The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Rig
2.2. Electrochemical Cell
2.3. Performance Evaluation: Pure Hydrogen
2.4. ECSA Evaluation Methods
2.4.1. Hupd: ECSA Evaluation
2.4.2. CO stripping: ECSA Evaluation
2.4.3. Method Development
2.5. Experimental Procedure
ECSA Calculation
3. Results and Discussion
3.1. Pure Hydrogen Experiments: Membrane Characterization
3.1.1. Hupd-Based ECSAs
3.1.2. CO-Based ECSAs
4. Considerations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bessarabov, D. Electrochemically-aided membrane separation and catalytic processes. Membr. Technol. 1998, 1998, 8–11. [Google Scholar] [CrossRef]
- Sakai, T.; Matsumoto, H.; Kudo, T.; Yamamoto, R.; Niwa, E.; Okada, S.; Hashimoto, S.; Sasaki, K.; Ishihara, T. High performance of electroless-plated platinum electrode for electrochemical hydrogen pumps using strontium-zirconate-based proton conductors. Electrochim. Acta 2008, 53, 8172–8177. [Google Scholar] [CrossRef]
- Vermaak, L.; Neomagus, H.W.J.P.; Bessarabov, D.G. Recent Advances in Membrane-Based Electrochemical Hydrogen Separation: A Review. Membranes 2021, 11, 127. [Google Scholar] [CrossRef]
- Perry, K.A.; Eisman, G.A.; Benicewicz, B.C. Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane. J. Power Sources 2008, 177, 478–484. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.A.; Sulong, A.B.; Loh, K.S.; Majlan, E.H.; Husaini, T.; Rosli, R.E. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review. Int. J. Hydrog. Energy 2017, 42, 9156–9179. [Google Scholar] [CrossRef]
- Giorgi, L.; Pozio, A.; Bracchini, C.; Giorgi, R.; Turtù, S. H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt–Ru/C electrocatalysts. J. Appl. Electrochem. 2001, 31, 325–334. [Google Scholar] [CrossRef]
- Sasikumar, G.; Ihm, J.; Ryu, H. Dependence of optimum Nafion content in catalyst layer on platinum loading. J. Power Sources 2004, 132, 11–17. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lai, W.-H.; Chen, Y.-K.; Su, S.-S. Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases. Int. J. Hydrog. Energy 2014, 39, 13757–13762. [Google Scholar] [CrossRef]
- Oetjen, H.; Schmidt, V.M.; Stimming, U.; Trila, F. Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas. J. Electrochem. Soc. 1996, 143, 3838–3842. [Google Scholar] [CrossRef]
- Araya, S.S.; Zhou, F.; Liso, V.; Sahlin, S.L.; Vang, J.R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kær, S.K. A comprehensive review of PBI-based high temperature PEM fuel cells. Int. J. Hydrog. Energy 2016, 41, 21310–21344. [Google Scholar] [CrossRef]
- Huth, A.; Schaar, B.; Oekermann, T. A “proton pump” concept for the investigation of proton transport and anode kinetics in proton exchange membrane fuel cells. Electrochim. Acta 2009, 54, 2774–2780. [Google Scholar] [CrossRef]
- Kwon, K.; Park, J.O.; Yoo, D.Y.; Yi, J.S. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells. Electrochim. Acta 2009, 54, 6570–6575. [Google Scholar] [CrossRef]
- Sharaf, O.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Tokarev, A.; Bessarabov, D. Modeling of bimetallic Pt-based electrocatalyst on extended-surface support for advanced hydrogen compression and separation. Int. J. Hydrog. Energy 2014, 39, 7805–7810. [Google Scholar] [CrossRef]
- Gardner, C.; Ternan, M. Electrochemical separation of hydrogen from reformate using PEM fuel cell technology. J. Power Sources 2007, 171, 835–841. [Google Scholar] [CrossRef]
- Alegre, C.; Álvarez-Manuel, L.; Mustata, R.; Valiño, L.; Lozano, A.; Barreras, F. Assessment of the durability of low-cost Al bipolar plates for High Temperature PEM fuel cells. Int. J. Hydrog. Energy 2019, 44, 12748–12759. [Google Scholar] [CrossRef]
