Effective Perturbations of the Amplitude, Gating, and Hysteresis of IK(DR) Caused by PT-2385, an HIF-2α Inhibitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Cell Preparations
2.3. Electrophysiological Measurements
2.4. Data Analyses
2.5. Statistical Analyses
3. Results
3.1. Effect of PT-2385 on Delayed-Rectifier K+ Current (IK(DR)) Measured from Pituitary Tumor (GH3) Cells
3.2. Kinetic Estimate of IK(DR) Block by PT-2385
3.3. Comparison among the Effects of PT-2385 (PT), PT-2385 Plus Diazoxide (Diaz), and PT-2385 Plus Cilostazol (Cil), or PT-2385 Plus Sorafenib (SOR) on the Amplitude of IK(DR)
3.4. Inhibitory Effect of PT-2385 on Mean Current versus Voltage (I-V) Relationship of IK(DR)
3.5. The Steady-State Inactivation Curve of IK(DR) during Exposure to PT-2385
3.6. PT-2385 on the Recovery of IK(DR) Block Measured from GH3 Cells
3.7. Effect of PT-2385 on the Hysteretic Behavior of IK(DR) Triggered by Isosceles-Triangular Ramp Voltage (ITRV) with Varying Durations
3.8. Effect of PT-2385 on the Activation Energy Required for IK(DR) Elicitation by ITRV
3.9. Effect of PT-2385 on the Hysteresis Activated during Inverted ITRV
3.10. Ability of PT-2385 to Inhibit IK(DR) Amplitude in Human 13-06-MG Glioma Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cil | cilostazol |
Diaz | Diazoxide |
∆G0 | free energy involved in current activation at 0 mV |
HIF | hypoxia-inducible factor |
I-V | current versus voltage |
IC50 | the concentration required for 50% inhibition |
IK(DR) | delayed-rectifier K+ current |
ITRV | isosceles-triangular ramp voltage |
KATP | channel, ATP-sensitive K+ channel |
KD | dissociation constant |
KV | channel, voltage-gated K+ channel |
SEM | standard error of mean |
SOR | Sorafenib |
TEA | tetraethylammonium chloride |
τinact(S) | time constant in the slow component of current inactivation |
TTX | tetrodotoxin |
References
- Vidal, S.; Horvath, E.; Kovacs, K.; Kuroki, T.; Lloyd, R.V.; Scheithauer, B.W. Expression of hypoxia-inducible factor-1alpha (HIF-1alpha) in pituitary tumours. Histol. Histopathol. 2003, 18. [Google Scholar]
- Kim, K.; Yoshida, D.; Teramoto, A. Expression of Hypoxia-Inducible Factor 1α and Vascular Endothelial Growth Factor in Pituitary Adenomas. Endocr. Pathol. 2005, 16, 115–122. [Google Scholar] [CrossRef]
- Yoshida, D.; Kim, K.; Noha, M.; Teramoto, A. Anti-Apoptotic Action by Hypoxia Inducible Factor 1-Alpha in Human Pituitary Adenoma Cell Line, HP-75 in Hypoxic Condition. J. Neuro Oncol. 2006, 78, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, D.; Kim, K.; Yamazaki, M.; Teramoto, A. Expression of Hypoxia-Inducible Factor 1α and Cathepsin D in Pituitary Adenomas. Endocr. Pathol. 2005, 16, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, D.; Koketshu, K.; Nomura, R.; Teramoto, A. The CXCR4 antagonist AMD3100 suppresses hypoxia-mediated growth hormone production in GH3 rat pituitary adenoma cells. J. Neuro Oncol. 2010, 100, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Nomura, R.; Yoshida, D.; Teramoto, A. Stromal cell-derived factor-1 expression in pituitary adenoma tissues and upregulation in hypoxia. J. Neuro Oncol. 2009, 94, 173–181. [Google Scholar] [CrossRef]
- Lei, T.; Xiao, Z.; Liu, Q.; Zhao, B.; Wu, J. Hypoxia induces hemorrhagic transformation in pituitary adenomas via the HIF-1? signaling pathway. Oncol. Rep. 2011, 26, 1457–1464. [Google Scholar] [CrossRef]
- Zhang, C.; Qiang, Q.; Jiang, Y.; Hu, L.; Ding, X.; Lu, Y.; Hu, G. Effects of hypoxia inducible factor-1α on apoptotic inhibition and glucocorticoid receptor downregulation by dexamethasone in AtT-20 cells. BMC Endocr. Disord. 2015, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Kinali, B.; Senoglu, M.; Karadag, F.K.; Karadag, A.; Middlebrooks, E.H.; Oksuz, P.; Sandal, E.; Turk, C.; Diniz, G. Hypoxia-Inducible Factor 1α and AT-Rich Interactive Domain-Containing Protein 1A Expression in Pituitary Adenomas: Association with Pathological, Clinical, and Radiological Features. World Neurosurg. 2019, 121, e716–e722. [Google Scholar] [CrossRef]
