Egg Yolk Oil as a Plasticizer for Polylactic Acid Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Egg Yolk Oil: Extraction and Carotenoids Quantification
2.2. Preparation of PLA Films with Egg Yolk Oil
2.3. Physical Properties of PLA Films Loaded with Increasing Concentrations of Egg Yolk Oil
2.3.1. Light Transmission and Transparency
2.3.2. Colorimetric Properties
2.3.3. Mechanical Properties
2.3.4. Water Vapour Permeability and Solubility
2.3.5. Scanning Electron Microscopy (SEM)
2.3.6. Antioxidant Activity
2.4. Film Application as Active Packaging
2.4.1. Film Application as Active Pouches to Pack a Resveratrol Solution
2.4.2. Film Application as Active Pouches to Pack Extra Virgin Olive Oil
2.5. Statistical Analysis
3. Results and Discussion
3.1. Egg Yolk Oil
3.2. Physical Properties of PLA Films Loaded with Increasing Concentrations of Egg Yolk Oil
3.2.1. Visual Aspect, Light Transmission and Transparency
3.2.2. Colorimetric Properties
3.2.3. Mechanical Properties
3.2.4. Water Vapour Permeability (WVP) and Solubility
3.2.5. Microstructure
3.2.6. Antioxidant Activity
3.3. Film Application as Active Packaging
3.3.1. Film Application as Active Pouches to Pack Resveratrol
3.3.2. Film Application as Active Pouches to Pack Extra Virgin Olive Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ncube, L.; Ude, A.; Ogunmuyiwa, E.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Hagen, R. 10.12—Polylactic Acid. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 231–236. ISBN 978-0-08-087862-1. [Google Scholar]
- Dey, A.; Dhumal, C.V.; Sengupta, P.; Kumar, A.; Pramanik, N.K.; Alam, T. Challenges and Possible Solutions to Mitigate the Problems of Single-Use Plastics Used for Packaging Food Items: A Review. J. Food Sci. Technol. 2021, 58, 3251–3269. [Google Scholar] [CrossRef]
- Alhanish, A.; Abu Ghalia, M. Developments of Biobased Plasticizers for Compostable Polymers in the Green Packaging Applications: A Review. Biotechnol. Progress 2021, 37, e3210. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.A.; Hanafi, M.H.M.; Razak, N.H.; Ibrahim, A.; Razak, N.A.A. A Best-Evidence Review of Bio-Based Plasticizer and the Effects on the Mechanical Properties of PLA. Chem. Eng. Trans. 2021, 89, 241–246. [Google Scholar] [CrossRef]
- Menčík, P.; Přikryl, R.; Stehnová, I.; Melčová, V.; Kontárová, S.; Figalla, S.; Alexy, P.; Bočkaj, J. Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-Hydroxybutyrate)/Poly(Lactic Acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials 2018, 11, 1893. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.A.; Sharma, S.; Srivastava, M.; Majumdar, A. Modulating the Properties of Polylactic Acid for Packaging Applications Using Biobased Plasticizers and Naturally Obtained Fillers. Int. J. Biol. Macromol. 2020, 153, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Kovalcuks, A.; Duma, M. Solvent Extraction of Egg Oil from Liquid Egg Yolk. In Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being” FOODBALT 2014, Jelgava, Latvia, 8–9 May 2014; pp. 253–256. [Google Scholar]
- El Riachy, M.; Hamade, A.; Ayoub, R.; Dandachi, F.; Chalak, L. Oil Content, Fatty Acid and Phenolic Profiles of Some Olive Varieties Growing in Lebanon. Front. Nutr. 2019, 6, 94. [Google Scholar] [CrossRef]
