Antifouling Conductive Composite Membrane with Reversible Wettability for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the SSM/PPY(AOT) Composite Membrane
2.2. Membrane Characterizations
2.2.1. Surface Morphology and Chemical Composition
2.2.2. Membrane Surface Wettability
2.2.3. Membrane Permeability
2.3. Evaluation of Antifouling Performance
2.3.1. Preparation of Synthetic Foulant Solutions
2.3.2. Cross-Flow Filtration System
2.3.3. Antifouling Filtration Tests
3. Results and Discussion
3.1. Surface Properties of the SSM/PPY(AOT) Membrane
3.2. Reversible Wettability Switching
3.3. Antifouling Behaviors in Different Operating Modes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Banti, D.C.; Tsangas, M.; Samaras, P.; Zorpas, A. LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment. Membranes 2020, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Xiao, K.; Zhang, J.; Xue, W.; Wei, C.; Zhang, X.; Liang, S.; Wang, X.; Huang, X. Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process. Front. Environ. Sci. Eng. 2022, 16, 49. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Hou, L.A.; Shon, H.K.; Yue, Q.; Wang, Z. Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of boron removal and energy consumption. Front. Environ. Sci. Eng. 2021, 15, 135. [Google Scholar] [CrossRef]
- Fane, A.G.; Tang, C.Y.; Wang, R. Membrane Technology for Water Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis. Treatise Water Sci. 2011, 4, 301–335. [Google Scholar]
- Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Liu, X.; Tian, C.; Zhao, Y.; Xu, W.; Dong, D.; Shih, K.; Yan, T.; Song, W. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control. Front. Environ. Sci. Eng. 2022, 16, 110. [Google Scholar] [CrossRef]
- Ma, Z.; Liang, S.; Zhang, S.; Xiao, K.; Wang, X.; Li, M.; Huang, X. Surface functionalization via synergistic grafting of surface-modified silica nanoparticles and layered double hydroxide nanosheets for fabrication of superhydrophilic but relatively oleophobic antifouling membranes. Sep. Purif. Technol. 2020, 247, 116955. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.; Chen, G.; Xiao, K.; Li, M.; Gao, Y.; Liang, S.; Huang, X. Superhydrophilic and oleophobic membrane functionalized with heterogeneously tailored two-dimensional layered double hydroxide nanosheets for antifouling. J. Membr. Sci. 2019, 577, 165–175. [Google Scholar] [CrossRef]
- Zhao, F.; Ma, Z.; Xiao, K.; Xiang, C.; Wang, H.; Huang, X.; Liang, S. Hierarchically textured superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane distillation performance. Desalination 2018, 443, 228–236. [Google Scholar] [CrossRef]
- Liang, S.; Xiao, K.; Mo, Y.; Huang, X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Membr. Sci. 2012, 394–395, 184–192. [Google Scholar] [CrossRef]
- Koo, C.H.; Mohammad, A.W.; Suja’, F.; Talib, M.Z.M. Review of the effect of selected physicochemical factors on membrane fouling propensity based on fouling indices. Desalination 2012, 287, 167–177. [Google Scholar] [CrossRef]
- Younas, H.; Bai, H.; Shao, J.; Han, Q.; Ling, Y.; He, Y. Super-hydrophilic and fouling resistant PVDF ultrafiltration membranes based on a facile prefabricated surface. J. Membr. Sci. 2017, 541, 529–540. [Google Scholar] [CrossRef]
- Liang, S.; Kang, Y.; Tiraferri, A.; Giannelis, E.P.; Huang, X.; Elimelech, M. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 6694–6703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gonzales, R.R.; Istirokhatun, T.; Lin, Y.; Segawa, J.; Shon, H.K.; Matsuyama, H. In Situ engineering of an ultrathin polyamphoteric layer on polyketone-based thin film composite forward osmosis membrane for comprehensive anti-fouling performance. Sep. Purif. Technol. 2021, 272, 118922. [Google Scholar] [CrossRef]
