Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sols
2.2. Preparation of Membranes
2.3. Characterization of Sols and Membranes
3. Results
3.1. Characterization of BTESE-PNEN Powders and Films
3.2. Gas Separation Performance for Composite Membranes
3.2.1. Effect of Calcination Temperature
3.2.2. Effect of PNEN Content
3.2.3. Comparison of Non-POSS Material in BTESE Membranes
4. Discussion
4.1. Estimation of Pore Size and Apparent Activation Energy
4.2. Pore Size
4.3. Apparent Activation Energy
5. Conclusions
- (1)
- The BTESE-PNEN mixed matrix membrane showed good thermal stability as the higher gas permselectivity of H2/larger molecules (N2, SF6 or CF4) than Knudsen values even after calcination above 350 °C.
- (2)
- For CO2 permeance and permselectivity of CO2/N2, the order is: BTESE-PNEN-0.2 < BTESE-PNEN-0.02 ≈ BTESE-APTES-0.2.
- (3)
- The pore sizes for BTESE-PNEN-0.2, BTESE-PNEN-0.02 and BTESE-APTES-0.2 were 0.49, 0.43 and 0.43 nm, respectively. Both the configuration factor and the effective pore size of membranes have effects on gas separation performance.
- (4)
- A good linear correlation was presented for BTESE and related amine-containing organosilica membranes in CO2/N2 permselectivity versus Ep(CO2)-Ep(N2), or CO2 permeance versus Ep(N2). The low values of Ep(CO2)-Ep(N2) and Ep(N2) for BTESE-PNEN-0.02 membrane illustrates a potential CO2 separation performance by using MMMs strategy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Straelen, J.; Geuzebroek, F.; Goodchild, N.; Protopapas, G.; Mahony, L. CO2 capture for refineries, a practical approach. Int. J. Greenh. Gas Control 2010, 4, 316–320. [Google Scholar] [CrossRef]
- Gin, D.L.; Noble, R.D. Designing the Next Generation of Chemical Separation Membranes. Science 2011, 332, 674. [Google Scholar] [CrossRef]
- Ren, X.; Tsuru, T. Organosilica-Based Membranes in Gas and Liquid-Phase Separation. Membranes 2019, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Kanezashi, M.; Yoneda, Y.; Nagasawa, H.; Tsuru, T.; Yamamoto, K.; Ohshita, J. Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures. AlChE J. 2017, 63, 4491–4498. [Google Scholar] [CrossRef]
- Tsuru, T. Silica-Based Membranes with Molecular-Net-Sieving Properties: Development and Applications. J. Chem. Eng. Jpn. 2018, 51, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Agirre, I.; Arias, P.L.; Castricum, H.L.; Creatore, M.; Elshof, J.E.T.; Paradis, G.G.; Ngamou, P.H.; Van Veen, H.M.; Vente, J.F. Hybrid organosilica membranes and processes: Status and outlook. Sep. Purif. Technol. 2014, 121, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Kanezashi, M.; Yada, K.; Yoshioka, T.; Tsuru, T. Design of Silica Networks for Development of Highly Permeable Hydrogen Separation Membranes with Hydrothermal Stability. J. Am. Chem. Soc. 2009, 131, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Nishimoto, K.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. CO2 Permeation through Hybrid Organosilica Membranes in the Presence of Water Vapor. Ind. Eng. Chem. Res. 2014, 53, 6113–6120. [Google Scholar] [CrossRef]
- Yu, X.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Improved thermal and oxidation stability of bis(triethoxysilyl)ethane (BTESE)-derived membranes, and their gas-permeation properties. J. Mater. Chem. A 2018, 6, 23378–23387. [Google Scholar] [CrossRef]
- Nagasawa, H.; Niimi, T.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Modified gas-translation model for prediction of gas permeation through microporous organosilica membranes. AlChE J. 2014, 60, 4199–4210. [Google Scholar] [CrossRef]
- Paradis, G.G.; Kreiter, R.; van Tuel, M.M.; Nijmeijer, A.; Vente, J.F. Amino-functionalized microporous hybrid silica membranes. J. Mater. Chem. 2012, 22, 7258–7264. [Google Scholar] [CrossRef] [Green Version]