- Bhasney, S.M.; Patwa, R.; Kumar, A.; Katiyar, V. Plasticizing Effect of Coconut Oil on Morphological, Mechanical, Thermal, Rheological, Barrier, and Optical Properties of Poly(Lactic Acid): A Promising Candidate for Food Packaging. Appl. Polym. Sci. 2017, 134, 45390. [Google Scholar] [CrossRef]
- Carbonell-Verdu, A.; Garcia-Garcia, D.; Dominici, F.; Torre, L.; Sanchez-Nacher, L.; Balart, R. PLA Films with Improved Flexibility Properties by Using Maleinized Cottonseed Oil. Eur. Polym. J. 2017, 91, 248–259. [Google Scholar] [CrossRef]
- Chieng, B.W.; Ibrahim, N.A.; Then, Y.Y.; Loo, Y.Y. Epoxidized Vegetable Oils Plasticized Poly(Lactic Acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules 2014, 19, 16024–16038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Effect of Re-Crystallization on Tensile, Optical and Water Vapour Barrier Properties of Corn Starch Films Containing Fatty Acids. Food Hydrocoll. 2012, 26, 302–310. [Google Scholar] [CrossRef]
- Suderman, N.; Isa, M.I.N.; Sarbon, N.M. The Effect of Plasticizers on the Functional Properties of Biodegradable Gelatin-Based Film: A Review. Food Biosci. 2018, 24, 111–119. [Google Scholar] [CrossRef]
- Nabi, F.; Arain, M.A.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health Benefits of Carotenoids and Potential Application in Poultry Industry: A Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Marcet, I.; Sáez Orviz, S.; de la Vega, M.; Diaz, M. Edible Films from Residual Delipidated Egg Yolk Proteins. J. Food Sci. Technol. 2017, 54, 1–10. [Google Scholar] [CrossRef]
- UNE-EN ISO 17932:2011. Palm Oil. Determination of the Deterioration of Bleachability Index (DOBI) and Carotene Content. Available online: https://www.en.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0048777 (accessed on 22 May 2021).
- Dick, M.; Costa, T.M.H.; Gomaa, A.; Subirade, M.; de Rios, A.O.; Flôres, S.H. Edible Film Production from Chia Seed Mucilage: Effect of Glycerol Concentration on Its Physicochemical and Mechanical Properties. Carbohydr. Polym. 2015, 130, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Stoll, L.; Rech, R.; Flôres, S.H.; Nachtigall, S.M.B.; de Oliveira Rios, A. Carotenoids Extracts as Natural Colorants in Poly(Lactic Acid) Films. J. Appl. Polym. Sci. 2018, 135, 46585. [Google Scholar] [CrossRef]
- Asadi, S.; Pirsa, S. Production of Biodegradable Film Based on Polylactic Acid, Modified with Lycopene Pigment and TiO2 and Studying Its Physicochemical Properties. J. Polym. Environ. 2020, 28, 433–444. [Google Scholar] [CrossRef]
- Weng, S.; López, A.; Sáez-Orviz, S.; Marcet, I.; García, P.; Rendueles, M.; Díaz, M. Effectiveness of Bacteriophages Incorporated in Gelatine Films against Staphylococcus Aureus. Food Control 2021, 121, 107666. [Google Scholar] [CrossRef]
- Camont, L.; Cottart, C.-H.; Rhayem, Y.; Nivet-Antoine, V.; Djelidi, R.; Collin, F.; Beaudeux, J.-L.; Bonnefont-Rousselot, D. Simple Spectrophotometric Assessment of the Trans-/Cis-Resveratrol Ratio in Aqueous Solutions. Anal. Chim. Acta 2009, 634, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Stoll, L.; Martins da Silva, A.; Iahnke, A.; Costa, T.; Flôres, S.; Rios, A. Active Biodegradable Film with Encapsulated Anthocyanins: Effect on the Quality Attributes of Extra-Virgin Olive Oil during Storage. J. Food Process. Preserv. 2017, 41. [Google Scholar] [CrossRef]
- ISO 3976:2006. Milk Fat—Determination of Peroxide Value. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/86/38685.html (accessed on 8 June 2021).
