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Abstract: This paper describes an experimental evaluation and comparison of Pt/C and Pt-Ru/C
electrocatalysts for high-temperature (100–160 ◦C) electrochemical hydrogen separators, for the
purpose of mitigating CO poisoning. The performances of both Pt/C and Pt-Ru/C (Pt:Ru atomic
ratio 1:1) were investigated and compared under pure hydrogen and a H2/CO gas mixture at various
temperatures. The electrochemically active surface area (ECSA), determined from cyclic voltammetry,
was used as the basis for a method to evaluate the performances of the two catalysts. Both CO
stripping and the underpotential deposition of hydrogen were used to evaluate the electrochemical
surface area. When the H2/CO gas mixture was used, there was a complex overlap of mechanisms,
and therefore CO peak could not be used to evaluate the ECSA. Hence, the hydrogen peaks that
resulted after the CO was removed from the Pt surface were used to evaluate the active surface
area instead of the CO peaks. Results revealed that Pt-Ru/C was more tolerant to CO, since the
overlapping reaction mechanism between H2 and CO was suppressed when Ru was introduced
to the catalyst. SEM images of the catalysts before and after heat treatment indicated that particle
agglomeration occurs upon exposure to high temperatures (>100 ◦C)

Keywords: electrochemical hydrogen separation; proton exchange membrane; polybenzimidazole
membrane; cyclic voltammetry; electrochemical active surface area; CO poisoning; Pt-based catalysts

1. Introduction

Electrochemical hydrogen separators (EHSs) show great potential for future hydrogen-
based energy scenarios. The main advantage that EHSs offer is the simultaneous compres-
sion and purification of hydrogen for fuel cell (FC) application and storage purposes [1–3].
Perfluorinated sulfonic acid (PFSA) membranes (mainly Nafion-based), typically operated
at 60–80 ◦C, are generally used as proton exchange membranes (PEMs) due to their high
proton conductivity, mechanical integrity, and chemical stability [4]. Pt-based materials are
still the most favored electrocatalysts, although the focus of much current research is on
alternative catalysts. Pt-based electrocatalysts offer effectiveness, high chemical stability,
high current density, and good activities for hydrogen oxidation/evolution reactions in
EHSs and oxygen reduction reactions in FCs [5,6]. However, Pt does have some disadvan-
tages: resources are limited, it is costly, and Pt is prone to poisoning/deactivation [6–8].
Essentially, Pt is poisoned by low concentrations of carbon monoxide (>10 ppm) [4,7,9],
and an explanation of this behavior is provided by the two competing reactions of H2 and
CO adsorption [10]:

2Pt + H2 → 2Pt− Hads (1)

Pt + CO→ Pt− COads (2)
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Based on these equations, the performance deterioration of the cell is caused by CO
adsorption onto the Pt surface, blocking many of the Pt sites used for the adsorption
and oxidation of hydrogen [7]. However, the CO tolerance of Pt-based catalysts can be
enhanced either by increasing the operating temperature or by employing bimetallic cata-
lysts [9,11]. To this end, high-temperature (HT)-PEMs (operating temperatures 100–200 ◦C)
with concentrated phosphoric acid (PA) as electrolyte have been developed to overcome
the limitations associated with LT PFSA membranes [6,12,13], and platinum alloy catalysts
such as Pt-Ru have been developed and implemented in low-temperature (LT) Nafion-
based membrane EHSs and FCs [11,14]. Take note that for the purpose of this study in
the field of electrochemical hydrogen separation, HT and LT refers to the temperature
range 100–200 ◦C and <100 ◦C, respectively. Starting with the latter, Ru is known to
weaken the binding of Pt–CO whilst strong binding of Ru–CO occurs, and Ru atoms adsorb
oxygen-containing atoms, oxidizing CO to CO2, as is seen in FCs [15]. Nevertheless, when
the anode is operated at a potential high enough to oxidize CO to CO2, it could lead to
substantial losses in the cell efficiency [16].

In terms of HT-PEMs, polybenzimidazole (PBI) membranes are the most widely
studied HT-PEMs to date; they show great proton conductivity due to their high PA
doping capabilities [13]. PA-doped PBI membranes conduct protons well, even under
anhydrous conditions, which significantly simplifies the electrochemical system because the
humidification steps are eliminated, hence reducing water management issues [11]. Further
advantages include fast electrode kinetics, enhanced mass transport, higher tolerance to
impurities such as CO (up to 3 vol. %), and better sustainability [4,17–19]. Moreover, an
increase is expected in the transport of gases through the flow fields and their diffusion
in the gas diffusion layer due to the absence of liquid water. This, in turn, allows for
simplified flow field designs and improved interaction between reactants and reaction
sites [11]. However, the higher Pt loadings required, due to the free nature of the acid,
undermine these advantages [11]. In efforts to reduce costs, whilst maintaining efficiency,
noble metals are combined with carbon particles [8]. To further reduce the costs, highly
porous nanostructured catalysts, known as Pt black, have been used in the electrodes.
These catalysts are used to maximize the surface area and to attain ideal contact between
the gas phase, electrode (electrically conductive), and the electrolyte (ion-conductive), for
optimal performance [13,20].

Cyclic voltammetry (CV) is a very popular technique to determine the electrochemical
active surface area (ECSA) of the electrode. The ECSA is a key performance parameter
that relates to the catalytic activity of the electrode (e.g., the catalyst/electrode degrada-
tion) [13,21], especially when the electrode has a low Pt content [22,23]. In general, the
ECSA is used as a measure for assessing electrocatalyst utilization in electrochemical cells,
e.g., in FCs [24].

For carbon-supported Pt, two common methods exist to measure the ECSA: hydrogen
underpotential deposition (Hupd) and CO stripping (COS) [25]. The former is a very
popular method and has been widely applied (from rotating disk electrode (RDE) systems
to electrochemical cells, where the electrode is integrated with the membrane electrode
assembly (MEA)) [22,23,26]. However, despite being widely implemented, several concerns
related to the accuracy of these methods have been reported earlier [22,27]. These concerns
include the H2 adsorption/desorption characteristics that may be masked by the carbon
(e.g., the double-layer charging behavior of surface groups on carbon) [21] and severe
corrosion of Pt nanoparticles at potentials >1.1 V due to oxidation of the carbon support [25].
When operating at >100 ◦C, additional concerns arise, such as (i) the strongly adsorbed
PA anions from the dissociation of concentrated PA (mainly H2PO4

−) that may inhibit the
adsorption of hydrogen and (ii) the high Faradic currents from the hydrogen evolution
reaction (HER) (the electrochemical reduction of H+ ions), which leads to the formation
of H2 molecules that can superimpose the pseudocapacitive currents from the hydrogen
underpotential deposition layer [28]. Improved methods to obtain baselines for the Hupd
signal and the COS peak have been developed to allow reproducible and consistent values



Membranes 2021, 11, 670 3 of 23

for Pt-based ECSA [29]. In the case of Pt alloys, Becknell et al. [30] suggest using both
COS and Hupd alongside each other for ECSA evaluations to avoid the underestimation
of the specific areas of the electrodes, associated with the overestimation of the surface
area-normalized catalytic activity.

