Semi-Quantitative Evaluation of Asymmetricity of Dialysis Membrane Using Forward and Backward Ultrafiltration
Abstract
:1. Introduction
2. Materials and Method
3. Theoretical
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwalbe, S.; Holzhauer, M.; Schaeffer, J.; Galanski, M.; Koch, K.M.; Floege, J. Beta 2-microglobulin associated amyloidosis: A vanishing complication of long-term hemodialysis? Kidney Int. 1997, 52, 1077–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gejyo, F.; Yamada, T.; Odani, S.; Nakagawa, Y.; Arakawa, M.; Kunitomo, T.; Suzuki, M.; Hirasawa, Y.; Shirahama, T.; Cohen, A.S.; et al. A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. Biochem. Biophys. Res. Commun. 1985, 129, 701–706. [Google Scholar] [CrossRef]
- Bergström, J.; Wehle, B. No change in corrected beta 2-microglobulin concentration after cuprophane haemodialysis. Lancet 1987, 329, 628–629. [Google Scholar] [CrossRef]
- Hakim, R.M.; Fearon, D.T.; Lazarus, J.M.; Perzanowski, C.S. Biocompatibility of dialysis membranes: Effects of chronic complement activation. Kidney Int. 1984, 26, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, C.R.; Hamburger, R.J.; Lysaght, M.J. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 1999, 56, 2005–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C.; Clark, W.R. Haemodialysis membranes. Nat. Rev. Nephrol. 2018, 14, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Daugirdas, J.T.; Ing, T.S.; Roxe, D.M.; Ivanovich, P.T.; Krumlovsky, F.; Popli, S.; McLaughlin, M.M. Severe anaphylactoid reactions to cuprammonium cellulose hemodialyzers. Ann. Intern. Med. 1985, 145, 489–494. [Google Scholar] [CrossRef]
- Daugirdas, J.T.; Ing, T.S. First-use reactions during hemodialysis: A definition of subtypes. Kidney Int. Suppl. 1988, 24, S37–S43. [Google Scholar]
- Schulman, G.; Hakim, R.; Arias, R.; Silverberg, M.; Kaplan, A.P.; Arbeit, L. Bradykinin generation by dialysis membranes: Possible role in anaphylactic reaction. J. Am. Soc. Nephrol. 1993, 3, 1563–1569. [Google Scholar] [CrossRef]
- Yamashita, A.C.; Sakurai, K. Dialysis Membranes—Physicochemical Structures and Features. In Updates in Hemodialysis; Suzuki, H., Ed.; InTechOpen: London, UK, 2015; pp. 153–189. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.R.; Gao, D. Low-molecular weight proteins in end-stage renal disease: Potential toxicity and dialytic removal mechanisms. J. Am. Soc. Nephrol. 2002, 13 (Suppl. S1), S41–S47. [Google Scholar] [CrossRef]
- Tattersall, J.E.; Ward, R.A. Online haemodiafiltration: Definition, dose quantification and safety revisited. Nephrol. Dial. Transplant. 2013, 28, 542–550. [Google Scholar] [CrossRef] [Green Version]
- Maduell, F.; Varas, J.; Ramos, R.; Martin-Malo, A.; Pérez-Garcia, R.; Berdud, I.; Moreso, F.; Canaud, B.; Stuard, S.; Gauly, A.; et al. Hemodiafiltration reduces all-cause and cardiovascular mortality in incident hemodialysis patients: A propensity-matched cohort study. Am. J. Nephrol. 2017, 46, 288–297. [Google Scholar] [CrossRef]
- Canaud, B.; Vienken, J.; Ash, S.; Ward, R.A. Hemodiafiltration to address unmet medical needs ESKD patients. Clin. J. Am. Soc. Nephrol. 2018, 13, 1435–1443. [Google Scholar] [CrossRef] [Green Version]
- Masakane, I.; Kikuchi, K.; Kawanishi, H. Evidence for the clinical advantages of predilution on-line hemodiafiltration. Contrib. Nephrol. 2017, 189, 17–23. [Google Scholar] [CrossRef]
