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Membrane processes have demonstrated their enormous potential for water treatment,
either by removing organic and mineral contaminants before permeating stream discharge,
or by concentrating high added-value compounds in retentate stream. Although the advan-
tages and drawbacks of the various membrane processes are well known, the mechanisms
governing their filtration performances are usually not fully understood, and discussion
is often still open. For this purpose, researchers have been developing numerical models
for decades to describe the transport of species through membranes and predict their per-
formances for specific applications. Numerical modeling can be useful in many aspects of
membrane science and can help to solve many scientific issues. A numerical approach can
be used to model the physical mechanisms governing fluid flow or mass transfer, and then
applied to various membrane processes, such as pressure-driven, concentration-driven,
electrically driven, or thermally driven processes.

This Special Issue on “Numerical Modeling in Membrane Processes” provides examples
of original works or reviews of the literature dealing with the use of mathematical models
to understand, describe, predict, or optimize the performances of membrane processes.

Quezada et al. [1] reviewed the various phenomenological and non-phenomenological
models for the prediction of permeate flux in Ultrafiltration (UF), as well as a compar-
ison of their predictive ability. Selected models were tested with data for three fruit
juices (bergamot, kiwi, and pomegranate) filtered by a cross-flow system over the course
of 10 h. The robust statistical examination, including a residual analysis, suggests that
non-phenomenological models are a useful tool from a practical point of view, whereas
phenomenological models are more suitable for scaling-up and for understanding the
UF process.

Kim et al. [2] numerically investigated the fouling mitigation using chaotic advection
caused by herringbone-shaped grooves in a flat membrane module. In their work, they
showed that under the optimum groove geometry, foulants near the membrane are trans-
ported back to the bulk flow via the downwelling flows, distributed uniformly in the entire
channel via chaotic advection.

Park et al. [3] studied the impact of membrane geometry on the transport of colloidal
particles in inside-out crossflow ultrafiltration. They have, for instance, highlighted that,
irrespective of many input parameters characterizing an UF experiment and its mem-brane
geometry, the process indicators are determined by three independent dimension-less
variables only.

Chae et al. [4] formulated in their work a mathematical relation between the driving
pressures of membrane-based desalting processes, which takes into consideration the
energy loss for each driving pressure. This study diagnosed the commercial advantage of
Reverse Osmosis (RO) over Forward Osmosis (FO)/Pressure-Retarted Osmosis (PRO) and
suggested optimization sequences applicable to each process.
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Choi et al. [5] analyzed the available energy (exergy) in a Direct Contact Membrane
Distillation (DCMD) system, using computational fluid dynamics (CFD) to investigate the
hydrodynamic and thermal conditions in the module.

Their study revealed that exergy destruction in the permeate occurred near the feed
inlet, and the effect became less influential closer to the feed outlet. Their analysis of exergy
flows also showed that the efficiency loss in the permeate side corresponded to 32.9–45.3%
of total exergy destruction.

Gu et al. [6] implemented CFD simulations to establish new, dimensionless correlations
for the concentration polarization (CP) modulus and friction factor in Spacer-Filled Reverse
Osmosis Membrane Modules. The authors concluded that their correlations for the CP
modulus has the advantage of being directly usable to estimate the impact of permeate flux
on concentration polarization at a membrane surface, without resorting to the film theory.

Xie et al. [7] coupled CFD modeling with solute transport evaluation in order to study
hydrodynamics and concentration polarization in Forward Osmosis (FO) and Pressure-
Retarted Osmosis (PRO). Simulations showed that concentration and velocity profiles are
impacted by spacers, which could reduce or enhance water flux depending on the inlet
flow velocity and the distance between membrane and spacer.

Zhang et al. [8] simulated the continuous extraction of lithium ions from diluted salt
lake brines with high Mg2+/Li+ ratio based on free flow ion concentration polarization in a
microfluidic system. In their study, the authors numerically showed that this method is
able to decrease the Mg2+/Li+ ratio significantly, and has great potential as preprocessing
technology for lithium extraction from salt lake brines.