In open literature, in situ measurements (i.e., MEA) of the electro-oxidation kinetic
parameters of CO adsorbed on Pt-based catalysts are rarely reported due to the complex
overlapping of the different oxidation mechanisms. Ex situ measurements (e.g., RDE) are
preferred and either measured from electrode in solution mechanisms [31] or deduced from
fitting a model to the CO performance loss data [32]. It is common for catalytic properties
measured from ex situ measurements (e.g., RDE) to disagree with those measured in
MEAs [22]. Therefore, in order to develop and design improved electrocatalytic materials,
particularly for FCs and related processes, the fundamental aspects of CO oxidation on
real electrocatalysts need to be understood. Since ex situ and in situ results vary greatly,
this can only be achieved when the in situ methods are applied. Therefore, the current
investigation focuses solely on in situ measurements.

As previously mentioned, the CO tolerance of an electrode can be increased by either
Pt-Ru or high-temperature operation. To the knowledge of the authors, no studies have
been conducted where CO poisoning mitigation has been studied by a combined approach
of Pt-Ru and HT operation. Therefore, a combined approach that includes both HT-
PEMs and Pt-Ru catalysts is now proposed. To effectively evaluate the practicality of
the proposed method, the performance of a Pt-Ru/C was compared with that of a Pt/C.
The same PA-doped PBI membranes were used for both catalysts, in the temperature
range 80–160 ◦C. COS scans are typically performed with CO/N2 gas mixtures; however,
since the focus of this study is on electrochemical hydrogen separation, a H2/CO gas
mixture (2% CO, balance H2) was used. Three types of ECSA methods were considered
and compared: Hupd-based ECSA, COS-based ECSA, and Hupd/COS-based ECSA [33].
The three ECSAs were evaluated from COS and Hupd stripping steps applied. The COS-
based ECSA determination proved to be ineffective in the presence of H2 due to the
complex overlapping of the oxidation mechanisms; therefore, the novel CO-Hupd peak
was used to estimate the ECSA from the COS-CV data. For HT-PEM electrochemical
cells, the distribution of the electrolyte in the MEA determines the availability of the triple
phase boundary and, therefore, influences the ECSA. The mobility of the PA results in
lower catalyst utilization and, ultimately, a lower ECSA [13]. This is expected to have an
unavoidable effect on the experimental ECSA results. However, this effect was considered
to be minimal.

2. Experimental
2.1. Experimental Rig

Three gas mixtures were used to conduct the experiments. Pure H2 was used to
characterize the performance of both the Pt/C and Pt-Ru/C MEAs and to determine the
Hupd-based ECSA. A 2 vol. % CO (balance H2) gas mixture was used for the COS-based
ECSA, for both the Pt/C and Pt-Ru/C MEAs. Dry N2 was used to flush the cathode
compartment and to purge the system. All gases were stored in high-pressure gas cylin-
ders, regulated by pressure regulators, and connected to the rig through small-diameter
(1/4”) plastic tubing. Mass flow controllers (Brooks Delta Smart II) were used to regulate
the flow of the feed streams. The mass flow controllers were controlled making use of
LabVIEW software.

All experiments were carried out at atmospheric pressure. The cell operating tempera-
ture was varied between 80 and 160 ◦C and maintained by means of two Watlow FIREROD
heating rods (one at the anode side and one at the cathode side). A K-type thermocouple
(anode side) and PID controller (DCL-33A) were incorporated into the cell. Furthermore,
the cell was enclosed in a heat insulation jacket to reduce heat losses. The temperature at
the center of the anode back plate was taken as the cell temperature.
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All experiments were conducted in hysteretic order as per assessment of the per-
formance deterioration during experimentation. The flow rates herein reported are all
given in normal milliliters per minute (mLn/min), with 0 ◦C and 1 bar taken as reference.
All potentials reported herein refer to the reversible hydrogen electrode (RHE) at the
specified temperature.

2.2. Electrochemical Cell

A two-electrode system was used, with the anode acting as the working electrode
(WE), whilst the cathode acts as both the counter electrode (CE) and reference electrode
(RE), as illustrated in Figure 1. Here, the cathode also acts as an RHE (reference electrode).
A clear description of the RHE is given by Jerkiewicz [34].
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Figure 1. Schematic of the electrochemical cell.

Experiments were carried out using a single, square-shaped, off-the-shelf electrochem-
ical cell with an active area of 25 cm2 (Fuel Cell Technologies, Inc., Albuquerque, NM, USA)
making use of a multipath serpentine flow field design for gas distribution. The cell com-
prised a proton-conducting membrane, placed between two pieces of carbon cloth (acting
as gas diffusion layers); copper current collectors, sealed off with high-temperature PFA
gaskets (used to compress the MEA); and aluminium back plates used for assembly.

The cell was compressed using a torque wrench to ensure a uniform pressure distribu-
tion over the compressed MEA and to minimize the electrochemical and thermal resistance
of the gas diffusion layers. The assembly torque for the eight bolts was 6 Nm. Identical PBI
membranes were tested, with different anode catalysts (one Pt/C and the other Pt-Ru/C).
The cathode catalyst for the two membranes was exactly the same, Pt/C. The total metal
loadings for both Pt and Pt-Ru were 2 mg cm−2.

2.3. Performance Evaluation: Pure Hydrogen

Experiments were first conducted using pure hydrogen. The effect of temperature on
the performance of the cell was investigated by varying the temperature between 100 and
160 ◦C, in 20 ◦C steps, for hydrogen flow rates of 50–400 mLn/min, in 50 mLn/min intervals.
Polarization curves were drawn for each temperature and flow rate, commencing at the
lowest temperature and flow rate. The flow rate was then raised to the second lowest flow
rate, and the process was repeated until the highest flow rate was reached, after which the
temperature was again raised by 20 ◦C and the process repeated once again. This was done
until a limiting current was reached or until the voltage limit (1.1 V) was reached, after
which the run was terminated. The volumetric flow rate of the permeate was recorded for
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each set current density at the respective temperatures and flow rates, making use of soap
flow meters.

