Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Sols
2.2. Preparation of Membranes
2.3. Characterization of Sols and Membranes
3. Results
3.1. Characterization of BTESE-PNEN Powders and Films
3.2. Gas Separation Performance for Composite Membranes
3.2.1. Effect of Calcination Temperature
3.2.2. Effect of PNEN Content
3.2.3. Comparison of Non-POSS Material in BTESE Membranes
4. Discussion
4.1. Estimation of Pore Size and Apparent Activation Energy
4.2. Pore Size
4.3. Apparent Activation Energy
5. Conclusions
- (1)
- The BTESE-PNEN mixed matrix membrane showed good thermal stability as the higher gas permselectivity of H2/larger molecules (N2, SF6 or CF4) than Knudsen values even after calcination above 350 °C.
- (2)
- For CO2 permeance and permselectivity of CO2/N2, the order is: BTESE-PNEN-0.2 < BTESE-PNEN-0.02 ≈ BTESE-APTES-0.2.
- (3)
- The pore sizes for BTESE-PNEN-0.2, BTESE-PNEN-0.02 and BTESE-APTES-0.2 were 0.49, 0.43 and 0.43 nm, respectively. Both the configuration factor and the effective pore size of membranes have effects on gas separation performance.
- (4)
- A good linear correlation was presented for BTESE and related amine-containing organosilica membranes in CO2/N2 permselectivity versus Ep(CO2)-Ep(N2), or CO2 permeance versus Ep(N2). The low values of Ep(CO2)-Ep(N2) and Ep(N2) for BTESE-PNEN-0.02 membrane illustrates a potential CO2 separation performance by using MMMs strategy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Straelen, J.; Geuzebroek, F.; Goodchild, N.; Protopapas, G.; Mahony, L. CO2 capture for refineries, a practical approach. Int. J. Greenh. Gas Control 2010, 4, 316–320. [Google Scholar] [CrossRef]
- Gin, D.L.; Noble, R.D. Designing the Next Generation of Chemical Separation Membranes. Science 2011, 332, 674. [Google Scholar] [CrossRef]
- Ren, X.; Tsuru, T. Organosilica-Based Membranes in Gas and Liquid-Phase Separation. Membranes 2019, 9, 107. [Google Scholar] [CrossRef]
- Kanezashi, M.; Yoneda, Y.; Nagasawa, H.; Tsuru, T.; Yamamoto, K.; Ohshita, J. Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures. AlChE J. 2017, 63, 4491–4498. [Google Scholar] [CrossRef]
- Tsuru, T. Silica-Based Membranes with Molecular-Net-Sieving Properties: Development and Applications. J. Chem. Eng. Jpn. 2018, 51, 713–725. [Google Scholar] [CrossRef]
- Agirre, I.; Arias, P.L.; Castricum, H.L.; Creatore, M.; Elshof, J.E.T.; Paradis, G.G.; Ngamou, P.H.; Van Veen, H.M.; Vente, J.F. Hybrid organosilica membranes and processes: Status and outlook. Sep. Purif. Technol. 2014, 121, 2–12. [Google Scholar] [CrossRef]
- Kanezashi, M.; Yada, K.; Yoshioka, T.; Tsuru, T. Design of Silica Networks for Development of Highly Permeable Hydrogen Separation Membranes with Hydrothermal Stability. J. Am. Chem. Soc. 2009, 131, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Nishimoto, K.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. CO2 Permeation through Hybrid Organosilica Membranes in the Presence of Water Vapor. Ind. Eng. Chem. Res. 2014, 53, 6113–6120. [Google Scholar] [CrossRef]
- Yu, X.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Improved thermal and oxidation stability of bis(triethoxysilyl)ethane (BTESE)-derived membranes, and their gas-permeation properties. J. Mater. Chem. A 2018, 6, 23378–23387. [Google Scholar] [CrossRef]
- Nagasawa, H.; Niimi, T.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Modified gas-translation model for prediction of gas permeation through microporous organosilica membranes. AlChE J. 2014, 60, 4199–4210. [Google Scholar] [CrossRef]
- Paradis, G.G.; Kreiter, R.; van Tuel, M.M.; Nijmeijer, A.; Vente, J.F. Amino-functionalized microporous hybrid silica membranes. J. Mater. Chem. 2012, 22, 7258–7264. [Google Scholar] [CrossRef]
- Chai, S.; Du, H.; Zhao, Y.; Lin, Y.; Kong, C.; Chen, L. Fabrication of highly selective organosilica membrane for gas separation by mixing bis (triethoxysilyl) ethane with methyltriethoxysilane. Sep. Purif. Technol. 2019, 222, 162–167. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.; Qi, H. Palladium-niobium bimetallic doped organosilica membranes for H2/CO2 separation. Microporous Mesoporous Mater. 2020, 305, 110279. [Google Scholar] [CrossRef]