- Kim, B.; Ma, S.; Jhong, H.-R.M.; Kenis, P. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochim. Acta 2015, 166, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Chippar, P.; Oh, K.; Kim, W.-G.; Ju, H. Numerical analysis of effects of gas crossover through membrane pinholes in high-temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2014, 39, 2863–2871. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, H.-Y.; Ahn, S.H.; Lee, B.-S.; Kim, H.-J.; Cho, E.; Henkensmeier, D.; Nam, S.W.; Kim, S.H.; Yoo, S.J.; et al. Highly active and CO2 tolerant Ir nanocatalysts for H2/CO2 separation in electrochemical hydrogen pumps. Appl. Catal. B Environ. 2014, 158-159, 348–354. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Zhang, H.; Zhang, J. PEM Fuel Cell Testing and Diagnosis; Elsevier B.V.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Garrick, T.R.; Moylan, T.E.; Carpenter, M.K.; Kongkanand, A. Electrochemically Active Surface Area Measurement of Aged Pt Alloy Catalysts in PEM Fuel Cells by CO Stripping. J. Electrochem. Soc. 2017, 164, F55–F59. [Google Scholar] [CrossRef]
- Łukaszewski, M. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes—An Overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. [Google Scholar] [CrossRef]
- Schneider, I.; Bayer, M.; Von Dahlen, S. Submillimeter resolved transient techniques for polymer electrolyte membrane fuel cell characterization: Local in situ diagnostics for channel and land areas. In Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 353–398. [Google Scholar]
- Binninger, T.; Fabbri, E.; Kötz, R.; Schmidt, T.J. Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst. J. Electrochem. Soc. 2014, 161, H121–H128. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamada, H.; Morimoto, Y. Relative Humidity Dependence of Pt Utilization in Polymer Electrolyte Fuel Cell Electrodes: Effects of Electrode Thickness, Ionomer-to-Carbon Ratio, Ionomer Equivalent Weight, and Carbon Support. J. Electrochem. Soc. 2011, 158, B467. [Google Scholar] [CrossRef]
- Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources 2002, 105, 13–19. [Google Scholar] [CrossRef]
- Engl, T.; Waltar, K.E.; Gubler, L.; Schmidt, T.J. Second Cycle Is Dead: Advanced Electrode Diagnostics for High-Temperature Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2014, 161, F500–F505. [Google Scholar] [CrossRef]
- Mayrhofer, K.; Strmcnik, D.; Blizanac, B.; Stamenkovic, V.; Arenz, M.; Markovic, N. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188. [Google Scholar] [CrossRef]
- Becknell, N.; Kang, Y.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J.; Markovic, N.M.; Somorjai, G.A.; Stamenkovic, V.R.; Yang, P. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy. J. Am. Chem. Soc. 2015, 137, 15817–15824. [Google Scholar] [CrossRef]
- Bilmes, S.; Arvia, A. The electro-oxidation of CO-adsorbates on different platinum electrodes in acid solution. J. Electroanal. Chem. 1993, 361, 159–167. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Lakshmanan, B.; Hetzke, C.; Sethuraman, V.; Weidner, J. Quantifying oxidation rates of carbon monoxide on a Pt/C electrode. Electrochim. Acta 2011, 58, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Rudi, S.; Cui, C.; Gan, L.; Strasser, P. Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-stripping voltammetry. Electrocatalysis 2014, 5, 408–418. [Google Scholar] [CrossRef]
- Jerkiewicz, G. Standard and Reversible Hydrogen Electrodes: Theory, Design, Operation, and Applications. ACS Catal. 2020, 10, 8409–8417. [Google Scholar] [CrossRef]
- Vidaković, T.; Christov, M.; Sundmacher, K. The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim. Acta 2007, 52, 5606–5613. [Google Scholar] [CrossRef]
- Watt-Smith, M.J.; Friedrich, J.M.; Rigby, S.; Ralph, T.R.; Walsh, F.C. Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J. Phys. D Appl. Phys. 2008, 41, 174004. [Google Scholar] [CrossRef]
- Lindström, R.W.; Korstdottir, K.; Lindbergh, G. Active Area Determination for Porous Pt-Electrodes used in PEM Fuel Cells—Temperature And Humidity Effects. ECS Trans. 2009, 25, 1211–1220. [Google Scholar] [CrossRef]
- Dai, L.; Chang, D.W.; Baek, J.-B.; Lu, W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small 2012, 8, 1130–1166. [Google Scholar] [CrossRef] [PubMed]