To determine the resistance of the MEA in situ, electrochemical impedance spec-
troscopy (EIS) was performed in constant current/galvanostatic mode (1 A), frequency
range 100 kHz to 0.1 Hz, at 100–160 ◦C, in hydrogen pumping mode. For feed streams
containing impurities, the hydrogen flow rate was held constant for all EIS experiments at
100 mLn/min H2. The AC current amplitudes were a standard 10% of the applied direct
current [9]. A Nyquist plot of the impedance spectrum was generated.

2.4. ECSA Evaluation Methods
2.4.1. Hupd: ECSA Evaluation

Voltammetric measurements were conducted using dry H2 at the anode (the WE). The
cathode was flushed with dry N2. The third cycle comprised a total of three CV scans,
which were used to determine the Hupd-based ECSA. These cyclic voltammograms (also
abbreviated CVs for simplicity of discussion) were recorded with a scan rate of 50 mV s−1,
and the upper and lower potential was chosen as 1.0 and –0.025 V vs. the RHE.

2.4.2. CO stripping: ECSA Evaluation

The CO experiments were conducted based on the following procedure: (i) The anode
was purged with 2% CO in H2 (overall flow rate 100 mLn/min) for 10 min, with a constant
electrode potential of 0.1 V vs. RHE. Successively, (ii) the monolayer of adsorbed CO was
stripped off and a CV scan was conducted at 20 mV s−1, from 0.1 V vs. RHE to 1.0 V
vs. RHE. Three cycles were performed. Then, (iii) the CO reference baseline experiments
were executed according to the same procedure, the only difference being that the tests
were performed in N2-saturated electrolyte (CO was not present in this experiment). Here,
the potential was initially held at 0.1 V for 30 min, followed by a CV scan at 20 mV s−1.

2.4.3. Method Development

For the application of all CV methods, it is important to define a baseline for the
determination of the Hupd and CO oxidation charge. This is essential for reproducibility
and achieving diagnostically conclusive results. Consequently, two additional parameters
should be defined: the upper and lower potential limits. The methods considered to define
the baselines are now described.

Hupd—ECSA (Capacitive charge baseline): In the capacitive charge analysis, the double layer re-
gion is used as the subtraction baseline for the hydrogen adsorption/desorption peaks [25].
The potential at the current density minimum before the hydrogen evolution peak is taken
as the lower potential limit for the integration of the charges. The upper limit is the poten-
tial after the hydrogen adsorption/desorption peak. This baseline method is referred to as
the ‘standard baseline’.

For improving the Hupd analysis, Mayrhofer et al. [29] have suggested that the CV
currents obtained from the CO-saturated baseline be subtracted from the Hupd signal
instead of the traditional standard baseline currents (N2-saturated baseline). The same
method was also used by Benninger et al. [25]. However, both these references considered
only ex situ application; therefore, the reliability of in situ measurements remains as yet
unknown, and clarity is still required. The method used by both Mayrhofer et al. [29] and
Benninger et al. [25] was nonetheless considered, but preliminary test revealed that it was
not reliable, and it was therefore disregarded.

COS—ECSA (Ref. CV baseline): The reference CV is used to obtain a correct integration
baseline without the adsorption of CO. This is crucial, since contributions from sources
other than CO oxidation are possible, and hence correction is required. Therefore, the
reference CV peak is used as a baseline, where the integration boundaries can be defined
as the potentials where the reference CV peak and the COS CV peak (cycle 1) intersect.
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2.5. Experimental Procedure

During the electrochemical measurements, the cell temperature was controlled in
the range 80–160 ◦C. As a basic characterization step, pure hydrogen was used. The
operational sensitivities and performances were investigated for both Pt/C and Pt-Ru/C
electrocatalysts. This was followed by the ECSA determination tests, where the experiments
on the electrodes were organized as follows: First, the cleaning step was performed. The
anode and cathode were completely purged with N2, after which the CE was purged with
H2. To ensure that all contaminants on the WE were removed, potential cycles between
–0.025 and 1 V vs. RHE were conducted for 30 cycles, at a scan rate of 50 mV s−1. In the
case of Pt-Ru, preconditioning was completed within narrower potential limits, with the
upper potential limit set to 0.8 V. This was done to avoid irreversible oxidation or possible
Ru dissolution [35]. In the second step, referred to as the reference CV scan, N2 was fed
to the cell, and the baseline for the CO-ECSA Ref. CV baseline was obtained at the different
temperatures. Following this, the Hupd CV scan was performed at 50 mVs−1. The final
step was the actual COS measurement. The reason for this organization is that once CO is
introduced into the system, the entire removal thereof is challenging, and then interference
from the oxidation of residual CO is possible. Hydrogen separation of the gas mixtures
was also carried out to determine, and compare, the separation efficiency of both Pt/C
and Pt-Ru/C.

ECSA Calculation

Evaluation of the ECSAs of Pt- and Pt-based electrocatalysts firstly involves the
measurement of the charge of the adsorbed species (QH or QCO), determined from the
CV scans:

I =
dQ
dt

(3)

Qi =
∫ t f

ti

Idt =
1
v

∫ E f

Ei

IdE (4)

where ti is the time at which the hydrogen adsorption commences and t f is the moment
at which the monolayer is completed; E and I depict the potential (V) and current (A),
respectively; and ν is the applied scan rate (mV s−1). Gamry Echem Analyst software
was used to determine the charge area for all the respective CV peaks. Accordingly, the
charge was normalized using a surface area-specific charge of an ideal one-electron transfer
210 µC cm−2 (Hupd) or two-electron transfer 420 µC cm−2 (CO). Using the surface area-
specific charge, the Hupd-based and COS-based ECSAs of the anode were calculated using
the following equations [27,28,36,37]:

ECSA(H)

(
cm2Pt
mgPt

)
=

QH(µC)

210
(

µC
cm2Pt

)
× L

(
mgPt
cm2

)
× 25 cm2

(5)

ECSA(CO)

(
cm2Pt
mgPt

)
=

QH(µC)

420
(

µC
cm2Pt

)
× L

(
mgPt
cm2

)
× 25 cm2

(6)

where L refers to the catalyst load.