- Kikuchi, K.; Hamano, T.; Wada, A.; Nakai, S.; Masakane, I. Predilution online hemodiafiltration is associated with improved survival compared with hemodialysis. Kidney Int. 2019, 95, 929–938. [Google Scholar] [CrossRef]
- Pappenheimer, J.R.; Renkin, E.M.; Borrero, L.M. Filtration, diffusion and molecular sieving through peripheral capillary membranes—A contribution to the pore theory of capillary permeability. Amer. J. Physiol. 1951, 167, 13–46. [Google Scholar] [CrossRef]
- Verniory, A.; Dubois, R.; Decoodt, P.; Gassee, J.P.; Lambert, P.P. Measurement of the permeability of biological membranes—Application to the glomerular wall. J. Gen. Physiol. 1973, 62, 489–507. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K.; Takesawa, S.; Mimura, R.; Ohashi, H. Determination of pore radius of hollow fiber dialysis membranes using tritium-labeled water. J. Chem. Eng. Jpn. 1988, 21, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Tomisawa, N.; Yamashita, A.C. Amount of adsorbed albumin loss by dialysis membranes with protein adsorption. J. Artif. Organs 2009, 12, 194–199. [Google Scholar] [CrossRef]
- Gomez, M.; Bañon-Maneus, E.; Arias-Guillén, M.; Fontseré, N.; Broseta, J.J.; Ojeda, R.; Maduell, F. Distinct solute removal patterns by similar surface high-flux membranes in haemodiafiltration: The adsorption point of View. Blood Purif. 2022, 51, 38–46. [Google Scholar] [CrossRef]
- Kiguchi, T.; Tomisawa, N.; Yamashita, A.C. Replication of Fouling In Vitro in Hollow Fiber Dialyzers by Albumin Immobilization. J. Artif. Organs 2022, 1–7. [Google Scholar] [CrossRef]
- Boschetti-de-Fierro, A.; Voigt, M.; Storr, M.; Krause, B. MCO membranes: Enhanced selectivity in high-flux class. Sci. Rep. 2015, 5, 18448. [Google Scholar] [CrossRef] [Green Version]
- Japanese Society for Artificial Organs: A Guideline for Performance Evaluation of Hemodialyzers; Japanese Society for Artificial Organs: Tokyo, Japan, 1982. (In Japanese)
- Kawanishi, H.; Mineshima, M.; Hirakata, H.; Akizawa, T. A method for performance evaluation of blood purification devices. Jap. J. Dial. Ther. 2012, 45, 435–445. [Google Scholar] [CrossRef]
- Henderson, L.W.; Colton, C.K.; Ford, C.A. Kinetics of hemodiafiltration. II. Clinical characterization of a new blood cleansing modality. J. Lab. Clin. Med. 1975, 85, 372–391. [Google Scholar]
- Colton, C.K.; Henderson, L.W.; Ford, C.A.; Lysaght, M.J. Kinetics of hemodiafiltration. I. In Vitro transport characteristics of a hollow-fiber blood ultrafilter. J. Lab. Clin. Med. 1975, 85, 355–371. [Google Scholar]
- Yamashita, A.C. New dialysis membrane for removal of middle molecule uremic toxins. Amer. J. Kid. Dis. 2001, 38, S217–S219. [Google Scholar] [CrossRef]
- Yamashita, A.C.; Sakiyama, R.; Hamada, H.; Tojo, K. Two novel definitive equations of the sieving coefficient. Kidney and Dialysis Jin-To-Toseki 1998, 45 (Suppl. S1), 36–38. (In Japanese) [Google Scholar]
- Yamashita, A.C.; Ono, T.; Tomisawa, N. Verification of physicochemical structures of dialysis membrane using reversal dialysis technique. Hemodial. Int. 2017, 20 (Suppl. S2), S3–S9. [Google Scholar] [CrossRef]
- Yamashita, A.C.; Masaki, H.; Kobayashi, E.; Sukegawa, T. Evaluation of solute penetration across the polysulfone membrane with vitamin E coating. Hemodial. Int. 2015, 19 (Suppl. S2), S20–S25. [Google Scholar] [CrossRef]