- Hu, M.; Cui, Z.; Li, J.; Zhang, L.; Mo, Y.; Dlamini, D.S.; Wang, H.; He, B.; Li, J.; Matsuyama, H. Ultra-low graphene oxide loading for water permeability, antifouling and antibacterial improvement of polyethersulfone/sulfonated polysulfone ultrafiltration membranes. J. Colloid Interface Sci. 2019, 552, 319–331. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Liu, Y.; He, M.; Su, Y.; Gao, C.; Jiang, Z. Antifouling membrane surface construction: Chemistry plays a critical role. J. Membr. Sci. 2018, 551, 145–171. [Google Scholar] [CrossRef]
- Li, D.; Niu, X.; Yang, S.; Chen, Y.; Ran, F. Thermo-responsive polysulfone membranes with good anti-fouling property modified by grafting random copolymers via surface-initiated eATRP. Sep. Purif. Technol. 2018, 206, 166–176. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Liu, Y.; Miao, M.; Zhao, Y.; Sotto, A.; Gao, C.; Shen, J. Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning. J. Membr. Sci. 2019, 579, 230–239. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, H.-Y.; Li, Y.-J.; Chen, G.-E.; Xu, S.-J.; Xu, Z.-L. Smart light responsive polypropylene membrane switching reversibly between hydrophobicity and hydrophilicity for oily water separation. J. Membr. Sci. 2021, 638, 119704. [Google Scholar] [CrossRef]
- Xu, L.L.; Shahid, S.; Patterson, D.A.; Emanuelsson, E.A.C. Flexible electro-responsive in-situ polymer acid doped polyaniline membranes for permeation enhancement and membrane fouling removal. J. Membr. Sci. 2019, 578, 263–272. [Google Scholar] [CrossRef]
- Himstedt, H.H.; Sengupta, A.; Qian, X.; Wickramasinghe, S.R. Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water. J. Taiwan Inst. Chem. Eng. 2019, 94, 97–108. [Google Scholar] [CrossRef]
- Abaie, E.; Xu, L.; Shen, Y.X. Bioinspired and biomimetic membranes for water purification and chemical separation: A review. Front. Environ. Sci. Eng. 2021, 15, 124. [Google Scholar] [CrossRef]
- Ashtiani, S.; Khoshnamvand, M.; Číhal, P.; Dendisová, M.; Randová, A.; Bouša, D.; Shaliutina-Kolešová, A.; Sofer, Z.; Friess, K. Fabrication of a PVDF membrane with tailored morphology and properties via exploring and computing its ternary phase diagram for wastewater treatment and gas separation applications. RSC Adv. 2020, 10, 40373–40383. [Google Scholar] [CrossRef]
- Ashtiani, S.; Regmi, C.; Azadmanjiri, J.; Hong, N.V.; Fíla, V.; Průša, F.; Sofer, Z.; Friess, K. Stimuli-responsive of magnetic metal-organic frameworks (MMOF): Synthesis, dispersion control, and its tunability into polymer matrix under the augmented-magnetic field for H2 separation and CO2 capturing applications. Int. J. Hydrogen Energy 2022, 47, 20166–20175. [Google Scholar] [CrossRef]
- Meng, H.; Jinlian, H. A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli. J. Intell. Mater. Syst. Struct. 2010, 21, 859–885. [Google Scholar] [CrossRef]
- Ohmori, S.; Saito, T. Electrochemical durability of single-wall carbon nanotube electrode against anodic oxidation in water. Carbon 2012, 50, 4932–4938. [Google Scholar] [CrossRef]
- Guo, B.; Glavas, L.; Albertsson, A.-C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 2013, 38, 1263–1286. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Wettability of conducting polymers: From superhydrophilicity to superoleophobicity. Prog. Polym. Sci. 2014, 39, 656–682. [Google Scholar] [CrossRef]
- Li, C.; Bai, H.; Shi, G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009, 38, 2397–2409. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Quan, X.; Fan, X.; Chen, S.; Yu, H. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation. Sep. Purif. Technol. 2019, 210, 891–899. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Choi, C.-H.; Gao, N.; Yang, E.-H. Tunable Wetting Mechanism of Polypyrrole Surfaces and Low-Voltage Droplet Manipulation via Redox. Langmuir 2011, 27, 4249–4256. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Hunter, I.W. A Superhydrophobic to Superhydrophilic In Situ Wettability Switch of Microstructured Polypyrrole Surfaces. Macromol. Rapid Commun. 2011, 32, 718–723. [Google Scholar] [CrossRef]