3. Results and Discussion
3.1. Pure Hydrogen Experiments: Membrane Characterization

In Figure 2, the voltage–current characteristics of the MEA with Pt/C and MEA
with Pt-Ru/C are compared for pure hydrogen at various flow rates and cell operating
temperatures (120–160 ◦C). The linear nature of the initial and intermediate sections of the
plots indicate that the ohmic losses dominate the cell overpotential in this region, whilst
the overall cell reaction rate dominates in the high current density region (horizontal lines).
The latter is due to the depletion of reactants. The vertical lines in Figure 2 indicate the
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limiting current density, where most of the supplied hydrogen has been consumed; the
limiting current density is dependent on the hydrogen supplied to the cell. Higher limiting
current densities were reached when higher feed flow rates were used. This is explained by
Faraday’s law, which states that the flow of hydrogen is directly proportional to the current.
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In general, similar limiting current densities were reached for the two MEAs, although
Pt/C exhibits better overall efficiency, indicated by the lower voltages that were achieved
with Pt/C, compared to Pt-Ru/C, at the same current densities. Since the ohmic losses
(defined as the sum of the contact resistance, electrical resistance, and proton conducting
resistance) dominate the largest part of the polarization curves, the ohmic resistance is
expected to be higher for the Pt-Ru/C since higher voltages are observed with this MEA.
This was verified by the EIS experiments.

From the Nyquist plots of the impedance data presented in Figures 3 and 4, with
the x-intercept resembling the ohmic resistance of the membrane, it can be observed that
higher values are obtained with the MEA containing Pt-Ru/C. In Figure 3, the x-intercept
values for the Pt/C MEA range between 5 and 5.5 mΩ at 120 ◦C, 3.9 and 4.1 mΩ at 140 ◦C,
and 3.3 and 3.7 mΩ at 160 ◦C, whereas the ohmic resistance range of the Pt-Ru/C MEAs
varies between 7 and 7.5 mΩ at 120 ◦C, 5.2 and 5.5 mΩ at 140 ◦C, and 5.1 and 5.4 mΩ at
160 ◦C (Figure 4). Further investigation of the EIS data indicates that the mass and charge
transfer resistances (diameter of the impedance arc) are higher for the Pt-Ru/C MEA.
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The higher ohmic resistance and the higher mass and transfer resistances seen for the
Pt-Ru/C MEA may be explained by the distribution of the PA in the membrane, since the
ohmic resistance is mainly related to the resistance of the electrolyte [38] and the ECSA
should be directly related to the amount of the electrolyte contacting the catalyst [13]. The
mobile nature of the PA results in lower catalyst utilization and ultimately lower ECSA,
which may be the case with the Pt-Ru/C [13]. However, it is uncertain whether the higher
resistances are due to the poor distribution of the acid inside the membrane, or whether it
can be explained by the bifunctional mechanism involving Pt and Ru as active sites or an
electronic effect of Ru on Pt. The opposite is seen in an alkaline environment: the oxidation
of hydrogen on Pt is slow, and Pt-Ru alloys show exceptionally higher hydrogen oxidation
reaction (HOR) activity [39]. No reports were found on the comparison of the HER and the
HOR on Pt and Pt-Ru at high temperatures in an acidic environment. It is known, however,
that hydrogen oxidation and evolution on Pt in acid are facile processes [40].

Furthermore, general observations can be made from the EIS data presented for both
the Pt/C- and Pt-Ru/C-containing MEAs. Temperature is seen to enhance ohmic, mass,
and charge transfer resistances. The reduction in the arc diameter at higher temperatures
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indicates that there is a slight improvement in mass transport and high-frequency charge
transfer, as confirmed in literature [41]. Su et al. [42] reported that an increase in tempera-
ture enhances the cell performance due to an increase in the reaction and the mass transfer
rate and a lower cell resistance, which is confirmed in this work.

Another observation made is the influence of the hydrogen feed flow rate on the ohmic
resistance and electrode kinetics. The ohmic resistance of both the Pt/C and Pt-Ru/C MEAs
increases with the applied flow rate at temperatures ≥140 ◦C, whilst the electrode kinetics
seems to be independent of the applied flow rate. At 120 ◦C, the resistance increase in
terms of hydrogen feed flow rate (mLn/min) for Pt/C and Pt-Ru/C is 200 < 150 < 100 < 50
and 200 < 150 < 50 < 100, respectively. Similarly, tests performed at 100 ◦C (not indicated in
the graphs) reveal the resistance dependence on the feed flow rate (in mLn/min) for both
MEAs to be 200 < 150 < 100 < 50. According to the literature, excess fuel during EIS should
minimize the mass transport resistance [18]. This was partly confirmed in this work—this
was only observed at lower temperatures, where the resistance was seen to decrease with
an increase in the fuel supply.

To conclude this section, the hydrogen flux measured with a bubble flow meter
indicated that nearly Faradic flow rates were achieved throughout, indicating that no major
system or cell leakages were present. Curves for a hydrogen feed flow rate of 100 mLn/min
are demonstrated in Figure 5. Here, the theoretical line illustrates the law of Faraday.
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Figure 5. Hydrogen flux and permeation rate for a hydrogen feed flow rate of 100 mLn/min for (a) Pt/C MEA and
(b) Pt-Ru/C MEA.

3.1.1. Hupd-Based ECSAs

The CV scans obtained for the N2-saturated electrolyte for Pt/C and Pt-Ru/C are
plotted in Figure 6. As the temperature increased, the Hupd peak shifted to the left (lower
potential region), for both Pt/C and Pt-Ru/C. The shift was more significant in the case
of Pt/C. This is indicative of the temperature dependency of the Hupd peak, which also
influences the size and shape of the peak. For both Pt/C and Pt-Ru/C, the peak height
increased with temperature, whilst the peak width appeared to become narrower. Broader
smaller peaks are observed at 80 ◦C, whilst sharper narrower peaks are evident at 160 ◦C.