- Kovalcuks, A. Purification of egg yolk oil obtained by solvent extraction from liquid egg yolk. In Proceedings of the Annual 20th International Scientific Conference Research for Rural Development, Jelgava, Latvia, 21–23 May 2014. [Google Scholar]
- Kovalcuks, A. Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems. Int. J. Nutr. Food Eng. 2015, 9, 589–593. [Google Scholar]
- Stoll, L.; Rech, R.; Flôres, S.H.; Nachtigall, S.M.B.; de Oliveira Rios, A. Poly(Acid Lactic) Films with Carotenoids Extracts: Release Study and Effect on Sunflower Oil Preservation. Food Chem. 2019, 281, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Silverajah, V.S.G.; Ibrahim, N.A.; Zainuddin, N.; Yunus, W.M.Z.W.; Hassan, H.A. Mechanical, Thermal and Morphological Properties of Poly(Lactic Acid)/Epoxidized Palm Olein Blend. Molecules 2012, 17, 11729–11747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Li, W.; Liu, D.; Yuan, M.; Li, L. Development of Active Packaging Film Made from Poly (Lactic Acid) Incorporated Essential Oil. Prog. Org. Coat. 2017, 103, 76–82. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of Anthocyanin as a Color Indicator in Gelatin Films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- Yahyaoui, M.; Gordobil, O.; Herrera Díaz, R.; Abderrabba, M.; Labidi, J. Development of Novel Antimicrobial Films Based on Poly(Lactic Acid) and Essential Oils. React. Funct. Polym. 2016, 109, 1–8. [Google Scholar] [CrossRef]
- Erdohan, Z.Ö.; Çam, B.; Turhan, K.N. Characterization of Antimicrobial Polylactic Acid Based Films. J. Food Eng. 2013, 119, 308–315. [Google Scholar] [CrossRef]
- Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristić, I.; Miletic, A.; Novaković, A.; Lagaron, J.M. Preparation, Characterization and Antimicrobial Properties of Electrospun Polylactide Films Containing Allium ursinum L. Extract. Food Packag. Shelf Life 2019, 21, 100357. [Google Scholar] [CrossRef]
- Garcia-Garcia, D.; Carbonell-Verdu, A.; Arrieta, M.P.; López-Martínez, J.; Samper, M.D. Improvement of PLA Film Ductility by Plasticization with Epoxidized Karanja Oil. Polym. Degrad. Stabil. 2020, 179, 109259. [Google Scholar] [CrossRef]
- Ellison, S.L. Carotenoids: Physiology. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 670–675. ISBN 978-0-12-384953-3. [Google Scholar]
- Zaheer, K. Hen Egg Carotenoids (Lutein and Zeaxanthin) and Nutritional Impacts on Human Health: A Review. CyTA J. Food 2017, 15, 474–487. [Google Scholar] [CrossRef] [Green Version]
- Murillo, A.G.; Hu, S.; Fernandez, M.L. Zeaxanthin: Metabolism, Properties, and Antioxidant Protection of Eyes, Heart, Liver, and Skin. Antioxidants 2019, 8, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, e837042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.D.; Gutiérrez, G.; Matos, M.; Fernández, M.A. Preservation of the Antioxidant Capacity of Resveratrol via Encapsulation in Niosomes. Foods 2021, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Koga, C.C.; Andrade, J.E.; Ferruzzi, M.G.; Lee, Y. Stability of Trans-Resveratrol Encapsulated in a Protein Matrix Produced Using Spray Drying to UV Light Stress and Simulated Gastro-Intestinal Digestion. J. Food Sci. 2016, 81, C292–C300. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N. (Ed.) Chapter 3—Photooxidation of Unsaturated Fats. In Lipid Oxidation, 2nd ed.; Oily Press Lipid Library Series; Woodhead Publishing: Sawston, UK, 2012; pp. 51–66. ISBN 978-0-9531949-8-8. [Google Scholar]