- Hove, M.T.; Nijmeijer, A.; Winnubst, L. Facile synthesis of zirconia doped hybrid organic inorganic silica membranes. Sep. Purif. Technol. 2015, 147, 372–378. [Google Scholar] [CrossRef]
- Xomeritakis, G.; Tsai, C.Y.; Brinker, C.J. Microporous sol-gel derived aminosilicate membrane for enhanced carbon dioxide separation. Sep. Purif. Technol. 2005, 42, 249–257. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review. Appl. Sci. 2018, 8, 1032. [Google Scholar] [CrossRef]
- Guo, M.; Kanezashi, M.; Nagasawa, H.; Yu, L.; Tsuru, T. Amino-decorated organosilica membranes for highly permeable CO2 capture. J. Membr. Sci. 2020, 611, 118328. [Google Scholar] [CrossRef]
- Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A 2013, 1, 4610–4630. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, R.; Ren, X.; Zuo, S.; Gong, G.; Zhong, J. Fabrication of ZIF-8-NH2/Organosilica Hybrid Membranes for Pervaporation Desalination. J. Inorg. Mater. 2020, 35, 1239–1246. [Google Scholar] [CrossRef]
- Kong, C.; Du, H.; Chen, L.; Chen, B. Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy Environ. Sci. 2017, 10, 1812–1819. [Google Scholar] [CrossRef]
- Gabriel, G.; May-Britt, H.G.; Christian, S.; Thijs, P.; Nicolas, R.; Christelle, D. CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS Nanoparticles into a PVA Layer. Membranes 2018, 8, 28. [Google Scholar]
- Yang, L.; Tian, Z.; Zhang, X.; Wu, X.; Wu, Y.; Wang, Y.; Peng, D.; Wang, S.; Wu, H.; Jiang, Z. Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into Polymers of Intrinsic Microporosity membrane. J. Membr. Sci. 2017, 543, 69–78. [Google Scholar] [CrossRef]
- Ren, X.; Kanezashi, M.; Nagasawa, H.; Xu, R.; Tsuru, T. Ceramic-Supported POSS-organosilica Nanocomposite Membrane for Efficient Gas Separation. Ind. Eng. Chem. Res. 2019, 58, 21708–21716. [Google Scholar] [CrossRef]
- Messaoud, S.B.; Takagaki, A.; Sugawara, T.; Kikuchi, R.; Oyama, S.T. Alkylamine-silica hybrid membranes for carbon dioxide/methane separation. J. Membr. Sci. 2015, 477, 161–171. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Pagliaro, M. The sol-gel route to advanced silica-based materials and recent applications. Chem. Rev. 2013, 113, 6592–6620. [Google Scholar] [CrossRef]
- Qureshi, H.F.; Nijmeijer, A.; Winnubst, L. Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes. J. Membr. Sci. 2013, 446, 19–25. [Google Scholar] [CrossRef]
- Xu, R.; Ibrahim, S.M.; Kanezashi, M.; Yoshioka, T.; Ito, K.; Ohshita, J.; Tsuru, T. New Insights into the Microstructure-Separation Properties of Organosilica Membranes with Ethane, Ethylene, and Acetylene Bridges. ACS Appl. Mater. Interfaces 2014, 6, 9357–9364. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Ohshita, J.; Naka, A.; Tsuru, T. Fabrication and microstructure tuning of a pyrimidine-bridged organoalkoxysilane membrane for CO2 separation. Ind. Eng. Chem. Res. 2017, 56, 1316–1326. [Google Scholar] [CrossRef]
- Yu, X.; Meng, L.; Niimi, T.; Nagasawa, H.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Network engineering of a BTESE membrane for improved gas performance via a novel pH-swing method. J. Membr. Sci. 2016, 511, 219–227. [Google Scholar] [CrossRef]
- Wilfong, W.C.; Srikanth, C.S.; Chuang, S.S.C. In situ ATR and DRIFTS studies of the nature of adsorbed CO2 on tetraethylenepentamine films. ACS Appl. Mater. Interfaces 2014, 6, 13617–13626. [Google Scholar] [CrossRef] [PubMed]
- Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R’’Si(OR’)3 precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Moriyama, N.; Nagasawa, H.; Kanezashi, M.; Ito, K.; Tsuru, T. Bis (triethoxysilyl) ethane (BTESE)-derived silica membranes: Pore formation mechanism and gas permeation properties. J. Sol-Gel Sci. Technol. 2018, 86, 63–72. [Google Scholar] [CrossRef]