- Lucia, K.; Wu, Y.; Garcia, J.M.; Barlier, A.; Buchfelder, M.; Saeger, W.; Renner, U.; Stalla, G.K.; Theodoropoulou, M. Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene 2020, 39, 3367–3380. [Google Scholar] [CrossRef] [Green Version]
- Tella, S.H.; Taïeb, D.; Pacak, K. HIF-2alpha: Achilles’ heel of pseudohypoxic subtype paraganglioma and other related conditions. Eur. J. Cancer 2017, 86, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nat. Cell Biol. 2016, 539, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, E.M.; Rizzi, J.P.; Han, G.; Wehn, P.M.; Cao, Z.; Du, X.; Cheng, T.; Czerwinski, R.M.; Dixon, D.D.; Goggin, B.S.; et al. A Small-Molecule Antagonist of HIF2α Is Efficacious in Preclinical Models of Renal Cell Carcinoma. Cancer Res. 2016, 76, 5491–5500. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sáez, O.; Borau, P.G.; Alonso-Gordoa, T.; Molina-Cerrillo, J.; Grande, E. Targeting HIF-2 α in clear cell renal cell carcinoma: A promising therapeutic strategy. Crit. Rev. Oncol. 2017, 111, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yagai, T.; Luo, Y.; Liang, X.; Chen, T.; Wang, Q.; Sun, D.; Zhao, J.; Ramakrishnan, S.K.; Sun, L.; et al. Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis. Nat. Med. 2017, 23, 1298–1308. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, L.; Chen, J.; Sun, Y.; Lin, H.; Jin, R.-A.; Tang, M.; Liang, X.; Cai, X. Increasing AR by HIF-2α inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK signals. Cell Death Dis. 2017, 8, e3095. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, H.; Nohata, N.; Miyamoto, K.; Yonemori, M.; Sakaguchi, T.; Sugita, S.; Itesako, T.; Kofuji, S.; Nakagawa, M.; Dahiya, R.; et al. PHGDH as a Key Enzyme for Serine Biosynthesis in HIF2α-Targeting Therapy for Renal Cell Carcinoma. Cancer Res. 2017, 77, 6321–6329. [Google Scholar] [CrossRef] [Green Version]
- Renfrow, J.J.; Soike, M.H.; Debinski, W.; Ramkissoon, S.H.; Mott, R.T.; Frenkel, M.B.; Sarkaria, J.N.; Lesser, G.J.; E Strowd, R. Hypoxia-inducible factor 2α: A novel target in gliomas. Futur. Med. Chem. 2018, 10, 2227–2236. [Google Scholar] [CrossRef] [PubMed]
- Renfrow, J.J.; Soike, M.H.; West, J.L.; Ramkissoon, S.H.; Metheny-Barlow, L.; Mott, R.T.; Kittel, C.A., Jr.; D’Agostino, R.B.; Tatter, S.B.; Laxton, A.W.; et al. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Courtney, K.D.; Infante, J.R.; Lam, E.T.; Figlin, R.A.; Rini, B.I.; Brugarolas, J.; Zojwalla, N.J.; Lowe, A.M.; Wang, K.; Wallace, E.M.; et al. Phase I Dose-Escalation Trial of PT2385, a First-in-Class Hypoxia-Inducible Factor-2α Antagonist in Patients With Previously Treated Advanced Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2018, 36, 867–874. [Google Scholar] [CrossRef]
- Courtney, K.D.; Ma, Y.; de Leon, A.D.; Christie, A.; Xie, Z.; Woolford, L.; Singla, N.; Joyce, A.; Hill, H.; Madhuranthakam, A.J.; et al. HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clin. Cancer Res. 2020, 26, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Wehn, P.M.; Rizzi, J.P.; Dixon, D.D.; Grina, J.A.; Schlachter, S.T.; Wang, B.; Xu, R.; Yang, H.; Du, X.; Han, G.; et al. Design and Activity of Specific Hypoxia-Inducible Factor-2α (HIF-2α) Inhibitors for the Treatment of Clear Cell Renal Cell Carcinoma: Discovery of Clinical Candidate (S)-3-((2,2-Difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J. Med. Chem. 2018, 61, 9691–9721. [Google Scholar] [CrossRef]
- Qian, C.; Dai, Y.; Xu, X.; Jiang, Y. HIF-1α Regulates Proliferation and Invasion of Oral Cancer Cells through Kv3.4 Channel. Ann. Clin. Lab Sci. 2019, 49, 457–467. [Google Scholar] [PubMed]
