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Abstract: Surface wettability-tailored porous ceramic/metallic membranes (in the tubular and planar
disc form) were prepared and studied for both vapor-phase separation and liquid pervaporative
separations of water-ethanol mixtures. Superhydrophobic nanoceramic membranes demonstrated
more selective permeation of ethanol (relative to water) by cross-flow pervaporation of liquid
ethanol–water mixture (10 wt % ethanol feed at 80 ◦C). In addition, both superhydrophilic and
superhydrophobic membranes were tested for the vapor-phase separations of water–ethanol mixtures.
Porous inorganic membranes having relatively large nanopores (up to 8-nm) demonstrated good
separation selectivity with higher permeation flux through a non-molecular-sieving mechanism.
Due to surface-enhanced separation selectivity, larger nanopore-sized membranes (~5–100 nm)
can be employed for both pervaporation and vapor phase separations to obtain higher selectivity
(e.g., permselectivity for ethanol of 13.9 during pervaporation and a vapor phase separation
factor of 1.6), with higher flux due to larger nanopores than the traditional size-exclusion
membranes (e.g., inorganic zeolite-based membranes having sub-nanometer pores). The prepared
superhydrophobic porous inorganic membranes in this work showed good thermal stability (i.e., the
large contact angle remains the same after 300 ◦C for 4 h) and chemical stability to ethanol, while the
silica-textured superhydrophilic surfaced membranes can tolerate even higher temperatures. These
surface-engineered metallic/ceramic nanoporous membranes should have better high-temperature
tolerance for hot vapor processing than those reported for polymeric membranes.

Keywords: inorganic membranes; nanoporous membranes; superhydrophobic; superhydrophilic;
ethanol separations; dewatering; dehydration

1. Introduction

While there are many alternative energy sources starting to emerge for stationary power, the
transportation energy market is primarily driven by the volatile price of fossil fuels. The conversion of
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biomass to biofuels represents a vital option for producing a liquid renewable green energy source.
The United States’ energy consumption is projected to rise by about 12% from 2012 to 2040. Renewable
liquid fuels are projected to have the largest increase in production for meeting the United States’
energy consumption demands—growing from 8% in 2010 to more than 14% of liquid fuels in 2035 [1].
Biochemical conversion [2,3], such as fermentation, is a major pathway for transforming solid biomass
or sugar to liquid fuel, such as ethanol.

Challenges exist to integrate separation technologies into the fermentation process to directly
produce high-quality ethanol with high efficiency. For example, removing inhibitors (such as n-butanol)
from the fermentation broth can increase ethanol production [4]. Additionally, ethanol produced
at low concentrations in the bio-fermentation broth needs to be efficiently concentrated and then
dehydrated (purified) to qualify as a gasoline blend. The traditional distillation process utilized to
concentrate ethanol is energy-intensive and has an azeotropic limitation for ethanol purification [5].
The separation of ethanol from water represents a significant portion of the total operating cost
for producing bio-ethanol [6,7]. There has been a good amount of research effort in developing
membranes for pervaporative separation of ethanol from ethanol–water liquid mixtures [8–24].
One major class of water-selective membranes are focused on the dehydration of water-alcohol mixtures
by the pervaporation of liquid mixtures. The types of pervaporation dehydration membranes include
zeolites and meta-organic frameworks [8–13], ceramics and microporous silica [14–16], ceramic-organic
hybrids [17–19], polymers [20], polymer-inorganic composites or mixed matrices [21–23], and
microporous carbons [24]. However, very limited dehydration studies on vapor-phase water-alcohol
mixtures have been completed in recent years [25]. Several inorganic membrane options for liquid
ethanol–water separations exist and are typically zeolite-based and contain sub-nanometer pores to
achieve high ethanol selectivity [26]. A small pore size (typically <1 nm) is generally employed to
ensure high selectivity in the porous membrane through a size exclusion mechanism. Small pore sizes
will tend to limit the vapor or liquid permeation flux, since flux is proportional to the square of the pore
diameter. The low permeation flux (for either water or ethanol) makes these size exclusion membranes
impractical for many commercial applications. Membranes suitable for moist hot-vapor separations
(>250 ◦C, above which most polymers/zeolites are thermally decomposed) are rarely developed. Here
we report new vapor separation data with superhydrophilic surface-tailored nanoporous inorganic
tubular membranes with larger pores and good thermal and chemical stabilities.