- Schwämmlein, J.N.; Stühmeier, B.; Wagenbauer, K.; Dietz, H.; Tileli, V.; Gasteiger, H.; El-Sayed, H.A. Origin of Superior HOR/HER Activity of Bimetallic Pt-Ru Catalysts in Alkaline Media Identified via Ru@Pt Core-Shell Nanoparticles. J. Electrochem. Soc. 2018, 165, H229–H239. [Google Scholar] [CrossRef]
- Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. J. Electrochem. Soc. 2014, 162, F190–F203. [Google Scholar] [CrossRef]
- Sahlin, S.L.; Araya, S.S.; Andreasen, S.J.; Kær, S.K. Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack. Int. J. Power Energy Res. 2017, 1, 20–40. [Google Scholar] [CrossRef]
- Su, A.; Ferng, Y.; Hou, J.; Yu, T. Experimental and numerical investigations of the effects of PBI loading and operating temperature on a high-temperature PEMFC. Int. J. Hydrog. Energy 2012, 37, 7710–7718. [Google Scholar] [CrossRef]
- Hood, S.J.; Kampouris, D.; Kadara, R.O.; Jenkinson, N.; del Campo, F.J.; Munoz, P.; Banks, C. Why ‘the bigger the better’ is not always the case when utilising microelectrode arrays: High density vs. low density arrays for the electroanalytical sensing of chromium(vi). Analyst 2009, 134, 2301–2305. [Google Scholar] [CrossRef] [PubMed]
- Kongkanand, A.; Mathias, M. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137. [Google Scholar] [CrossRef]
- Ferreira, P.J.; La O’, G.J.; Shaohorn, Y.; Morgan, D.; Makharia, R.; Kocha, S.S.; Gasteiger, H. Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2005, 152, A2256. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, M.; Lee, B.-G.; Sohn, Y.-J. Durability of high temperature polymer electrolyte membrane fuel cells in daily based start/stop operation mode using reformed gas. Int. J. Hydrog. Energy 2015, 40, 7769–7776. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Takahashi, I.; Kocha, S.S. Examination of the activity and durability of PEMFC catalysts in liquid electrolytes. J. Power Sources 2010, 195, 6312–6322. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.W.; Carlton, C.; Shao-Horn, Y. Oxygen Reduction Activity of PtxNi1-x Alloy Nanoparticles on Multiwall Carbon Nanotubes. Electrochem. Solid-State Lett. 2011, 14, B110–B113. [Google Scholar] [CrossRef]
- Nesselberger, M.; Ashton, S.; Meier, J.C.; Katsounaros, I.; Mayrhofer, K.; Arenz, M. The Particle Size Effect on the Oxygen Reduction Reaction Activity of Pt Catalysts: Influence of Electrolyte and Relation to Single Crystal Models. J. Am. Chem. Soc. 2011, 133, 17428–17433. [Google Scholar] [CrossRef]
- Higuchi, E.; Taguchi, A.; Hayashi, K.; Inoue, H. Electrocatalytic activity for oxygen reduction reaction of Pt nanoparticle catalysts with narrow size distribution prepared from [Pt3 (CO)3 (μ − CO)3 (n = 3–8)complexes. J. Electroanal. Chem. 2011, 663, 84–89. [Google Scholar] [CrossRef]
- Sheng, W.; Chen, S.; Vescovo, E.; Shao-Horn, Y. Size Influence on the Oxygen Reduction Reaction Activity and Instability of Supported Pt Nanoparticles. J. Electrochem. Soc. 2011, 159, B96–B103. [Google Scholar] [CrossRef]
- Ke, K.; Hiroshima, K.; Kamitaka, Y.; Hatanaka, T.; Morimoto, Y. An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C. Electrochim. Acta 2012, 72, 120–128. [Google Scholar] [CrossRef]
- Kocha, S.S.; Zack, J.W.; Alia, S.M.; Neyerlin, K.C.; Pivovar, B.S. Influence of Ink Composition on the Electrochemical Properties of Pt/C Electrocatalysts. ECS Trans. 2013, 50, 1475–1485. [Google Scholar] [CrossRef]
- Gomez, J.R.; Baca, J.; Garzon, F. Techno-economic analysis and life cycle assessment for electrochemical ammonia production using proton conducting membrane. Int. J. Hydrog. Energy 2020, 45, 721–737. [Google Scholar] [CrossRef]
- Curnick, O.; Pollet, B.G.; Mendes, P.M. Nafion®-stabilised Pt/C electrocatalysts with efficient catalyst layer ionomer distribution for proton exchange membrane fuel cells. RSC Adv. 2012, 2, 8368–8374. [Google Scholar] [CrossRef]
- Shinozaki, K.; Pivovar, B.S.; Kocha, S.S. Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies. ECS Trans. 2013, 58, 15–26. [Google Scholar] [CrossRef]