- Ngamou, P.H.T.; Overbeek, J.P.; Kreiter, R.; van Veen, H.M.; Vente, J.F.; Wienk, I.M.; Cuperus, P.F.; Creatore, M. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges. J. Mater. Chem. A 2013, 1, 5567–5576. [Google Scholar] [CrossRef]
- Qi, H.; Han, J.; Xu, N. Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane. J. Membr. Sci. 2011, 382, 231–237. [Google Scholar] [CrossRef]
- Lee, H.R.; Kanezashi, M.; Shimomura, Y.; Yoshioka, T.; Tsuru, T. Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation. AlChE J. 2011, 57, 2755–2765. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Moriyama, N.; Tsuru, T. Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AlChE J. 2017, 64, 1528–1539. [Google Scholar] [CrossRef]
- Kanezashi, M.; Sasaki, T.; Tawarayama, H.; Nagasawa, H.; Yoshioka, T.; Ito, K.; Tsuru, T. Experimental and Theoretical Study on Small Gas Permeation Properties through Amorphous Silica Membranes Fabricated at Different Temperatures. J. Phys. Chem. C 2014, 118, 20323–20331. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Guo, M.; Moriyama, N.; Ito, K.; Tsuru, T. Tailoring Ultramicroporosity To Maximize CO2 Transport within Pyrimidine-Bridged Organosilica Membranes. ACS Appl. Mater. Interfaces 2019, 11, 7164–7173. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Castricum, H.L.; Paradis, G.G.; Mittelmeijer-Hazeleger, M.C.; Bras, W.; Eeckhaut, G.; Vente, J.F.; Rothenberg, G.; Elshof, J.E.T. Tuning the nanopore structure and separation behavior of hybrid organosilica membranes. Microporous Mesoporous Mater. 2014, 185, 224–234. [Google Scholar] [CrossRef]
Calcination Temperature/°C | H2 Permeance | Permselectivity | |||
---|---|---|---|---|---|
mol/(m2·s·Pa) | H2/N2 | H2/CH4 | H2/SF6 | CO2/N2 | |
200 | 1.2 × 10−7 | 30.9 | 12.2 | 481 | 5.6 |
300 | 2.0 × 10−7 | 22.9 | 19.1 | 659.8 | 4.6 |
350 | 2.4 × 10−7 | 20.7 | 16.6 | 604.2 | 4.9 |
Test Temperature/°C | H2 Permeance | CO2 Permeance | Permselectivity | |||
---|---|---|---|---|---|---|
mol/(m2·s·Pa) | mol/(m2·s·Pa) | H2/N2 | H2/CH4 | CO2/N2 | H2/CO2 | |
200 | 2.7 × 10−7 | 5.6 × 10−8 | 31.6 | 36.0 | 6.6 | 4.8 |
100 | 1.4 × 10−7 | 6.0 × 10−8 | 30.3 | 31.3 | 12.8 | 2.3 |
40 | 8.5 × 10−8 | 5.2 × 10−8 | 24.2 | 33.0 | 14.9 | 1.6 |
Test Temperature/°C | H2 Permeance | CO2 Permeance | Permselectivity | |||
---|---|---|---|---|---|---|
mol/(m2·s·Pa) | mol/(m2·s·Pa) | H2/N2 | H2/CH4 | CO2/N2 | H2/CO2 | |
200 | 2.0×10−7 | 4.1×10−8 | 22.9 | 19.1 | 4.6 | 4.9 |
100 | 7.1×10−8 | 2.0×10−8 | 26.4 | 21.9 | 7.5 | 3.6 |
40 | 2.3×10−8 | 7.6×10−9 | 15.9 | 13.9 | 5.2 | 3.0 |
Test Temperature/°C | H2 Permeance | CO2 Permeance | Permselectivity | |||
---|---|---|---|---|---|---|
mol/(m2·s·Pa) | mol/(m2·s·Pa) | H2/N2 | H2/CH4 | CO2/N2 | H2/CO2 | |
200 | 3.1 × 10−7 | 3.1 × 10−8 | 57.6 | 90.5 | 5.8 | 10.0 |
100 | 1.7 × 10−7 | 2.9 × 10−8 | 81.5 | 114.3 | 13.7 | 5.9 |
40 | 8.3 × 10−8 | 1.9 × 10−8 | 71.6 | 87.5 | 16.3 | 4.4 |
Membrane | Fitting Plot | k0 | Pore Size | Ep (kJ/mol) | ||
---|---|---|---|---|---|---|
R2 | - | nm | H2 | N2 | CO2 | |
BTESE-PNEN-0.2 | 0.991 | 0.17 | 0.49 | 17.2 | 17.7 | 13.2 |
BTESE-PNEN-0.02 | 0.991 | 0.15 | 0.43 | 10.7 | 9.12 | 2.06 |
BTESE-APTES-0.2 | 0.994 | 0.17 | 0.43 | 11.1 | 14.4 | 4.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Kanezashi, M.; Guo, M.; Xu, R.; Zhong, J.; Tsuru, T. Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation. Membranes 2021, 11, 194. https://doi.org/10.3390/membranes11030194
Ren X, Kanezashi M, Guo M, Xu R, Zhong J, Tsuru T. Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation. Membranes. 2021; 11(3):194. https://doi.org/10.3390/membranes11030194
Chicago/Turabian StyleRen, Xiuxiu, Masakoto Kanezashi, Meng Guo, Rong Xu, Jing Zhong, and Toshinori Tsuru. 2021. "Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation" Membranes 11, no. 3: 194. https://doi.org/10.3390/membranes11030194
APA StyleRen, X., Kanezashi, M., Guo, M., Xu, R., Zhong, J., & Tsuru, T. (2021). Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation. Membranes, 11(3), 194. https://doi.org/10.3390/membranes11030194