In the case of separating ethanol–water solutions (such as a fermentation broth), ethanol-selective
membranes that can extract ethanol out of the dilute solutions would be preferred and more
efficient. Most of the hydrophobic membranes in the literature for ethanol pervaporation have so
far considered materials such as zeolites/silicalite and their supported thin layers [27–31], polymers
such as polydimethylsiloxane (PDMS) [32], polymer-zeolite hybrids [33–35], and polymer-inorganic
mixed matrices [36–39]. Recently, some works have considered superhydrophobicity for membrane
separations of ethanol–water mixtures [40,41].

In this paper, we report a new class of surface-engineered inorganic (ceramic or metallic)
nanoporous membranes of relatively large nanopores (5–100 nm range), i.e., high-performance
architecture surface selective (HiPAS) membranes in tubular or planar form. The HiPAS membranes are
designed to take full advantage of the membrane surface superhydrophilicity or superhydrophobicity
on larger nanopore metallic/ceramic materials (pore size as compared to zeolite or microporous
silica materials). Figure 1 illustrates the major conceptual difference of our HiPAS membranes
from traditional membranes. Such high-flux membranes have been described in details in our
previously published papers, which have studied pyrolysis bio-oil processing related separation
applications [42,43]. Here, we focus on the initial exploration of HiPAS nanoporous membranes for
ethanol–water separations: i.e., vapor-phase dehydration by superhydrophilic membranes and liquid
pervaporation recovery of ethanol by superhydrophobic membranes.
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Figure 1. Schematic illustrating the pore size and surface difference between traditional membranes
and HiPAS membranes. The HiPAS membranes are designed to take full advantage of the membrane
surface superhydrophilicity or superhydrophobicity with relatively larger pores (>a few nanometers to
tens of nanometers), to enhance permeation flux with the least loss of selectivity.

2. Experimental

2.1. Preparation of Membranes

Porous membrane substrates (as supports) include planar ceramic discs (alumina, ~90 nm
averaged pore size) and metallic tubes (stainless steels). The round flat ceramic disc substrates
(22-mm diameter), made from alumina powder, were formed using a hydraulic press and had a
pore size of 55–60 nm. The pore size of the alumina discs can be tailored by adjusting the sintering
temperature. The porous tubular substrates (typically 9-in long) were Type 434 stainless steel (SS) with
an average pore size of ~4.3 µm. In some cases, a mesoporous alumina layer was further coated on the
inner wall of the SS434 tube and the pore size was adjusted by controlling the sintering temperature of
the alumina layer (typically 4-nm, 6-nm, or 8-nm).

The surface of the ceramic discs or inner wall of the above tubes were then chemically
functionalized by hydrophobic or hydrophilic ligand molecules. In some cases, before the chemical
functionalization, the top surfaces were textured by depositing diatomaceous earth on ceramic
discs [44] or by depositing silica aerogel nanoparticles on the inner wall of alumina-modified SS
tubes. The surface texture generally boosts the surface effect by effectively adding a range of contact
angles to the membrane surface. This helps to make a hydrophobic surface superhydrophobic (with a
contact angle >150◦) or can increase the degree of hydrophilicity (i.e., superhydrophilic with faster
water penetration feature).

The surface-textured discs or tubes were then functionalized with either a hydrophobic silane
ligand precursor using a liquid solution treatment process [45] or a hydrophilic chemical solution
(such as Hydrophil-S or hydroxyl-terminated silane chemical). Additional details on the fabrication of
the HiPAS membranes can be found in our recent publications [42,43]. Specifically, the membranes
prepared and tested in this paper are summarized in Table 1.
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Table 1. Summary description of tested membranes.

Membrane Separation Performance
Evaluation Tests Membrane Types Membrane

Substrates Surface Coatings Membrane
ID

Vapor Phase
Separation

Separations of
ethanol–water vapors
by membranes (~6 nm
membrane pores)

Bare alumina-coated
support

(hydrophilic)

4.3-µm porous
SS434 tube

6-nm porous alumina + no
surface ligand modification

#0
Baseline

tube

Superhydrophilic 4.3-µm porous
SS434 tube

5.79-nm porous alumina +
hydroxylated silica aerogel
nanoparticle coating

#8
SI-tube

Superhydrophobic 4.3-µm porous
SS434 tube

6.4-nm porous alumina +
diatomaceous earth (DE)
coating +1H,1H,2H,
2H-perfluoro decyl
trimethoxy silane (PDTMS)
modification

#12
SO-tube

Liquid Phase
Solution
Pervaporation

Pervaporative
extraction of ethanol
from ethanol–water
mixtures (~60 nm
membrane pores)