- Chai, S.; Du, H.; Zhao, Y.; Lin, Y.; Kong, C.; Chen, L. Fabrication of highly selective organosilica membrane for gas separation by mixing bis (triethoxysilyl) ethane with methyltriethoxysilane. Sep. Purif. Technol. 2019, 222, 162–167. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.; Qi, H. Palladium-niobium bimetallic doped organosilica membranes for H2/CO2 separation. Microporous Mesoporous Mater. 2020, 305, 110279. [Google Scholar] [CrossRef]
- Hove, M.T.; Nijmeijer, A.; Winnubst, L. Facile synthesis of zirconia doped hybrid organic inorganic silica membranes. Sep. Purif. Technol. 2015, 147, 372–378. [Google Scholar] [CrossRef]
- Xomeritakis, G.; Tsai, C.Y.; Brinker, C.J. Microporous sol-gel derived aminosilicate membrane for enhanced carbon dioxide separation. Sep. Purif. Technol. 2005, 42, 249–257. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review. Appl. Sci. 2018, 8, 1032. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Kanezashi, M.; Nagasawa, H.; Yu, L.; Tsuru, T. Amino-decorated organosilica membranes for highly permeable CO2 capture. J. Membr. Sci. 2020, 611, 118328. [Google Scholar] [CrossRef]
- Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A 2013, 1, 4610–4630. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, R.; Ren, X.; Zuo, S.; Gong, G.; Zhong, J. Fabrication of ZIF-8-NH2/Organosilica Hybrid Membranes for Pervaporation Desalination. J. Inorg. Mater. 2020, 35, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.; Du, H.; Chen, L.; Chen, B. Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy Environ. Sci. 2017, 10, 1812–1819. [Google Scholar] [CrossRef]
- Gabriel, G.; May-Britt, H.G.; Christian, S.; Thijs, P.; Nicolas, R.; Christelle, D. CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS Nanoparticles into a PVA Layer. Membranes 2018, 8, 28. [Google Scholar]
- Yang, L.; Tian, Z.; Zhang, X.; Wu, X.; Wu, Y.; Wang, Y.; Peng, D.; Wang, S.; Wu, H.; Jiang, Z. Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into Polymers of Intrinsic Microporosity membrane. J. Membr. Sci. 2017, 543, 69–78. [Google Scholar] [CrossRef]
- Ren, X.; Kanezashi, M.; Nagasawa, H.; Xu, R.; Tsuru, T. Ceramic-Supported POSS-organosilica Nanocomposite Membrane for Efficient Gas Separation. Ind. Eng. Chem. Res. 2019, 58, 21708–21716. [Google Scholar] [CrossRef]
- Messaoud, S.B.; Takagaki, A.; Sugawara, T.; Kikuchi, R.; Oyama, S.T. Alkylamine-silica hybrid membranes for carbon dioxide/methane separation. J. Membr. Sci. 2015, 477, 161–171. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Pagliaro, M. The sol-gel route to advanced silica-based materials and recent applications. Chem. Rev. 2013, 113, 6592–6620. [Google Scholar] [CrossRef]
- Qureshi, H.F.; Nijmeijer, A.; Winnubst, L. Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes. J. Membr. Sci. 2013, 446, 19–25. [Google Scholar] [CrossRef]
- Xu, R.; Ibrahim, S.M.; Kanezashi, M.; Yoshioka, T.; Ito, K.; Ohshita, J.; Tsuru, T. New Insights into the Microstructure-Separation Properties of Organosilica Membranes with Ethane, Ethylene, and Acetylene Bridges. ACS Appl. Mater. Interfaces 2014, 6, 9357–9364. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Ohshita, J.; Naka, A.; Tsuru, T. Fabrication and microstructure tuning of a pyrimidine-bridged organoalkoxysilane membrane for CO2 separation. Ind. Eng. Chem. Res. 2017, 56, 1316–1326. [Google Scholar] [CrossRef]
- Yu, X.; Meng, L.; Niimi, T.; Nagasawa, H.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Network engineering of a BTESE membrane for improved gas performance via a novel pH-swing method. J. Membr. Sci. 2016, 511, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Wilfong, W.C.; Srikanth, C.S.; Chuang, S.S.C. In situ ATR and DRIFTS studies of the nature of adsorbed CO2 on tetraethylenepentamine films. ACS Appl. Mater. Interfaces 2014, 6, 13617–13626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R’’Si(OR’)3 precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Moriyama, N.; Nagasawa, H.; Kanezashi, M.; Ito, K.; Tsuru, T. Bis (triethoxysilyl) ethane (BTESE)-derived silica membranes: Pore formation mechanism and gas permeation properties. J. Sol-Gel Sci. Technol. 2018, 86, 63–72. [Google Scholar] [CrossRef]