The capacitive currents for the Pt/C catalyst (Figure 6a) were far above the zero cur-
rent region, and higher currents were observed compared to the Pt-Ru/C catalyst. This
can possibly be explained by the diffusion characteristics of the nanoparticles, where circu-
lar/convergent diffusion is present [43] (see Figure 7). The effect of convergent/circular
diffusion poses the benefit of improvements in mass transport to an extent where the
current density is greater than that of a macroelectrode under planar diffusion [43]. This



Membranes 2021, 11, 670 10 of 23

was evident for both Pt/C and Pt-Ru/C, since the anodic current peaks are in the ranges of
approximately 16–22 A and 2–6 A, respectively, whereas bulk current values are commonly
expressed on a µA or mA scale [23,25,28,29]. Another point to consider is the fact that the
system that was used is a two-electrode in situ MEA and not a typical three-electrode ex
situ set-up. As mentioned earlier, MEA measurements are rarely performed, whereas RDE
studies are abundant. The values obtained from MEAs vary greatly from those obtained by
RDE systems. According to Garrick et al. [22], this is due to the lack of stability of highly
active catalysts [44]. As the catalyst ages in an MEA, changes in the size, composition, and
surface structure of the catalyst occur [22,45]. Other variables, such as the gas distribution,
contact resistance between the cell components, catalyst support corrosion, PA concentra-
tion, and acid leaching/acid distribution should not be disregarded and could potentially
also influence the CV scans.
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Figure 6. In situ CVs performed in N2-saturated electrolyte (PA) with a scan rate of 50 mV s−1.
(a) Pt/C. (Inset) The filled area represents the charge related to the Hupd peak after applying the
standard baseline correction at 160 ◦C. (b) Pt-Ru/C.
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Results for the ECSA estimation by means of the standard baseline method for Pt/C
and Pt-Ru/C are tabulated in Tables 1 and 2, respectively (ECSA data column highlighted
in grey). The tables show that the estimated ECSA values, in cm2 (mg catalyst)−1, for Pt/C
and Pt-Ru/C are similar, with Pt/C exhibiting slightly higher ECSA values than Pt-Ru/C.
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Table 1. Pt/C Hupd-based ECSA estimation data at different temperatures, determined via the
standard baseline method.

Temp. (◦C) QH (C) AEC (cm2) ECSA (cm2 mgPt−1)

80 7.39 ± 0.05 35,190 ± 240 704 ± 5
100 10.56 ± 0.05 50,286 ± 240 1006 ± 5
120 10.82 ± 0.05 51,524 ± 240 1030 ± 5
140 11.03 ± 0.05 52,524 ± 240 1050 ± 5
160 12.28 ± 0.05 58,476 ± 240 1170 ± 5

Table 2. Pt-Ru/C Hupd-based ECSA estimation data at different temperatures, determined via the
standard baseline method.

Temp. (◦C) QH (C) AEC (cm2) ECSA (cm2 mgPt−1)

80 6.61 ± 0.05 31,462 ± 240 629 ± 5
100 9.96 ± 0.05 47,433 ± 240 949 ± 5
120 10.45 ± 0.05 49,762 ± 240 995 ± 5
140 11.00 ± 0.05 52,381 ± 240 1048 ± 5
160 12.11 ± 0.05 57,667 ± 240 1153 ± 5

The ECSA values obtained are comparable to the ECSA value obtained for LT Nafion
membranes, for 50 wt. % Pt/C (see Figure 8). For both Pt/C and Pt-Ru/C, the appar-
ent ECSA increased with temperature. This may be explained by enhanced electrode
kinetics [4,17,19,46].
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Figure 8. Pt ECSA values for a ~50 wt. % Pt/C standard (TKK-TEC-10E50E). Nafion indi-
cates Nafion ionomer 1: Water/IPA/Nafion [47], 2: water/IPA/Nafion (optimized) [48], 3: wa-
ter/Nafion film [49], 4: water [50], 5: water/Nafion film [51], 6: water/Nafion film [52], 7: wa-
ter/ethanol/Nafion [53], 8: water/IPA/Nafion [54], 9: IPA/Nafion [55], 10: water/IPA/Nafion [56],
11: water/IPA/Nafion [57]. (reproduced from Garsany et al. [58]).

3.1.2. CO-Based ECSAs

The CO-stripping CV curves for Pt/C and Pt-Ru/C in the presence of H2 (98 vol. %)
are presented in Figures 9 and 10, respectively. The absence of peaks at 80 ◦C (Figure 9a)
indicates that the Pt catalytic sites were deactivated by CO. This was also seen in the case of
Pt-Ru/C at 80 ◦C (Figure 10a), which means that a large amount of the catalytic surface is
blocked by CO. This is in agreement with literature; the CO tolerance for LTs (70–80 ◦C) is
50 ppm maximum [6]; since 2 vol. % CO is used to test the CO-based ECSAs, the catalytic
sites become deactivated. Peak formation was observed at 100 ◦C (Figure 9b), with one
large peak seen in the first potential cycle (forward direction) at ~1.1 V. In the succeeding
cycles, this peak disappeared, which results from the removal of the monolayer of adsorbed
CO. Although the entire peak had disappeared by cycle 3, only a small CO-Hupd peak was
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formed, which indicated that a large number of the catalytic sites may still be deactivated
by CO. Typical CO oxidation potentials on Pt were reported to be around 0.5–0.8 V vs.
RHE [25,28], which is in disagreement with the peak potential observed here in cycle 1.
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Figure 10. COS CVs of the Pt-Ru/C catalyst, 2% CO (balance hydrogen), performed with a scan rate of 20 mV s−1 potential
limits −0.025 and 1.2 V vs. RHE at (a) 80 ◦C, (b) 100 ◦C, (c) 120 ◦C, (d) 140 ◦C, and (e) 160 ◦C.

Furthermore, a peak was seen in the reverse direction. This was repeated at higher
temperatures. This peak became sharper and seemed to shift to lower potentials as the
temperature was increased beyond ≤120 ◦C. The same peak was also visible in the CVs of
Pt-Ru/C (Figure 10) at 100–120 ◦C, but it decreased as the temperature increased. Only CO-
Hupd peaks were visible at 140–160 ◦C. Similar behavior has been reported for the methanol
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electro-oxidation reaction [52,59], where the CO tolerance of Pt-based electrocatalysts was
compared by means of the peak current ratio in the reverse (Ib) and forward (If) directions,
as illustrated in Figure 11.
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Both Sheng et al. [52] and Yin et al. [59] have studied the frequently invoked method
to mitigate CO poisoning by introducing a foreign metal (X) to Pt, forming a Pt alloy, to
facilitate the removal of adsorbed CO on the Pt surface, either by a bifunctional mechanism
or by an electronic effect. Sheng et al. [52] studied Pt-Ru/C, whilst Yin et al. [59] studied
Pt-Au. The current ratio criterion implemented in both these papers stated that the smaller
the Ib/I f ratio of an electrocatalyst is, the greater the improvement in its CO tolerance and
catalytic activity is [52].

Manoharan and Goodenough [60] speculated that the Ib peak is associated with resid-
ual carbon species, rather than originating from the newly oxidized chemisorbed species.
This means that Ib presumably does not have the same chemical origin as I f . However,
the accuracy of this method was considered ambiguous for the curves considered, since
the forward and reverse peaks seemed to be related in some manner. This conclusion was
drawn from the Pt/C data, which indicated that a decrease in one peak (forward/reverse)
is accompanied by a decrease in the other peak (reverse/forward).

