Putative Internal Control Genes in Bovine Milk Small Extracellular Vesicles Suitable for Normalization in Quantitative Real Time-Polymerase Chain Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Milk sEVs Isolation and Characterization
2.3. RNA Extraction and cDNA Synthesis
2.4. Selection of Internal Control Genes and Primer Design
2.5. qRT-PCR
2.6. Analysis of Internal Control Genes Stability
3. Results
3.1. Milk sEVs Isolation and Characterization
3.2. qRT-PCR
3.3. Evaluation of Putative Internal Control Genes Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanwlani, R.; Fonseka, P.; Chitti, S.V.; Mathivanan, S. Milk-Derived Extracellular Vesicles in Inter-Organism, Cross-Species Communication and Drug Delivery. Proteomes 2020, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Gould, S.J.; Raposo, G. As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2013, 2. [Google Scholar] [CrossRef] [PubMed]
- Zempleni, J.; Aguilar-Lozano, A.; Sadri, M.; Sukreet, S.; Manca, S.; Wu, D.; Zhou, F.; Mutai, E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J. Nutr. 2016, 147, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Melnik, B.C.; John, S.M.; Schmitz, G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr. J. 2013, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Izumi, H.; Tsuda, M.; Sato, Y.; Kosaka, N.; Ochiya, T.; Iwamoto, H.; Namba, K.; Takeda, Y. Bovine milk exosomes contain microRNA and mRNA and are taken up by human mac-rophages. J. Dairy Sci. 2015, 98, 2920–2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Spethmann, J.; Kalbe, A. Housekeeping gene sets facilitate the search for a suitable reference gene for relative quantification. Biochemica 2002, 4, 9–11. [Google Scholar]
- Karge, W.H.; Schaefer, E.J.; Ordovas, J.M. Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method. Methods Mol. Biol. 1998, 110, 43–61. [Google Scholar]
- Gouina, K.; Peckb, K.; Antesb, T.; Johnson, J.L.; Li, C.; Vaturi, S.D.; Middleton, R.; de Couto, G.; Walravens, A.S.; Rodriguez-Borlado, L.; et al. A comprehensive method for identification of suitable reference genes in extracellular vesicles. J. Extracell. Vesicles 2017, 6, 1347019. [Google Scholar] [CrossRef] [Green Version]
- Bionaz, M.; Loor, J.J. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genom. 2007, 29, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Huggett, J.F.; Bustin, S.; Johnson, M.A.; Rook, G.; Zumla, P.S.A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques 2004, 37, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Etschmann, B.; Wilcken, B.; Stoevesand, K.; von der Schulenburg, A.; Sterner-Kock, A. Selection of reference genes for quantitative real-time PCR analysis in ca-nine mammary tumors using the GeNorm algorithm. Vet. Pathol. 2006, 43, 934–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, T.; Okada, N.; Yoshikawa, M.; Asaka, D.; Kuboki, A.; Kojima, H.; Tanaka, Y.; Haruna, S. Assessment of suitable reference genes for RT–qPCR studies in chronic rhi-nosinusitis. Sci. Rep. 2018, 8, 1568. [Google Scholar] [CrossRef] [Green Version]
- Lisowski, P.; Pierzchała, M.; Goscik, J.; Pareek, C.S.; Zwierzchowski, L. Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 2008, 49, 367–372. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A mod-el-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Ishikawa, H.; Rahman, M.M.; Yamauchi, M.; Takashima, S.; Wakihara, Y.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. mRNA profile in milk extracellular vesicles from bovine leukemia vi-rus-infected cattle. Viruses 2020, 12, 669. [Google Scholar] [CrossRef]