- Ahmed, F.; Lalia, B.S.; Kochkodan, V.; Hilal, N.; Hashaikeh, R. Electrically conductive polymeric membranes for fouling prevention and detection: A review. Desalination 2016, 391, 1–15. [Google Scholar] [CrossRef]
- Liao, J.; Zhu, Y.; Zhou, Z.; Chen, J.; Tan, G.; Ning, C.; Mao, C. Reversibly controlling preferential protein adsorption on bone implants by using an applied weak potential as a switch. Angew. Chem. Int. Ed. 2014, 53, 13068–13072. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Ding, Y.; Li, W.; Hu, C.; Yang, M.; Liu, H.; Qu, J. Ultrafiltration membrane fouling induced by humic acid with typical inorganic salts. Chemosphere 2018, 197, 793–802. [Google Scholar] [CrossRef]
- Li, M.; Liang, S.; Wu, Y.; Yang, M.; Huang, X. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration. Front. Environ. Sci. Eng. 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Chen, G.; Ma, Z.; Xiao, K.; Wang, X.; Liang, S.; Huang, X. Hierarchically textured superhydrophilic polyvinylidene fluoride membrane via nanocasting and post-fabrication grafting of surface-tailored silica nanoparticles. Environ. Sci. Nano 2019, 6, 3579–3589. [Google Scholar] [CrossRef]
- Xu, L.B.; Chen, W.; Mulchandani, A.; Yan, Y.S. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 2005, 44, 6009–6012. [Google Scholar] [CrossRef]
- Falletta, E.; Costa, P.; Della Pina, C.; Lanceros-Mendez, S. Development of high sensitive polyaniline based piezoresistive films by conventional and green chemistry approaches. Sens. Actuators Phys. A 2014, 220, 13–21. [Google Scholar] [CrossRef]
- Ramasamy, M.S.; Mahapatra, S.S.; Cho, J.W. Functionalization of graphene with self-doped conducting polypyrrole by click coupling. J. Colloid Interface Sci. 2015, 455, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Hu, C.; Li, X.; Liu, H.; Qu, J. Reversible superwettability switching of a conductive polymer membrane for oil-water separation and self-cleaning. J. Membr. Sci. 2020, 605, 118088. [Google Scholar] [CrossRef]
- Lehr, I.; Saidman, S. Morphology and properties of polypyrrole electrosynthesized onto iron from a surfactant solution. Synth. Met. 2009, 159, 1522–1528. [Google Scholar] [CrossRef]
- Si, Y.; Sun, C.; Li, D.; Yang, F.; Tang, C.Y.; Quan, X.; Dong, Y.; Guiver, M.D. Flexible Superhydrophobic Metal-Based Carbon Nanotube Membrane for Electrochemically Enhanced Water Treatment. Environ. Sci. Technol. 2020, 54, 9074–9082. [Google Scholar] [CrossRef]
- Xiao, K.; Han, B.; Sun, J.; Tan, J.; Yu, J.; Liang, S.; Shen, Y.; Huang, X. Stokes Shift and Specific Fluorescence as Potential Indicators of Organic Matter Hydrophobicity and Molecular Weight in Membrane Bioreactors. Environ. Sci. Technol. 2019, 53, 8985–8993. [Google Scholar] [CrossRef]
Items | Component | Concentration | |
---|---|---|---|
Foulant Solution I | Foulant Solution II | ||
Organic (mg L−1) | Sodium alginate (SA) | 25 | 25 |
Humic acid (HA) | 15 | 15 | |
Bovine serum albumin (BSA) | 8 | 8 | |
Inorganic (mM) | CaCl2 | 0 | 1 |
MgCl2 | 0 | 0.5 | |
NaHCO3 | 2 | 2 | |
NaCl | 18 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gao, R.; Zhang, J.; Zhang, Y.; Liang, S. Antifouling Conductive Composite Membrane with Reversible Wettability for Wastewater Treatment. Membranes 2022, 12, 626. https://doi.org/10.3390/membranes12060626
Li Y, Gao R, Zhang J, Zhang Y, Liang S. Antifouling Conductive Composite Membrane with Reversible Wettability for Wastewater Treatment. Membranes. 2022; 12(6):626. https://doi.org/10.3390/membranes12060626
Chicago/Turabian StyleLi, Yi, Ruonan Gao, Jianwen Zhang, Yue Zhang, and Shuai Liang. 2022. "Antifouling Conductive Composite Membrane with Reversible Wettability for Wastewater Treatment" Membranes 12, no. 6: 626. https://doi.org/10.3390/membranes12060626
APA StyleLi, Y., Gao, R., Zhang, J., Zhang, Y., & Liang, S. (2022). Antifouling Conductive Composite Membrane with Reversible Wettability for Wastewater Treatment. Membranes, 12(6), 626. https://doi.org/10.3390/membranes12060626