Although the origin of the reverse peak is vague, the peaks found in the potential
region 0.7–1.2 V for Pt-Ru/C may possibly be related to CO adsorption on the catalyst,
since a decrease in these peaks seems to be directly related to an increase in the CO-Hupd
peaks. This increase indicates that as the CO-related peaks decrease, the Pt sites become
reactivated for hydrogen adsorption to take place, and hence a hydrogen peak emerges.
Furthermore, since the forward current peak does not decrease with temperature, and it
seemingly increases as the temperature is increased, the assumption was made that this
peak originated from side reactions (as reported by Engl et al. [28]). Two possible side
reactions were identified: one being the complex overlap of mechanisms and the other
presumably originating from the oxidation of the carbon support [25]. Both these reactions
were considered and investigated.

Commencing with the latter, the Pt nanoparticle catalyst supported on high-surface-
area carbon suffers from severe corrosion at potentials >1.1 V. It is for this reason that
Zhang et al. [21] suggested that the anodic limit be set to <1.0 V vs. RHE. Following this
suggestion, Pt/C COS scans in the presence of H2 and small amounts of H2O (from dilute
PA) were repeated with an upper potential limit of 1 V vs. RHE. The curves at 100 ◦C
were similar in shape to those reported by Schneider et al. [24] for pure hydrogen in a
N2-saturated electrolyte, suggesting that the CO peak is not present. The forward peak
disappeared almost completely at 120 and 140 ◦C and was once again visible at 160 ◦C
(Figure 12). At 160 ◦C, the forward and reverse peaks decreased with each subsequent
cycle, along with the CO-Hupd peak formation observed in cycle 3. The Hupd peaks were
considered insignificant in terms of size. The reverse peak disappeared almost completely,
which is to be expected because CO is no longer adsorbed onto Pt at 140–160 ◦C [6].
However, according to Garrick et al. [22], the HT suppresses the COS-based ECSA more
than the Hupd-based ECSA, due to the shift in the equilibrium of CO adsorption/desorption
on the Pt surface.
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Upon comparing the results in Figures 9e and 12d, the possible oxidation of the carbon
support was observed when the potential limit was set to >1 V. The peaks in Figure 9d are
much larger, yet both CVs do show improvement (decrease in peak size) with each cycle.
Results observed in Figure 12 led to the conclusion that oxidation of the carbon support,
although not completely disregarded, was not the origin of the reverse peaks. Therefore,
the theory of overlapping mechanisms was investigated. A variety of reaction possibilities
was considered, which basically include the assumption that CO is either reduced [61] or
oxidized [62].

First, the latter is discussed. From a mechanistic point of view, the adsorbed CO
is believed to be electrochemically oxidized by an oxygen-containing species (generally
OH) [27,63] as follows:

H2O + Pt↔ Pt−OHads + H+ + e− (7)

Pt− COads + Pt−OHads → CO2 + H+ + e− + 2Pt (8)

In the case of bimetallic catalysts (e.g., Pt-Ru) the reaction is suggested to change in
the following manner:

X + H2O→ X−OHads + H+ + e− (9)

Pt− COads + X−OHads → Pt + X + CO2 + H+ + e− (10)

where X denotes the foreign metal added to Pt.
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In the case of PEM-FCs, water is the only possible oxygen source, due to the low partial
pressure of oxygen. Here, the activation of the water molecule is considered imperative for
the oxidation of adsorbed CO on Pt-based electrocatalysts. However, although water is
considered an important factor for CO electro-oxidation, most studies on the oxidation of
COads have been conducted in aqueous electrolyte (e.g., dilute H2SO4 or HClO4 solution).
Since the electrolyte used consists of 85 wt. % PA, diluted in water, the water present was
considered to be sufficient for the oxidation of CO.

In other studies, the presence of H2 had promotional effects on CO oxidation similar
to H2O; H2 can be oxidized to H2O or hydroxyl (OH) groups [64,65]. Since the anode feed
gas consists of a mixture of hydrogen and CO, hydrogen is expected to have a promotional
effect on the CO oxidation. Furthermore, coupling chemistries arise from the use of gas
mixtures containing H2 and CO or CO, O, and H2O [66]. An example of such coupling is
the production of oxygenates (e.g., COOH*) through a recombination reaction, as proposed
by [66]:

CO∗ + OH∗ → COOH∗ + ∗ (11)

with its subsequent decomposition

COOH∗ + OH∗ → CO∗2 + H2O∗ (12)

or
COOH∗ + ∗ → CO∗2 + H∗ (13)

where the asterisk (*) resembles either an empty site or an adsorbed species. HCOO** also
undergoes similar reactions. These coupling chemistries are important when considering
surface reactions on Pt-based catalysts and need to be accounted for. Therefore, a surface
reaction mechanism comprising three sub-mechanisms (CO oxidation, H2 oxidation, and
CO-H2 coupling steps) was developed, as illustrated in Figure 13. The surface reaction
mechanism was constructed based on the assumption that the PA used is stable and does
not partake in any of the reactions. Moreover, the reactions were based on the surface
reactions presented by [66].

The reaction mechanism presented in Figure 13 indicates that the surface reaction is
more complex than previously thought. From this, the possibility of subsequent oxidation
or the formation of intermediate carboxyl species (COOH) was identified, which may
explain the reverse peak previously mentioned. The facile formation of intermediate
carboxyl species has been reported previously, and subsequently confirmed, by experiments
performed on Au surfaces [65].

Other reactions that should not be disregarded in the overall reaction mechanism
include the electrochemical Fischer–Tropsch process [67] and electrochemical methanation.
Both these reactions are based on the electrochemical reduction of CO in the presence of
H2. The former involves the formation of valuable hydrocarbons, such as CH4 (methane),
C2H4 (ethylene), and C2H6 (ethane) [67], whereas the latter involves the electrochemical
conversion of CO to CH4. The electrocatalytic reduction of CO2 to CO and CH4 has been
reported with the same device [61,68], showing the plausibility of electrochemical reduction
with electrocatalytic cells.

Results of tests performed with 1 vol. % CO (balance N2, no H2 present) (see Figure 14)
also serve as confirmation (for the coupling mechanisms in the presence of H2); no reverse
peak is present and only one CO peak is seen in the first potential cycle. Therefore, no
side reactions were evident in the absence of H2. No further attention was given to the
identification of the side reactions because this aspect did not form part of the initial
project scope.
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Figure 14. Cyclic voltammetry scans of 1% CO in N2 at (a) 100 ◦C, (b) 120 ◦C, (c) 140 ◦C, and (d) 160 ◦C.