- Yamashita, A.C.; Sakurai, K. Clinical effect of pre-dilution hemodiafiltration based on the permeation of the hemodiafilter, “Chronic kidney disease–Recent advances in clinical and basic research”. Contrib. Nephrol. 2015, 185, 1–7. [Google Scholar] [CrossRef]
- Sunohara, T.; Masuda, T. Fundamental characteristics of the newly developed ATATM membrane dialyzer. Contrib. Nephrol. 2017, 189, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Maduell, F.; Ojeda, R.; Arias-Guillén, M.; Fontseré, N.; Vera, M.; Rodas, L.; Gómez, M.; Huablocho, K.P.; Esquivel, F.; Mori, P.D.; et al. A new generation of cellulose triacetate suitable for online haemodiafiltration. Nefrología 2018, 38, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.R.; Hadidi, M.; Motevalian, S.P.; Sunohara, T.; Zydney, A.L. Effects of plasma proteins on the transport and surface characteristics of polysulfone/polyethersulfone and asymmetric cellulose triacetate high flux dialyzers. Artif. Organs 2018, 42, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, A.; Naito, H.; Miyazaki, T. Adsorption of complement, cytokines, and proteins by different dialysis membrane materials: Evaluation by confocal laser scanning fluorescence microscopy. Artif. Organs 1998, 22, 1014–1017. [Google Scholar] [CrossRef]
- Grandi, F.; Bolasco, P.; Palladino, G.; Sereni, L.; Caiazzo, M.; Atti, M.; Ghezzi, P.M. Adsorption in Extracorporeal Blood Purification: How to Enhance Solutes Removal beyond Diffusion and Convection; InTechOpen: London, UK, 2013; pp. 381–408. [Google Scholar] [CrossRef] [Green Version]
Commercial Name | Membrane | Physicochemical Structure of the Membrane | Abbreviations of the Commercial Name |
---|---|---|---|
FIX-210Seco | CTA (ATA®) | Asymmetry | FIX |
FB-210UHβeco | CTA | Homogeneous | FB |
MFX-21Seco | PES | Asymmetry | MFX |
Solutes | Molecular Weight (-) | Produced | Purpose | Initial Concentration (mg/mL) |
---|---|---|---|---|
vitamin B12 | 1355 | FUJIFILM Wako Pure Chemical Co., Osaka, Japan. | Test solute | 0.025 |
α-chymotripsin 1 | 25,000 | Sigma-Aldrich, St. Louis, MO, USA. | 0.305 | |
albumin 1 | 66,000 | FUJIFILM Wako Pure Chemical Co., Osaka, Japan. | Test solute & Foulant 2 | 24.0 |
dextran 3 | ~1500 | Sigma-Aldrich, St. Louis, MO, USA | Test solute | 0.50 4 |
~25,000 | ||||
~40,000 | ||||
~60,000 | ||||
~200,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, A.C.; Kakee, T.; Ono, T.; Motegi, J.; Yamaguchi, S.; Sunohara, T. Semi-Quantitative Evaluation of Asymmetricity of Dialysis Membrane Using Forward and Backward Ultrafiltration. Membranes 2022, 12, 624. https://doi.org/10.3390/membranes12060624
Yamashita AC, Kakee T, Ono T, Motegi J, Yamaguchi S, Sunohara T. Semi-Quantitative Evaluation of Asymmetricity of Dialysis Membrane Using Forward and Backward Ultrafiltration. Membranes. 2022; 12(6):624. https://doi.org/10.3390/membranes12060624
Chicago/Turabian StyleYamashita, Akihiro C., Toshiki Kakee, Takahisa Ono, Jun Motegi, Satoru Yamaguchi, and Takashi Sunohara. 2022. "Semi-Quantitative Evaluation of Asymmetricity of Dialysis Membrane Using Forward and Backward Ultrafiltration" Membranes 12, no. 6: 624. https://doi.org/10.3390/membranes12060624
APA StyleYamashita, A. C., Kakee, T., Ono, T., Motegi, J., Yamaguchi, S., & Sunohara, T. (2022). Semi-Quantitative Evaluation of Asymmetricity of Dialysis Membrane Using Forward and Backward Ultrafiltration. Membranes, 12(6), 624. https://doi.org/10.3390/membranes12060624