- Schwartz, A.J.; Das, N.K.; Ramakrishnan, S.K.; Jain, C.; Jurkovic, M.T.; Wu, J.; Nemeth, E.; Lakhal-Littleton, S.; Colacino, J.A.; Shah, Y.M. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J. Clin. Investig. 2018, 129, 336–348. [Google Scholar] [CrossRef]
- Hsu, T.-S.; Lin, Y.-L.; Wang, Y.-A.; Mo, S.-T.; Chi, P.-Y.; Lai, A.C.-Y.; Pan, H.-Y.; Chang, Y.-J.; Lai, M.-Z. HIF-2α is indispensable for regulatory T cell function. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Persson, C.U.; von Stedingk, K.; Fredlund, E.; Bexell, D.; Påhlman, S.; Wigerup, C.; Mohlin, S. ARNT-dependent HIF-2 transcriptional activity is not sufficient to regulate downstream target genes in neuroblastoma. Exp. Cell Res. 2020, 388, 111845. [Google Scholar] [CrossRef]
- Chang, W.-T.; Lo, Y.-C.; Gao, Z.-H.; Wu, S.-N. Evidence for the Capability of Roxadustat (FG-4592), an Oral HIF Prolyl-Hydroxylase Inhibitor, to Perturb Membrane Ionic Currents: An Unidentified yet Important Action. Int. J. Mol. Sci. 2019, 20, 6027. [Google Scholar] [CrossRef] [Green Version]
- Wulfsen, I.; Hauber, H.P.; Schiemann, D.; Bauer, C.K.; Schwarz, J.R. Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary. J. Neuroendocr. 2001, 12, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-Y.; Tsai, Y.-C.; Wu, S.-N.; Liu, Y.-C. Tramadol-induced blockade of delayed rectifier potassium current in NG108-15 neuronal cells. Eur. J. Pain 2006, 10, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Lin, M.-W.; Lin, A.-A.; Peng, H.; Wu, S.-N. Evidence for state-dependent block of DPI 201-106, a synthetic inhibitor of Na+ channel inactivation, on delayed-rectifier K+ current in pituitary tumor (GH3) cells. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2008, 59, 409–423. [Google Scholar]
- Huang, C.-C.; Tsai, J.J.; Wu, S.N. Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): Contribution to the firing of action potentials. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2009, 60, 37–47. [Google Scholar]
- Kaczmarek, L.K.; Zhang, Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol. Rev. 2017, 97, 1431–1468. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, P.A.; Sherman, A.; Stojilkovic, S.S. Common and diverse elements of ion channels and receptors underlying electrical activity in endocrine pituitary cells. Mol. Cell. Endocrinol. 2018, 463, 23–36. [Google Scholar] [CrossRef]
- Kuo, P.-C.; Yang, C.-J.; Lee, Y.-C.; Chen, P.-C.; Liu, Y.-C.; Wu, S.-N. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K + currents in insulin-secreting cells. Eur. J. Pharmacol. 2018, 819, 233–241. [Google Scholar] [CrossRef]
- Hernández-Pineda, R.; Chow, A.; Amarillo, Y.; Moreno, H.; Saganich, M.; De Miera, E.C.V.-S.; Hernández-Cruz, A.; Rudy, B. Kv3.1–Kv3.2 Channels Underlie a High-Voltage–Activating Component of the Delayed Rectifier K+ Current in Projecting Neurons From the Globus Pallidus. J. Neurophysiol. 1999, 82, 1512–1528. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.-H.; Volk, T.; Ehmke, H. Heterogeneity of Kv2.1 mRNA expression and delayed rectifier current in single isolated myocytes from rat left ventricle. Circ. Res. 2001, 88, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranauskas, G. Ionic Channel Function in Action Potential Generation: Current Perspective. Mol. Neurobiol. 2007, 35, 129–150. [Google Scholar] [CrossRef]
- Johnston, J.; Griffin, S.J.; Baker, C.; Skrzypiec, A.; Chernova, T.; Forsythe, I. Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons. J. Physiol. 2008, 586, 3493–3509. [Google Scholar] [CrossRef] [PubMed]
