.25 | 11.3 | 17.1 | 20.4 | 14.6 | 18.8 | 19.2 | 21.1 |
7.50 | 11.4 | 17.2 | 20.5 | 14.8 | 18.9 | 19.5 | 20.3 |
7.75 | 11.4 | 17.3 | 20.6 | 15.0 | 19.0 | 19.7 | 19.6 |
8.00 | - | 17.4 | 20.7 | 15.1 | 19.0 | 19.9 | 18.9 |
8.25 | - | 17.5 | 20.9 | 15.3 | 19.1 | 20.1 | 18.3 |
8.50 | - | 17.6 | 21.0 | - | 19.2 | 20.3 | 17.7 |
8.75 | - | 17.6 | 21.1 | - | 19.3 | 20.5 | 17.2 |
9.00 | - | 17.7 | 21.2 | - | - | 20.8 | 16.6 |
9.25 | - | 17.8 | 21.4 | - | - | 21.0 | 16.1 |
9.50 | - | 17.9 | 21.5 | - | - | 21.2 | 15.7 |
9.75 | - | - | - | - | - | - | 15.2 |
10.00 | - | - | - | - | - | - | 14.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero-Gonzalez, M.; Ibañez, R. Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process. Membranes 2022, 12, 885. https://doi.org/10.3390/membranes12090885
Herrero-Gonzalez M, Ibañez R. Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process. Membranes. 2022; 12(9):885. https://doi.org/10.3390/membranes12090885
Chicago/Turabian StyleHerrero-Gonzalez, Marta, and Raquel Ibañez. 2022. "Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process" Membranes 12, no. 9: 885. https://doi.org/10.3390/membranes12090885
APA StyleHerrero-Gonzalez, M., & Ibañez, R. (2022). Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process. Membranes, 12(9), 885. https://doi.org/10.3390/membranes12090885