- Psomiadou, E.; Tsimidou, M. Stability of Virgin Olive Oil. 1. Autoxidation Studies. J. Agric. Food Chem. 2002, 50, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Physical Quenching of Singlet Oxygen and Cis-Trans Isomerization of Carotenoids. Ann. N. Y. Acad. Sci. 1993, 691, 10–19. [Google Scholar] [CrossRef] [PubMed]
Films | Transmittance (%) | Transparency | ||||||
---|---|---|---|---|---|---|---|---|
200 nm | 280 nm | 350 nm | 400 nm | 500 nm | 600 nm | 700 nm | ||
C | 1.29 ± 0.12 | 84.60 ± 0.42 | 87.75 ± 0.78 | 88.60 ± 0.71 | 89.50 ± 0.85 | 90.10 ± 0.85 | 90.55 ± 0.92 | 1.118 ± 0.060 c |
A1 | 0.04 ± 0.00 | 47.40 ± 1.98 | 62.80 ± 3.96 | 67.85 ± 4.03 | 73.30 ± 4.67 | 78.85 ± 3.89 | 82.00 ± 3.11 | 1.629 ± 0.323 bc |
A2 | 0.03 ± 0.01 | 42.65 ± 7.35 | 62.15 ± 4.60 | 67.45 ± 3.89 | 72.75 ± 3.32 | 77.30 ± 2.83 | 79.60 ± 2.55 | 2.113 ± 0.006 b |
A3 | 0.03 ± 0.00 | 41.10 ± 4.67 | 58.25 ± 2.19 | 63.10 ± 1.56 | 68.30 ± 0.85 | 72.85 ± 0.21 | 75.15 ± 0.07 | 3.368 ± 0.399 a |
Film | L* | a* | b* | ∆E* | WI | Chroma |
---|---|---|---|---|---|---|
C | 94.85 ± 1.50 a | 0.00 ± 0.42 ab | 1.10 ± 0.42 c | - | 94.70 ± 1.22 a | 1.14 ± 0.41 b |
A1 | 96.60 ± 1.56 a | −0.70 ± 0.42 b | 2.40 ± 0.99 bc | 2.30 ± 0.48 b | 95.59 ± 0.59 a | 2.51 ± 1.07 b |
A2 | 96.35 ± 0.21 a | −0.30 ± 0.99 ab | 4.40 ± 1.13 b | 3.78 ± 0.22 ab | 94.20 ± 0.78 a | 4.46 ± 1.18 b |
A3 | 94.90 ± 0.87 a | 1.05 ± 0.49 a | 8.25 ± 1.77 a | 7.24 ± 2.18 a | 90.24 ± 1.99 b | 8.32 ± 1.82 a |
Film | Thickness (mm) | PS (N/mm) | PD (%) | WVP (g × mm/m2 × h × kPa) |
---|---|---|---|---|
Control | 0.037 ± 0.003 b | 407.66 ± 65.94 a | 14.69 ± 6.53 b | 0.145 ± 0.063 ab |
A1 | 0.040 ± 0.007 ab | 315.03 ± 26.82 b | 25.20 ± 5.36 a | 0.080 ± 0.013 b |
A2 | 0.047 ± 0.008 ab | 251.81 ± 32.64 b | 21.33 ± 5.66 ab | 0.124 ± 0.020 ab |
A3 | 0.050 ± 0.010 a | 161.76 ± 18.01 c | 14.41 ± 1.97 b | 0.177 ± 0.051 a |
trans-Resveratrol (%) | cis-Resveratrol (%) | |
---|---|---|
Solution t = 0 | 100.00 ± 0.00 | 0.00 ± 0.00 |
Control 24 h | 11.75 ± 0.04 | 88.25 ± 0.04 |
Film PLA 24 h | 14.71 ± 0.40 | 85.29 ± 0.40 |
Film A3 24 h | 22.30 ± 0.82 | 77.70 ± 0.82 |
Control 48 h | 4.84 ± 0.02 | 95.16 ± 0.02 |
Film PLA 48 h | 13.41 ± 0.22 | 86.59 ± 0.22 |
Film A3 48 h | 16.43 ± 0.07 | 83.57 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpintero, M.; Marcet, I.; Rendueles, M.; Díaz, M. Egg Yolk Oil as a Plasticizer for Polylactic Acid Films. Membranes 2022, 12, 46. https://doi.org/10.3390/membranes12010046
Carpintero M, Marcet I, Rendueles M, Díaz M. Egg Yolk Oil as a Plasticizer for Polylactic Acid Films. Membranes. 2022; 12(1):46. https://doi.org/10.3390/membranes12010046
Chicago/Turabian StyleCarpintero, María, Ismael Marcet, Manuel Rendueles, and Mario Díaz. 2022. "Egg Yolk Oil as a Plasticizer for Polylactic Acid Films" Membranes 12, no. 1: 46. https://doi.org/10.3390/membranes12010046
APA StyleCarpintero, M., Marcet, I., Rendueles, M., & Díaz, M. (2022). Egg Yolk Oil as a Plasticizer for Polylactic Acid Films. Membranes, 12(1), 46. https://doi.org/10.3390/membranes12010046