- Bocksteins, E.; Van De Vijver, G.; Van Bogaert, P.-P.; Snyders, D.J. Kv3 channels contribute to the delayed rectifier current in small cultured mouse dorsal root ganglion neurons. Am. J. Physiol. Physiol. 2012, 303, C406–C415. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.W.; Bean, B.P. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons. J. Neurosci. 2014, 34, 4991–5002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labro, A.J.; Priest, M.F.; Lacroix, J.J.; Snyders, D.J.; Bezanilla, F. Kv3.1 uses a timely resurgent K+ current to secure action potential repolarization. Nat. Commun. 2015, 6, 10173. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.; El-Hassar, L.; Zhang, Y.; Alvaro, G.; Large, C.H.; Kaczmarek, L.K. Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons. J. Neurophysiol. 2016, 116, 106–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, R.-Y.; Cheng, C.-H.; Wu, S.-N.; Chen, P.-C. Defective trafficking of Kv2.1 channels in MPTP-induced nigrostriatal degeneration. J. Neurochem. 2017, 144, 483–497. [Google Scholar] [CrossRef] [Green Version]
- Di Lucente, J.; Nguyen, H.M.; Wulff, H.; Jin, L.-W.; Maezawa, I. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia 2018, 66, 1881–1895. [Google Scholar] [CrossRef]
- Lu, T.-L.; Lu, T.-J.; Wu, S.-N. Inhibitory effective perturbations of cilobradine (dk-ah269), a blocker of hcn channels, on the amplitude and gating of both hyperpolarization-activated cation and delayed-rectifier potassium currents. Int. J. Mol. Sci. 2020, 21, 2416. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Prange-Barczynska, M.; Fielding, J.W.; Zhang, M.; Burrell, A.L.; Lima, J.D.; Eckardt, L.; Argles, I.L.; Pugh, C.W.; Buckler, K.J.; et al. Marked and rapid effects of pharmacological HIF-2α antagonism on hypoxic ventilatory control. J. Clin. Investig. 2020, 130, 2237–2251. [Google Scholar] [CrossRef] [Green Version]
- Raeis, V.; Philip-Couderc, P.; Roatti, A.; Habre, W.; Sierra, J.; Kalangos, A.; Beghetti, M.; Baertschi, A.J. Central venous hypoxemia is a determinant of human atrial atp-sensitive potassium channel expression: Evidence for a novel hypoxia-inducible factor 1alpha-forkhead box class o signaling pathway. Hypertension 2010, 55, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.C.; Sadek, H.A. Hypoxia and Metabolic Properties of Hematopoietic Stem Cells. Antioxid. Redox Signal. 2014, 20, 1891–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Li, W.; Park, B.M.; Lee, G.-J.; Kim, S.H. Hypoxia augments nahs-induced anp secretion via katp channel, hif-1α and ppar-γ pathway. Peptides 2019, 121, 170123. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, W.; Chen, W.; Wang, H.; Zhang, Y.; Yu, T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post-conditioning. Mol. Med. Rep. 2020, 21, 1527–1536. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-H.; Liu, P.-Y.; Wu, S.-N. Characterization of Perturbing Actions by Verteporfin, a Benzoporphyrin Photosensitizer, on Membrane Ionic Currents. Front. Chem. 2019, 7, 566. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.-C.; Lin, C.-L.; Fang, W.-Y.; Lőrinczi, B.; Szatmári, I.; Chang, W.-H.; Fülöp, F.; Wu, S.-N. Effective Activation by Kynurenic Acid and Its Aminoalkylated Derivatives on M-Type K+ Current. Int. J. Mol. Sci. 2021, 22, 1300. [Google Scholar] [CrossRef]
- Wu, S.-N.; Hsu, M.-C.; Liao, Y.-K.; Wu, F.-T.; Jong, Y.-J.; Lo, Y.-C. Evidence for inhibitory effects of flupirtine, a centrally acting analgesic, on delayed rectifier k(+) currents in motor neuron-like cells. Evid. Based Complement Altern. Med. 2012, 2012, 148403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yifrach, O.; MacKinnon, R. Energetics of Pore Opening in a Voltage-Gated K+ Channel. Cell 2002, 111, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-N.; Yeh, C.-C.; Huang, H.-C.; Yang, W.-H. Cholesterol depletion with (2-hydroxypropyl)- beta-cyclodextrin modifies the gating of membrane electroporation-induced inward current in pituitary tumor gh3 cells: Experimental and analytical studies. Cell Physiol. Biochem. 2011, 28, 959–968. [Google Scholar] [CrossRef]
- Hsu, H.-T.; Lo, Y.-C.; Huang, Y.-M.; Tseng, Y.-T.; Wu, S.-N. Important modifications by sugammadex, a modified γ-cyclodextrin, of ion currents in differentiated NSC-34 neuronal cells. BMC Neurosci. 2017, 18, 6. [Google Scholar] [CrossRef] [Green Version]
