Numerical Modeling in Membrane Processes
Funding
Acknowledgments
Conflicts of Interest
References
- Quezada, C.; Estay, H.; Cassano, A.; Troncoso, E.; Ruby-Figueroa, R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. Membranes 2021, 11, 368. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Park, J.E.; Jung, S.Y.; Kang, T.G. Fouling Mitigation via Chaotic Advection in a Flat Membrane Module with a Patterned Surface. Membranes 2021, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Park, G.W.; Nägele, G. Geometrical Influence on Particle Transport in Cross-Flow Ultrafiltration: Cylindrical and Flat Sheet Membranes. Membranes 2021, 11, 960. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.H.; Kim, J.H. Theoretical Analysis of a Mathematical Relation between Driving Pressures in Membrane-Based Desalting Processes. Membranes 2021, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Choi, Y.; Lee, J.; Kim, Y.; Lee, S. Exergy Analysis of a Direct Contact Membrane Distillation (DCMD) System Based on Computational Fluid Dynamics (CFD). Membranes 2021, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Adjiman, C.S.; Xu, X.Y. Correlations for Concentration Polarization and Pressure Drop in Spacer-Filled RO Membrane Modules Based on CFD Simulations. Membranes 2021, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Cath, T.Y.; Ladner, D.A. Mass Transport in Osmotically Driven Membrane Processes. Membranes 2021, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, X.; Xing, L.; Li, Z. Numerical Simulation of Continuous Extraction of Li+ from High Mg2+/Li+ Ratio Brines Based on Free Flow Ion Concentration Polarization Microfluidic System. Membranes 2021, 11, 697. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Hu, B.; Yang, F. Removal of Sulfadiazine by Polyamide Nanofiltration Membranes: Measurement, Modeling, and Mechanisms. Membranes 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Dutournié, P.; Daou, T.J.; Déon, S. A Novel Numerical Procedure to Estimate the Electric Charge in the Pore from Filtration of Single-Salt Solutions. Membranes 2021, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Hegedüs, I.; Rehman, D.; Wei, Q.J.; Ahdab, Y.D.; Lienhard, J.H. The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes. Membranes 2021, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Jokić, A.; Pajčin, I.; Grahovac, J.; Lukić, N.; Ikonić, B.; Nikolić, N.; Vlajkov, V. Dynamic Modeling Using Artificial Neural Network of Bacillus Velezensis Broth Cross-Flow Microfiltration Enhanced by Air-Sparging and Turbulence Promoter. Membranes 2020, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Skolotneva, E.; Cretin, M.; Mareev, S. A Simple 1D Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane. Membranes 2021, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Lukitsch, B.; Koller, R.; Ecker, P.; Elenkov, M.; Janeczek, C.; Pekovits, M.; Haddadi, B.; Jordan, C.; Gfoehler, M.; Harasek, M. Water as a Blood Model for Determination of CO2 Removal Performance of Membrane Oxygenators. Membranes 2021, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zamanian, M.; Kruczek, B.; Thibault, J. Gas Permeation Model of Mixed-Matrix Membranes with Embedded Impermeable Cuboid Nanoparticles. Membranes 2020, 10, 422. [Google Scholar] [CrossRef] [PubMed]
- Osterroth, S.; Neumann, C.; Weiß, M.; Maurieschat, U.; Latnikova, A.; Rief, S. Effect of Modifying the Membrane Surface with Microcapsules on the Flow Field for a Cross-Flow Membrane Setup: A CFD Study. Membranes 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.A.; Magalhães, H.L.F.; de Farias Neto, S.R.; Lima, A.G.B.; Nascimento, L.P.C.; Farias, F.P.M.; Lima, E.S. Impact of Permeable Membrane on the Hydrocyclone Separation Performance for Oily Water Treatment. Membranes 2020, 10, 350. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Déon, S.; Dutournié, P. Numerical Modeling in Membrane Processes. Membranes 2022, 12, 1030. https://doi.org/10.3390/membranes12111030
Déon S, Dutournié P. Numerical Modeling in Membrane Processes. Membranes. 2022; 12(11):1030. https://doi.org/10.3390/membranes12111030
Chicago/Turabian StyleDéon, Sébastien, and Patrick Dutournié. 2022. "Numerical Modeling in Membrane Processes" Membranes 12, no. 11: 1030. https://doi.org/10.3390/membranes12111030
APA StyleDéon, S., & Dutournié, P. (2022). Numerical Modeling in Membrane Processes. Membranes, 12(11), 1030. https://doi.org/10.3390/membranes12111030