Since the ECSA could not be evaluated from the CO peaks, the decision was made
to evaluate the ECSA from the CO-Hupd peaks instead. The latter were considered to
resemble the reactivated Pt sites. Since no CO-Hupd peaks were present in the CV scans
performed on Pt/C, the ECSA values for only Pt-Ru/C could be analyzed (see Table 3).
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The values presented are not considered the real ECSA values, but are rather to be seen as
an estimation.

Table 3. Pt-Ru/C (CO-Hupd)-based ECSA estimation in terms of cm2 (mg catalyst)−1 (100–160 ◦C).

100 ◦C 120 ◦C 140 ◦C 160 ◦C

Cycle 1 7 ± 0.5 166 ± 2 586 ± 5 624 ± 5
Cycle 2 161 ± 1 318 ± 3 632 ± 5 781 ± 5
Cycle 3 239 ± 2 654 ± 5 705 ± 5 874 ± 5

Table 3 clearly shows that, at the temperatures that were investigated in this study, the
CO/Hupd-based ECSA values increase with each consecutive cycle. Moreover, the ECSA
values also increase as the temperature is increased (also seen previously for Hupd-based
ECSA values). However, the values obtained were lower than those depicted in Table 2.
This could be explained by the change in acid distribution or the deactivation of Pt sites
upon CO exposure. At temperatures <140 ◦C, other peaks originating from CO as a source
were visible. Therefore, the lower ECSA values at these lower temperatures might be
considered to be caused by CO poisoning. However, at temperatures ≥140 ◦C, no peaks
other than Hupd/CO are visible, and therefore CO poisoning was not considered to be the
cause behind the lower ECSA values at temperatures >140 ◦C.

Transmission electron microscopy (TEM) images displayed in Figure 15 reveal that
particle agglomeration/aggregation after HT application could have caused the decrease in
the ECSA. The scale sizes of the different TEM images are not the same (scales are indicated
in the lower left corners of each image), and hence the images are not indicative of the
exact size difference; rather, they provide an indication of the agglomeration/aggregation
evident after heat exposure. Figure 16 shows the particle size distribution before and after
heat exposure (where ‘high-temperature exposure’ is referred to as HT in the figure).
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Membranes 2021, 11, 670 18 of 23

Membranes 2021, 11, x FOR PEER REVIEW 19 of 23 
 

 

1.5 nm for Pt and Pt-Ru, respectively. There was a large difference in the maximum parti-
cle size (max.); the maximum particle size before HT operation changed from 9.7 and 10.4 
nm to 39.2 and 31.4 nm after HT for Pt and Pt-Ru, respectively. This means that, for the 
Pt-Ru particles, almost a quarter of the heat-treated particles were larger than the maxi-
mum particle size before HT exposure. 

Moreover, for Pt, the average particle size before HT operation was 5.7, and it 
changed to 7.35 nm after HT operation. Similar results were seen for Pt-Ru, where the 
average particle sizes changed from 6.53 nm to 8.91 nm. Hence, the aggregation of the 
nanoparticles was confirmed. It is known that the aggregation of particles has an impact 
on the surface area, as larger particles reduce the available surface, therefore resulting in 
lower ECSA values. This could be explained by the reduction in ECSA seen in Table 3. 
However, this was only considered to influence the ECSA at higher temperatures. CO 
poisoning is expected to be the greatest contributor to loss of ECSA at LT. It remains un-
certain, however, as to at what temperature the particle agglomeration commences. Over-
all, it was concluded that analysis of the ECSA is more complex at HT than initially 
thought. No further attention was given to explaining the reduction in ECSA. 

 
(a) (b) 

Figure 16. Box and whiskers diagram of the particle size distribution based on the particle diameters 
for (a) Pt and (b) Pt-Ru, before and after high-temperature operation (HT). 

4. Considerations and Future Work 
Due to the novelty of the work presented and some limitations identified within the 

study, some aspects should be addressed and considered in future work to clarify and 
support the data reported here. A summary of the aspects to consider is given below.  

A possible concern that could be raised is the high current values that were obtained 
in the CV scans, given that similar experiments normally yield currents in a range much 
lower than the reported data. However, this can be explained by the difference in in situ 
and ex situ application as mentioned before. Typical CV experiments are usually per-
formed in an ex situ three-electrode setup. As reported by Garrick et al. [22], results for in 
situ and ex situ vary greatly. Garrick et al. also reported high current CVs in a similar 
range as the data reported here. To verify and also to quantify the difference in in situ and 
ex situ CVs for the current experiments, the authors suggest for future work to, in parallel, 
repeat the experiments for an ex situ three-electrode RDE and an in situ MEA and to com-
pare the results under the same conditions. Parameters that could possibly influence the 
results obtained for the in situ measurements should also be considered in the study. 
These include parameters such as the flow field design and setup, construction material 

Figure 16. Box and whiskers diagram of the particle size distribution based on the particle diameters
for (a) Pt and (b) Pt-Ru, before and after high-temperature operation (HT).

Figure 15a,d (TEM images before HT) shows that there was almost no aggregation of
particles, although major particle size differences were evident. The individual particles
can clearly be seen (the darkened sections indicate overlapping particles). Most of the
particles in (d) appear to be spherical, whereas the particles in image (a) show odd shapes.
The porosity of these particles could be seen (light particles) but could not be quantified by
TEM. The Pt and Pt-Ru nanoparticle aggregates are observed in (b), (c), (e), and (f). The
extent of the particle agglomeration differs in the four images. The shape of the particles
changed from small spherical to larger elongated particles. The most severe aggregation is
seen in (b), where irregular particle lumps were formed.

In Figure 16, a box and whiskers diagram of the particle size distribution (based on
the particle diameter) for both Pt/C and Pt-Ru/C, before and after heat exposure, is given.
A very similar particle size distribution is seen for both Pt and Pt-Ru, before heat treatment.
The average particle sizes for Pt and Pt-Ru were ~5.8 nm and ~6.5 nm, respectively.