- Villalba-Galea, C.A.; Chiem, A.T. Hysteretic Behavior in Voltage-Gated Channels. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef]
- Vivaudou, M. eeFit: A Microsoft Excel-embedded program for interactive analysis and fitting of experimental dose–response data. Biotech. 2019, 66, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-W.; Wang, Y.-J.; Liu, S.-I.; Lin, A.-A.; Lo, Y.-C.; Wu, S.-N. Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells. Neuropharmacology 2008, 54, 912–923. [Google Scholar] [CrossRef]
- Wu, S.-N.; Li, H.-F.; Chiang, H.-T. Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells. J. Membr. Biol. 2000, 178, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-N.; Liu, S.-I.; Huang, M.-H. Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary gh3 cells and pheochromocytoma pc12 cells. Endocrinology 2004, 145, 1175–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.-T.; Liu, P.-Y.; Lee, K.; Feng, Y.-H.; Wu, S.-N. Differential Inhibitory Actions of Multitargeted Tyrosine Kinase Inhibitors on Different Ionic Current Types in Cardiomyocytes. Int. J. Mol. Sci. 2020, 21, 1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmar, M.; Ibarra, J.; Davidenko, J.; Lorente, P.; Jalife, J. Dynamics of the background outward current of single guinea pig ventricular myocytes. Ionic mechanisms of hysteresis in cardiac cells. Circ. Res. 1991, 69, 1316–1326. [Google Scholar] [CrossRef] [Green Version]
- Kusters, J.M.A.M.; Cortes, J.M.; Van Meerwijk, W.P.M.; Ypey, D.L.; Theuvenet, A.P.R.; Gielen, C.C.A.M. Hysteresis and Bistability in a Realistic Cell Model for Calcium Oscillations and Action Potential Firing. Phys. Rev. Lett. 2007, 98, 098107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.-N.; Chen, B.-S.; Lin, M.-W.; Liu, Y.-C. Contribution of slowly inactivating potassium current to delayed firing of action potentials in NG108-15 neuronal cells: Experimental and theoretical studies. J. Theor. Biol. 2008, 252, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Villalba-Galea, C.A. Hysteresis in voltage-gated channels. Channels 2016, 11, 140–155. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.H.; Huang, Y.-M.; Wu, S.-N. The inhibition by oxaliplatin, a platinum-based anti-neoplastic agent, of the activity of intermediate-conductance ca²⁺-activated k⁺ channels in human glioma cells. Cell Physiol. Biochem. 2015, 37, 1390–1406. [Google Scholar] [CrossRef]
- Wu, S.-N.; Wu, A.Z.; Sung, R.J. Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes. Life Sci. 2007, 80, 378–387. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, N.; Xia, C.-K.; Du, L.-L.; Fu, X.-X.; Du, Y.-M. Hypoxia induces voltage-gated K+ (Kv) channel expression in pulmonary arterial smooth muscle cells through hypoxia-inducible factor-1 (HIF-1). Bosn. J. Basic Med. Sci. 2012, 12, 158–163. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, H.-T.; Lu, G.-L.; Liu, Y.-C.; Wu, S.-N. Effective Perturbations of the Amplitude, Gating, and Hysteresis of IK(DR) Caused by PT-2385, an HIF-2α Inhibitor. Membranes 2021, 11, 636. https://doi.org/10.3390/membranes11080636
Hsiao H-T, Lu G-L, Liu Y-C, Wu S-N. Effective Perturbations of the Amplitude, Gating, and Hysteresis of IK(DR) Caused by PT-2385, an HIF-2α Inhibitor. Membranes. 2021; 11(8):636. https://doi.org/10.3390/membranes11080636
Chicago/Turabian StyleHsiao, Hung-Tsung, Guan-Ling Lu, Yen-Chin Liu, and Sheng-Nan Wu. 2021. "Effective Perturbations of the Amplitude, Gating, and Hysteresis of IK(DR) Caused by PT-2385, an HIF-2α Inhibitor" Membranes 11, no. 8: 636. https://doi.org/10.3390/membranes11080636
APA StyleHsiao, H. -T., Lu, G. -L., Liu, Y. -C., & Wu, S. -N. (2021). Effective Perturbations of the Amplitude, Gating, and Hysteresis of IK(DR) Caused by PT-2385, an HIF-2α Inhibitor. Membranes, 11(8), 636. https://doi.org/10.3390/membranes11080636