- Rahman, M.; Takashima, S.; Kamatari, Y.O.; Badr, Y.; Kitamura, Y.; Shimizu, K.; Okada, A.; Inoshima, Y. Proteomic profiling of milk small extracellular vesicles from bovine leukemia virus-infected cattle. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, J.; Li, Y.; Yang, C.; Zhao, S.; Liu, J.; Liu, A.; Liu, G.; Yin, H.; Guan, G.; et al. Validation of Reference Genes for Quantitative Real-Time PCR in Bovine PBMCs Transformed and Non-transformed by Theileria annulata. Korean J. Parasitol. 2016, 54, 39–46. [Google Scholar] [CrossRef]
- Gou, H.; Guan, G.; Ma, M.; Liu, A.; Liu, Z.; Xu, Z.; Ren, Q.; Li, Y.; Yang, J.; Chen, Z.; et al. Phylogenetic Analysis of Ruminant Theileria spp. from China Based on 28S Ribosomal RNA Gene. Korean J. Parasitol. 2013, 51, 511–517. [Google Scholar] [CrossRef]
- Goossens, K.; Van Poucke, M.; Van Soom, A.; Vandesompele, J.; Van Zeveren, A.; Peelman, L.J. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 2005, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; Kubista, M.; Pfaffl, M.W. Reference gene validation software for improved normalization. In Real-Time PCR: Current Technology and Applications; Logan, J., Edwards, K., Saunders, N., Eds.; Caister Academic Press: Norfolk, UK, 2009; Volume 47, p. 64. [Google Scholar]
- Dheda, K.; Huggett, J.; Chang, J.; Kim, L.U.; Bustin, S.A.; Johnson, M.A.; Rook, G.A.W.; Zumla, A. The implications of using an inappropriate reference gene for real-time reverse tran-scription PCR data normalization. Anal. Biochem. 2005, 344, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Yao, Y.; Wang, Y. Importance of Suitable Reference Gene Selection for Quantitative RT-PCR during ATDC5 Cells Chondrocyte Differentiation. PLoS ONE 2013, 8, e64786. [Google Scholar] [CrossRef] [Green Version]
- Cieślak, J.; Mackowski, M.; CZYŻAK-RUNOWSKA, G.; Wojtowski, J.; Puppel, K.; Kuczyńska, B.; Pawlak, P. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells. PLoS ONE 2015, 10, e0139688. [Google Scholar] [CrossRef]
- Wijenayake, S.; Eisha, S.; Tawhidi, Z.; Pitino, M.A.; Steele, M.A.; Fleming, A.S.; McGowan, P.O. Comparison of methods for pre-processing, exosome isolation, and RNA extraction in unpasteurized bovine and human milk. PLoS ONE 2021, 16, e0257633. [Google Scholar] [CrossRef]
- Zonneveld, M.I.; Brisson, A.R.; van Herwijnen, M.J.; Tan, S.; van de Lest, C.H.; Redegeld, F.A.; Garssen, J.; Wauben, M.H.; Nolte-’t Hoen, E.N. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J. Extracell. Vesicles 2014, 3, 24215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Name | Gene Symbol | Primer Sequences | References |
---|---|---|---|
Beta-actin | ACTB | F: 5′-GATCTGGCACCACACCTTCTAC-3′ | This study |
R: 5′-AGGCATACAGGGACAGCACA-3′ | |||
Statherin precursor | STATH | F: 5′-TACCCAAACCAGCAAGGTGGA-3′ | This study |
R: 5′-TGGATACAGCAAGAGGGCAGG-3′ | |||
Electron transfer flavoprotein dehydrogenase | ETFDH | F: 5′-CCAGTGGCTTAGAGGTCCCG-3′ | This study |
R: 5′-GGTATACCGGGCAGGCCAAT-3′ | |||
Alpha tubulin | TUB | F: 5′-TGGAACCCACAGTCATTGATGA-3′ | This study |
R: 5′-TGATCTCCTTGCCAATGGTGTA-3′ | |||
Diacylglycerol kinase zeta | DGKZ | F: 5′-TCCCGGAGAAAGTGTGCAGC-3′ | This study |
R: 5′-GAGCCCGATTCACGGAAGGA-3′ | |||