Zhu et al. [9] used a steric, electrostatic, and dielectric mass transfer model to investi-
gate the separation mechanisms of typical antibiotic sulfadiazine by various nanofiltration
(NF) membranes. The authors showed that sulfadiazine rejection and membrane sequence
obtained by the model are qualitatively consistent with experiments.

Dutournié et al. [10] proposed a novel numerical procedure based on physical sim-
plifications, which allows the estimation of a range of values for the dielectric constant
of the confined solution and membrane charge density required to model the transport
through NF membranes. It is shown in this study that the evolution of the interval of
membrane charge with salt concentration can be described by the Langmuir–Freundlich
hybrid adsorption isotherm, which allowed a good prediction ability, irrespective of the
salt and membrane considered.

Nagy et al. [11] compared the linear Van’t Hoff approach and the real osmotic pressure
values obtained using OLI Stream Analyzer for various dilutions of NaCl solutions. Their
results indicated that the disparity in the predicted osmotic pressure assessed with the
two methods can reach 30%, depending on the solute concentration, while that in the
predicted power density can exceed 50%. Hence, the difference in structural parameter
values predicted by the two methods is also significant, and can even exceed the 50–70%
range, depending on the operating conditions.

Jokic et al. [12] examined a non-recurrent feed-forward Artificial Neural Network
(ANN) with one hidden layer to model microfiltration (MF) of Bacillus velezensis cultiva-
tion broth. For MF experiments, Kenics static mixer and two-phase flow were investigated,
either alone or in combination, to improve permeate flux. This study confirmed the pre-
dictive ability of the ANN model for the estimation of permeate flux. The optimal ANN
topology was 5-13-1, trained by the Levenberg–Marquardt algorithm and with hyperbolic
sigmoid transfer function between the input and the hidden layer.

Skolotneva et al. [13] proposed a 1D convection–diffusion–reaction model to describe
the transport and oxidation of oxalic acid and oxygen evolution in the flow-through
electrochemical oxidation system, considering Reactive Electrochemical Membrane (REM).
Their model provided an understanding of the process and allowed the estimation of
concentration, current density, potential, and overpotential distributions in REM. They
also highlighted that the oxygen evolution reaction notably affects the process, even if its
contribution decreases with increasing total organic carbon flux.
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Lukitsch et al. [14] conducted CFD simulations to understand the remaining difference
between the CO2 removal rate which was determined in vivo with porcine blood from that
determined in vitro with water. This study indicated that the main CO2 transport resistance
behaves generally differently in blood and water. The authors concluded their work by
mentioning that studies of the CO2 boundary layer should be preferably conducted with
blood, whereas water tests should be favored for the determination of total CO2 removal
performance of oxygenators.

Wu et al. [15] performed a 3D numerical simulation in order to investigate the barrier
property of mixed-matrix membranes (MMMs) and their effective membrane gas per-
meability. The authors highlighted that horizontally-aligned thin cuboid nanoparticles
offer superior barrier properties than spherical nanoparticles for an identical solid volume
fraction. A novel ANN model based on multivariable regression analysis was developed,
and it was able to predict the relative permeability of MMMs over an extensive range of
solid volume fraction and aspect ratios.

Osterroth et al. [16] used a CFD study for the attachment of microcapsules on the mem-
brane surface and its influence on the flow field in a cross-flow membrane module. This
study allowed them to conclude that the glued configuration provides a lower transmem-
brane pressure than the configuration where microcapsules are added during fabrication.

Finally, Nunes et al. [17] studied the separation of oily water using a new configuration
of hydrocyclone, equipped with a porous ceramic membrane in the wall of the conical
part (filtering hydrocyclone). An Eulerian–Eulerian approach was used to solve the mass
and momentum conservation equations as well as the turbulence model, using the CFD
technique. This study demonstrated the high potential of filtering hydrocyclone for the
separation of water/oil mixtures.
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