The Pt particles before HT application were in the range 2.3–9.7 nm, whereas the Pt-Ru
particle sizes before HT experiments were in the range 2.9–10.4 nm. After HT experiments,
the minimum particle size increased by 1 nm for Pt and by 0.8 nm for Pt-Ru. The values for
Q1 (upper boundary for quartile one) and the median were very closely related before and
after HT operation for both Pt and Pt-Ru. The Q3 values increased by 0.7 and 1.5 nm for Pt
and Pt-Ru, respectively. There was a large difference in the maximum particle size (max.);
the maximum particle size before HT operation changed from 9.7 and 10.4 nm to 39.2 and
31.4 nm after HT for Pt and Pt-Ru, respectively. This means that, for the Pt-Ru particles,
almost a quarter of the heat-treated particles were larger than the maximum particle size
before HT exposure.

Moreover, for Pt, the average particle size before HT operation was 5.7, and it changed
to 7.35 nm after HT operation. Similar results were seen for Pt-Ru, where the average
particle sizes changed from 6.53 nm to 8.91 nm. Hence, the aggregation of the nanoparticles
was confirmed. It is known that the aggregation of particles has an impact on the surface
area, as larger particles reduce the available surface, therefore resulting in lower ECSA
values. This could be explained by the reduction in ECSA seen in Table 3. However,
this was only considered to influence the ECSA at higher temperatures. CO poisoning is
expected to be the greatest contributor to loss of ECSA at LT. It remains uncertain, however,
as to at what temperature the particle agglomeration commences. Overall, it was concluded
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that analysis of the ECSA is more complex at HT than initially thought. No further attention
was given to explaining the reduction in ECSA.

4. Considerations and Future Work

Due to the novelty of the work presented and some limitations identified within the
study, some aspects should be addressed and considered in future work to clarify and
support the data reported here. A summary of the aspects to consider is given below.

A possible concern that could be raised is the high current values that were obtained
in the CV scans, given that similar experiments normally yield currents in a range much
lower than the reported data. However, this can be explained by the difference in in situ
and ex situ application as mentioned before. Typical CV experiments are usually performed
in an ex situ three-electrode setup. As reported by Garrick et al. [22], results for in situ
and ex situ vary greatly. Garrick et al. [22] also reported high current CVs in a similar
range as the data reported here. To verify and also to quantify the difference in in situ
and ex situ CVs for the current experiments, the authors suggest for future work to, in
parallel, repeat the experiments for an ex situ three-electrode RDE and an in situ MEA
and to compare the results under the same conditions. Parameters that could possibly
influence the results obtained for the in situ measurements should also be considered in
the study. These include parameters such as the flow field design and setup, construction
material and heat distribution of the flow fields, the nature of the catalyst (e.g., porous or
nonporous, catalyst loading, particles (shape and size) or sheets, particle agglomeration),
the contact resistance of the cell components (the assembly torque of the back plates), and
the doping level and leaching of the acid.

In terms of Pt-Ru, it is possible for this alloy to undergo corrosion and dealloying
(where Ru could dissolve into the membrane) at the given conditions. This phenomenon
should be investigated in future work to verify if this is an issue and also to quantify the
extent of the phenomenon and the effect it has on the measured values.

Another limitation of the study that should be addressed in future work is the complex
coupling chemistries that occur between CO and H2. It is recommended that the same COS
tests be performed with CO/N2 as anode feed gas mixture to evaluate the CO tolerance
in the absence of the coupling chemistries brought about by H2. These results could
then be used to verify the results presented in this report. The authors also suggest that
future research should include CV scans together with an analytical method, such as gas
chromatography (GC) analysis, under the same operational conditions, to try to identify
the products formed from the coupling chemistries between H2 and CO. This can be done
with different concentrations of H2/CO. However, it should be taken into consideration
that, if the operating temperature is increased, improved reaction will result, and this may
cause immediate conversion from one chemical component to another. Therefore, GC
analysis may not include all the reactions that are taking place on the Pt surface.

5. Conclusions

This article describes the CO tolerance of Pt/C and Pt-Ru/C electrocatalysts in the
temperature range 80–160 ◦C, evaluated using CV. Three types of CV peaks were considered
to evaluate the ECSA: the COS-based ECSA, the Hupd-based ECSA, and the Hupd/COS-
based ECSA. Both membranes were PBI-based with anode catalyst loading of 2 mg cm−2

Pt/C and Pt-Ru/C, respectively. The cathode electrocatalyst for both MEAs was Pt/C, and
the active membrane area for the membranes was 25 cm2, with a thickness of approximately
58.90 µm (determined).

For the Hupd-based ECSA evaluation, it was found that the ECSA is temperature-
dependent and increases with an increase in temperature, for both Pt/C and Pt-Ru/C. The
COS CV scans, performed with a 2% CO (balance H2) gas mixture, showed that both Pt
and Pt-Ru were deactivated by CO at 80 ◦C; therefore, the ECSA was not evaluated at this
temperature. Moreover, Pt was seen to be strongly affected by the coupling chemistries
existing between CO and H2. These overlapping mechanisms were so significant that the
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ECSA could not be evaluated by the Hupd/COS-based method. Since no CO peaks were
seen (whereas other peaks were seen), COS could also not be used to analyze the ECSA.
However, upon the addition of Ru to Pt, the ‘side’ reactions brought about by H2 and CO
were suppressed, and Hupd/CO peaks were observed for Pt-Ru. At temperatures ≥140 ◦C,
no side reactions were seen. Only Hupd/COS peaks were visible. This is what was expected
for Pt, since CO should not adsorb onto the surface of Pt at temperatures >140 ◦C. Hence,
the conclusion was drawn that Pt-Ru is ultimately more tolerant to the coupling chemistries
existing between CO and H2.

The ECSA results obtained from the Hupd peaks were compared with those obtained
from the Hupd/COS peaks. The Hupd/COS-based values were lower. This is explained
by the CO poisoning of the catalyst at LT. Since no peaks other than the Hupd/COS peaks
are visible for the COS scans performed on Pt-Ru at temperatures ≥140 ◦C, CO poisoning
is not expected to influence the ECSA at temperatures >140 ◦C. TEM images revealed
that particle agglomeration takes place after heat exposure. This is considered to be the
cause of the lower ECSA values at HT. The TEM images were recorded after the CV
experiments were carried out, and hence it is uncertain at what temperature the particle
agglomeration commences.

To conclude, it is well known that CO alters the performance of Pt-based electrocat-
alysts and that Ru is known to alleviate the poisoning effect that CO has on Pt at low
temperatures. However, our studies now reveal that Ru serves to be valuable for CO
mitigation, even at high temperatures (>100 ◦C). The utilization of Pt-Ru could be a possi-
ble solution for keeping active sites free for hydrogen pumping at temperatures >100 ◦C.
However, this technique will require further research to validate its effect, to determine the
optimal operating conditions, and to quantify the extent of the alleviation of CO poisoning.
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