14-3-3 protein zeta/delta | YWHAZ | F: 5′-GCATCCCACAGACTATTTCC-3′ | [25] |
R: 5′-GCAAAGACAATGACAGACCA-3′ | |||
DDB1 and CUL4 associated factor 11 | DCAF11 | F: 5′-CGCTGAGCAGGCTTTGCTTT-3′ | This study |
R: 5′-GAGAGGGCCTGGATGAGCTG-3′ | |||
EGF-like, fibronectin type III, and laminin G domains | EGFLAM | F: 5′-CCGTTTTCTCACTTCGGCCC-3′ | This study |
R: 5′-CGAAGGGCCCACACAAGTCT-3′ |
Sample | TUB | ACTB | YWHAZ | DGKZ | DCAF11 | STATH | ETFDH | EGFLAM |
---|---|---|---|---|---|---|---|---|
1 | 26.99 | 29.26 | 34.63 | 27.80 | 33.01 | 31.49 | 34.03 | 36.74 |
2 | 21.94 | 26.24 | 26.61 | 28.94 | 30.63 | 33.16 | 32.44 | 30.60 |
3 | 23.17 | 27.23 | 28.60 | 29.54 | 29.84 | 31.12 | 33.09 | 38.62 |
4 | 20.29 | 23.15 | 24.63 | 27.61 | 26.48 | 28.92 | 31.39 | 34.06 |
5 | 25.94 | 28.49 | 30.35 | 30.68 | 37.10 | 31.62 | 31.54 | 35.42 |
6 | 18.62 | 20.39 | 22.19 | 32.52 | 22.55 | 36.73 | 31.51 | 33.42 |
CT (av.) | 22.83 | 25.79 | 27.84 | 29.51 | 29.94 | 32.17 | 32.33 | 34.81 |
STDEV | 3.23 | 3.40 | 4.40 | 1.86 | 5.06 | 2.61 | 1.07 | 2.79 |
CV | 0.14 | 0.13 | 0.16 | 0.06 | 0.17 | 0.08 | 0.03 | 0.08 |
Pearson Correlation Coefficient (r) | ||||||||
---|---|---|---|---|---|---|---|---|
ACTB | TUB | DCAF11 | YWHAZ | ETFDH | STATH | EGFLAM | DGKZ | |
TUB | 0.96 | - | - | - | - | - | - | - |
p-value | 0.00 | - | - | - | - | - | - | - |
DCAF11 | 0.92 | 0.91 | - | - | - | - | - | - |
p-value | 0.01 | 0.01 | - | - | - | - | - | - |
YWHAZ | 0.94 | 0.98 | 0.82 | - | - | - | - | - |
p-value | 0.01 | 0.001 | 0.05 | - | - | - | - | - |
ETFDH | 0.65 | 0.62 | 0.33 | 0.75 | - | - | - | - |
p-value | 0.16 | 0.19 | 0.52 | 0.08 | - | - | - | - |
STATH | −0.47 | −0.40 | −0.42 | −0.41 | −0.15 | - | - | - |
p-value | 0.35 | 0.44 | 0.41 | 0.43 | 0.78 | - | - | - |
EGFLAM | 0.45 | 0.51 | 0.28 | 0.54 | 0.48 | −0.38 | - | - |
p-value | 0.37 | 0.31 | 0.59 | 0.27 | 0.34 | 0.46 | - | - |
DGKZ | −0.45 | −0.36 | −0.28 | −0.46 | −0.46 | 0.82 | −0.11 | - |
p-value | 0.37 | 0.48 | 0.60 | 0.36 | 0.36 | 0.05 | 0.84 | - |
BestKeeper vs. r | 0.96 | 0.98 | 0.90 | 0.95 | 0.64 | 0.001 | 0.54 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Badr, Y.; Shimizu, K.; Okada, A.; Inoshima, Y. Putative Internal Control Genes in Bovine Milk Small Extracellular Vesicles Suitable for Normalization in Quantitative Real Time-Polymerase Chain Reaction. Membranes 2021, 11, 933. https://doi.org/10.3390/membranes11120933
Rahman MM, Takashima S, Kamatari YO, Badr Y, Shimizu K, Okada A, Inoshima Y. Putative Internal Control Genes in Bovine Milk Small Extracellular Vesicles Suitable for Normalization in Quantitative Real Time-Polymerase Chain Reaction. Membranes. 2021; 11(12):933. https://doi.org/10.3390/membranes11120933
Chicago/Turabian StyleRahman, Md. Matiur, Shigeo Takashima, Yuji O. Kamatari, Yassien Badr, Kaori Shimizu, Ayaka Okada, and Yasuo Inoshima. 2021. "Putative Internal Control Genes in Bovine Milk Small Extracellular Vesicles Suitable for Normalization in Quantitative Real Time-Polymerase Chain Reaction" Membranes 11, no. 12: 933. https://doi.org/10.3390/membranes11120933
APA StyleRahman, M. M., Takashima, S., Kamatari, Y. O., Badr, Y., Shimizu, K., Okada, A., & Inoshima, Y. (2021). Putative Internal Control Genes in Bovine Milk Small Extracellular Vesicles Suitable for Normalization in Quantitative Real Time-Polymerase Chain Reaction. Membranes, 11(12), 933. https://doi.org/10.3390/membranes11120933