Bare alumina disc
(Hydrophilic surface)

Alumina ceramic
disc with ~60-nm

pores

DE coating + PDTMS
modification→
superhydrophobic surface

Baseline
Disc

Superhydrophobic
Alumina ceramic
disc with ~60-nm

pores

DE coating + PDTMS
modification→
superhydrophobic surface

SO Disc

2.2. Characterization of Membrane Materials

At each stage of the membrane fabrication and coating process, the membrane materials were
characterized: the support substrate, the intermediate porous modification coating layer, and top
textured functional surface. The support substrates (ceramic discs, bare or alumina coated SS434
tubes) are porous and air flux measurements were made over of range of pressures to calculate the
air permeance and average pore size of the substrates. A standard isopropanol leak test was used to
confirm the absence of leaks or defects [46]. After surface texturing or chemical functionalization, the
membrane surface wetting properties were checked by measuring the contact angle or penetration
rate after applying a ~3 mm diameter water droplet.

2.3. Membrane Separation Study on Dehydration of Ethanol–Water Mixed Vapors

A detailed description of the vapor-phase separation evaluation of the tubular membranes
was described elsewhere [43]. Briefly, a horizontal quartz reactor was connected to a custom-built
stainless-steel membrane holder housing a tubular membrane. The permeate line of the membrane
holder was connected to a molecular beam mass spectrometer (MBMS) to monitor changes in the
permeate vapors. The feed mixture consisting of ethanol and water was introduced into a horizontal
quartz reactor via syringe pumps (NE-1000, New Era Pump Systems Inc., Farmingdale, NY, USA) and
vaporized using a five-zone furnace. The ethanol–water (50:50 mixture by volume) mixture was fed at
a constant rate (60 µL/min) into the reactor housed in a furnace at 200 ◦C. The ethanol–water vapors
were transported through the inner tube of the quartz reactor by 0.4 slm helium. This stream was
further diluted with a 1.6 slm helium stream from the outer tube of the quartz reactor to allow for
proper mixing of the vapors. The membrane holder and permeate line were heated to 200 ◦C up to the
faceplate of MBMS. A small amount of argon was used as a tracer gas (30 sccm) and introduced in the
helium carrier gas stream.

2.4. Membrane Separation Study on Liquid Ethanol–Water Mixtures by Ethanol Pervaporation

For the liquid ethanol–water solution separation test, a planar disc type membrane setup was
used (Figure 2). The solution in the system was maintained at ~80 ◦C. The solution was pumped out of
a reservoir tank into the “feed side” of the membrane disc assembly, and then recirculated back to the
reservoir. Samples were taken out of the reservoir over the course of the test and analyzed for ethanol
concentration using a standard refractive index method. A mild vacuum (3.9 psia) was applied to the
“permeate side” of the membrane disc-holder assembly to help the pervaporation of ethanol across
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the membrane. The permeate stream was condensed and collected by a cold trap and analyzed for
ethanol concentration.
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Figure 2. Liquid-phase separation of an ethanol–water solution with a superhydrophobic HiPAS
membrane (“Baseline Disc” and “SO Disc”). Schematic for the cross-flow pervaporation separation
test setup.

3. Results and Discussion

Both planar and tubular forms of the porous inorganic membranes were evaluated in this study.
Figure 3 shows inorganic membranes substrates made from a variety of materials, including ceramics
such as alumina, and metals/alloys like SS434 and titanium. By design, the surface of the membrane
can be tailored to be either superhydrophobic or superhydrophilic for various separation needs (i.e.,
membrane permeation preference either for polar (water) or for non/less-polar component [ethanol]).
The pore size of the support substrate can be tailored by adjusting the sintering temperature or by
coating an intermediate layer of the desirable pore size. For example, the inner wall of a 4-µm porous
SS434 tube (Figure 3B) was coated with nanoporous (8-nm) gamma-alumina and then functionalized to
be superhydrophobic by a chemical solution of perfluoro-terminated alkyl silane precursor (1H,1H,2H,
2H-perfluorodecyltrimethoxysilane, PDTMS). The SS434 support substrate surface was also directly
deposited with Hydrophil-S aerogel silica nanoparticles to provide a textured superhydrophilic inner
wall surface. For the planar membrane, diatomaceous earth powder was deposited on one side
of the nanoporous (~60 nm avg.) alumina ceramic disc (Figure 3C) and then functionalized to be
superhydrophobic (showing contact angle of 172◦).