- Garsany, Y.; Ge, J.; St-Pierre, J.; Rocheleau, R.; Swider-Lyons, K.E. Analytical Procedure for Accurate Comparison of Rotating Disk Electrode Results for the Oxygen Reduction Activity of Pt/C. J. Electrochem. Soc. 2014, 161, F628–F640. [Google Scholar] [CrossRef]
- Yin, M.; Huang, Y.; Liang, L.; Liao, J.; Liu, C.; Xing, W. Inhibiting CO formation by adjusting surface composition in PtAu alloys for methanol electrooxidation. Chem. Commun. 2011, 47, 8172–8174. [Google Scholar] [CrossRef] [PubMed]
- Mancharan, R.; Goodenough, J.B. Methanol oxidation in acid on ordered NiTi. J. Mater. Chem. 1992, 2, 875–887. [Google Scholar] [CrossRef]
- Gao, D.; Cai, F.; Xu, Q.; Wang, G.; Pan, X.; Bao, X. Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. J. Energy Chem. 2014, 23, 694–700. [Google Scholar] [CrossRef]
- Modestov, A.; Tarasevich, M.; Filimonov, V.; Davydova, E. CO tolerance and CO oxidation at Pt and Pt–Ru anode catalysts in fuel cell with polybenzimidazole–H3PO4 membrane. Electrochim. Acta 2010, 55, 6073–6080. [Google Scholar] [CrossRef]
- Ciapina, E.; Santos, S.F.; Gonzalez, E.R. Electrochemical CO stripping on nanosized Pt surfaces in acid media: A review on the issue of peak multiplicity. J. Electroanal. Chem. 2018, 815, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Calla, J.T.; Davis, R.J. Influence of Dihydrogen and Water Vapor on the Kinetics of CO Oxidation over Au/Al2O3. Ind. Eng. Chem. Res. 2005, 44, 5403–5410. [Google Scholar] [CrossRef]
- Sun, K.; Kohyama, M.; Tanaka, S.; Takeda, S. Roles of Water and H2 in CO Oxidation Reaction on Gold Catalysts. J. Phys. Chem. C 2018, 122, 9523–9530. [Google Scholar] [CrossRef]
- Mhadeshwar, A.B.; Vlachos, D. Microkinetic Modeling for Water-Promoted CO Oxidation, Water−Gas Shift, and Preferential Oxidation of CO on Pt. J. Phys. Chem. B 2004, 108, 15246–15258. [Google Scholar] [CrossRef]
- Schwartz, M.; Vercauteren, M.E.; Sammells, A.F. Fischer-Tropsch Electrochemical CO 2 Reduction to Fuels and Chemicals. J. Electrochem. Soc. 1994, 141, 3119–3127. [Google Scholar] [CrossRef]
- Vermaak, L.; Neomagus, H.; Bessarabov, D. Hydrogen Separation and Purification from Various Gas Mixtures by Means of Electrochemical Membrane Technology in the Temperature Range 100–160 °C. Membranes 2021, 11, 282. [Google Scholar] [CrossRef]
Temp. (°C) | QH (C) | AEC (cm2) | ECSA (cm2 mgPt−1) |
---|---|---|---|
80 | 7.39 ± 0.05 | 35,190 ± 240 | 704 ± 5 |
100 | 10.56 ± 0.05 | 50,286 ± 240 | 1006 ± 5 |
120 | 10.82 ± 0.05 | 51,524 ± 240 | 1030 ± 5 |
140 | 11.03 ± 0.05 | 52,524 ± 240 | 1050 ± 5 |
160 | 12.28 ± 0.05 | 58,476 ± 240 | 1170 ± 5 |
Temp. (°C) | QH (C) | AEC (cm2) | ECSA (cm2 mgPt−1) |
---|---|---|---|
80 | 6.61 ± 0.05 | 31,462 ± 240 | 629 ± 5 |
100 | 9.96 ± 0.05 | 47,433 ± 240 | 949 ± 5 |
120 | 10.45 ± 0.05 | 49,762 ± 240 | 995 ± 5 |
140 | 11.00 ± 0.05 | 52,381 ± 240 | 1048 ± 5 |
160 | 12.11 ± 0.05 | 57,667 ± 240 | 1153 ± 5 |
100 °C | 120 °C | 140 °C | 160 °C | |
---|---|---|---|---|
Cycle 1 | 7 ± 0.5 | 166 ± 2 | 586 ± 5 | 624 ± 5 |
Cycle 2 | 161 ± 1 | 318 ± 3 | 632 ± 5 | 781 ± 5 |
Cycle 3 | 239 ± 2 | 654 ± 5 | 705 ± 5 | 874 ± 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermaak, L.; Neomagus, H.W.J.P.; Bessarabov, D.G. The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation. Membranes 2021, 11, 670. https://doi.org/10.3390/membranes11090670
Vermaak L, Neomagus HWJP, Bessarabov DG. The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation. Membranes. 2021; 11(9):670. https://doi.org/10.3390/membranes11090670
Chicago/Turabian StyleVermaak, Leandri, Hein W. J. P. Neomagus, and Dmitri G. Bessarabov. 2021. "The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation" Membranes 11, no. 9: 670. https://doi.org/10.3390/membranes11090670
APA StyleVermaak, L., Neomagus, H. W. J. P., & Bessarabov, D. G. (2021). The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation. Membranes, 11(9), 670. https://doi.org/10.3390/membranes11090670