- Ngamou, P.H.T.; Overbeek, J.P.; Kreiter, R.; van Veen, H.M.; Vente, J.F.; Wienk, I.M.; Cuperus, P.F.; Creatore, M. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges. J. Mater. Chem. A 2013, 1, 5567–5576. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Han, J.; Xu, N. Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane. J. Membr. Sci. 2011, 382, 231–237. [Google Scholar] [CrossRef]
- Lee, H.R.; Kanezashi, M.; Shimomura, Y.; Yoshioka, T.; Tsuru, T. Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation. AlChE J. 2011, 57, 2755–2765. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Moriyama, N.; Tsuru, T. Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AlChE J. 2017, 64, 1528–1539. [Google Scholar] [CrossRef]
- Kanezashi, M.; Sasaki, T.; Tawarayama, H.; Nagasawa, H.; Yoshioka, T.; Ito, K.; Tsuru, T. Experimental and Theoretical Study on Small Gas Permeation Properties through Amorphous Silica Membranes Fabricated at Different Temperatures. J. Phys. Chem. C 2014, 118, 20323–20331. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Guo, M.; Moriyama, N.; Ito, K.; Tsuru, T. Tailoring Ultramicroporosity To Maximize CO2 Transport within Pyrimidine-Bridged Organosilica Membranes. ACS Appl. Mater. Interfaces 2019, 11, 7164–7173. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Castricum, H.L.; Paradis, G.G.; Mittelmeijer-Hazeleger, M.C.; Bras, W.; Eeckhaut, G.; Vente, J.F.; Rothenberg, G.; Elshof, J.E.T. Tuning the nanopore structure and separation behavior of hybrid organosilica membranes. Microporous Mesoporous Mater. 2014, 185, 224–234. [Google Scholar] [CrossRef]
Calcination Temperature/°C | H2 Permeance | Permselectivity | |||
---|---|---|---|---|---|
mol/(m2·s·Pa) | H2/N2 | H2/CH4 | H2/SF6 | CO2/N2 | |
200 | 1.2 × 10−7 | 30.9 | 12.2 | 481 | 5.6 |
300 | 2.0 × 10−7 | 22.9 | 19.1 | 659.8 | 4.6 |
350 | 2.4 × 10−7 | 20.7 | 16.6 | 604.2 | 4.9 |
Test Temperature/°C | H2 Permeance | CO2 Permeance | Permselectivity | |||
---|---|---|---|---|---|---|
mol/(m2·s·Pa) | mol/(m2·s·Pa) | H2/N2 | H2/CH4 | CO2/N2 | H2/CO2 | |
200 | 2.7 × 10−7 | 5.6 × 10−8 | 31.6 | 36.0 | 6.6 | 4.8 |
100 | 1.4 × 10−7 | 6.0 × 10−8 | 30.3 | 31.3 | 12.8 | 2.3 |
40 | 8.5 × 10−8 | 5.2 × 10−8 | 24.2 | 33.0 | 14.9 | 1.6 |
Test Temperature/°C | H2 Permeance | CO2 Permeance | Permselectivity | |||
---|---|---|---|---|---|---|
mol/(m2·s·Pa) | mol/(m2·s·Pa) | H2/N2 | H2/CH4 | CO2/N2 | H2/CO2 | |
200 | 2.0×10−7 | 4.1×10−8 | 22.9 | 19.1 | 4.6 | 4.9 |
100 | 7.1×10−8 | 2.0×10−8 | 26.4 | 21.9 | 7.5 | 3.6 |
40 | 2.3×10−8 | 7.6×10−9 | 15.9 | 13.9 | 5.2 | 3.0 |
Test Temperature/°C | H2 Permeance | CO2 Permeance | Permselectivity | |||
---|---|---|---|---|---|---|
mol/(m2·s·Pa) | mol/(m2·s·Pa) | H2/N2 | H2/CH4 | CO2/N2 | H2/CO2 | |
200 | 3.1 × 10−7 | 3.1 × 10−8 | 57.6 | 90.5 | 5.8 | 10.0 |
100 | 1.7 × 10−7 | 2.9 × 10−8 | 81.5 | 114.3 | 13.7 | 5.9 |
40 | 8.3 × 10−8 | 1.9 × 10−8 | 71.6 | 87.5 | 16.3 | 4.4 |
Membrane | Fitting Plot | k0 | Pore Size | Ep (kJ/mol) | ||
---|---|---|---|---|---|---|
R2 | - | nm | H2 | N2 | CO2 | |
BTESE-PNEN-0.2 | 0.991 | 0.17 | 0.49 | 17.2 | 17.7 | 13.2 |
BTESE-PNEN-0.02 | 0.991 | 0.15 | 0.43 | 10.7 | 9.12 | 2.06 |
BTESE-APTES-0.2 | 0.994 | 0.17 | 0.43 | 11.1 | 14.4 | 4.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Kanezashi, M.; Guo, M.; Xu, R.; Zhong, J.; Tsuru, T. Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation. Membranes 2021, 11, 194. https://doi.org/10.3390/membranes11030194
Ren X, Kanezashi M, Guo M, Xu R, Zhong J, Tsuru T. Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation. Membranes. 2021; 11(3):194. https://doi.org/10.3390/membranes11030194
Chicago/Turabian StyleRen, Xiuxiu, Masakoto Kanezashi, Meng Guo, Rong Xu, Jing Zhong, and Toshinori Tsuru. 2021. "Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation" Membranes 11, no. 3: 194. https://doi.org/10.3390/membranes11030194
APA StyleRen, X., Kanezashi, M., Guo, M., Xu, R., Zhong, J., & Tsuru, T. (2021). Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation. Membranes, 11(3), 194. https://doi.org/10.3390/membranes11030194