Conceptually, hydrophobic-surfaced HiPAS membranes repel the polar liquid/molecules (such as
water) while they attract the non-polar or less-polar liquid/molecules (such as ethanol) allowing
them to permeate through the membrane pores (Figure 4A). Conversely, the hydrophilic surfaced
membranes prefer polar liquid/molecules to penetrate into and pass through, while rejecting less-polar
or non-polar liquid/molecules (Figure 4B). These two schematic figures will be used to explain the
separation data presented later.
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Figure 3. Photos of HiPAS membranes on various inorganic porous support platforms. (A) Ceramic
tubes, (B) a metallic SS434 tube, with an inner wall modified with superhydrophilic deposit textures,
(C) a ceramic (alumina) disc coated with superhydrophobic surface repelling water droplets, (D) contact
angle of 172◦ for the superhydrophobic membrane disc surface, and (E) a planar sheet plate of porous
titanium alloy, which shows a water droplet penetrating the superhydrophilic membrane surface.
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Figure 4. Schematic illustration of the separation principle of (A) superhydrophobic or
(B) superhydrophilic membranes. The feed above the membrane surface can be either liquid or
vapor mixtures.

There have been research efforts on the development and advancement of superhydrophobic
coatings [47–49]. However, they have not been developed for porous membrane applications. For most
coating applications, it may not matter if the coating or underlying support substrate is permeable
or not, but for membranes it does. Deposition of a superhydrophobic permeable coating layer on a
permeable porous substrate to make a membrane represents a totally new challenge in material science.
For example, it is much more difficult to make a thin permeable layer on the rough surface of a porous
substrate than on a smooth surface of a nonporous solid substrate.
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3.1. Vapor Phase Dehydration of Ethanol–water Mixtures with ~6 nm HiPAS Membranes

Figure 5 shows the separation performance data for three different types of membranes using an
ethanol–water vapor mixture. All three tested membranes have the same alumina-coated mesopores
(~6 nm) on identical porous (4.3 µm) SS-434 support tubes but with different surface properties:
bare alumina (no coating), superhydrophilic coating, and superhydrophobic coating. The tubular
membranes were mounted in a holder (see Section 2) so that adjusting the metering valve on the
raffinate stream controlled the feed pressure. The ethanol–water mixture (50/50 mixture by volume)
was dispensed by a programmable syringe pump into an inert gas stream flowing through a horizontal
quartz flow tube reactor heated to 200 ◦C. When vaporized, the gas stream contained approximately
1.88% water vapor by volume and 0.58% ethanol vapor. The concentrations of water and ethanol
vapors were analyzed via an in-line molecular beam mass spectrometer (MBMS). The MBMS response
was measured for the feed mixture and the ratio of the signal for water to that of ethanol was
approximately 0.48. This vapor mixture was fed into the tubular membranes which were also held
at 200 ◦C. The transport of water and ethanol vapors through the membrane (permeate side) was
analyzed via the MBMS. Since the MBMS system operates under a slight vacuum, the permeate
stream was always at less than atmospheric pressure. In order to vary the driving force for the
membrane permeability, i.e., the pressure difference or transmembrane pressure across the membrane,
the feed pressure was adjusted in the range from atmospheric pressure (represented as 0 inches
of water in Figure 5) to approximately 22 inches of water above atmosphere and back down to
zero. From these data, the alumina-coated tubular membrane and the superhydrophobic membrane
performed in a similar manner (Figure 5, black circles and blue circles, respectively), except that
at low pressure (near 0 inches feed pressure) the water/ethanol ratio for the hydrophilic-natured
bare alumina-surfaced membrane is consistently higher than for the superhydrophobic membrane.
This lower water/ethanol ratio for the superhydrophobic membrane may be due to the repellence
of water by the superhydrophobic membrane surface. By comparing the water/ethanol ratio data
between superhydrophilic and superhydrophobic membranes, the difference is larger throughout
the entire range of transmembrane pressures. The significantly higher water/ethanol ratio for the
superhydrophilic membranes may be attributed to the preferential/selective permeation of water to
ethanol, due to surface superhydrophilicity.
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Figure 5. Evaluation of vapor phase ethanol–water separation selectivity for three types of membrane
surfaces (alumina coated membrane, superhydrophilic, and superhydrophobic surface modified
membranes [membrane #0, #8, and #12, respectively]). A molecular beam mass spectrometer
(MBMS) was used to monitor the composition of the permeate as a function of feed pressure through
a membrane.
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Under the tested range of higher transmembrane pressure conditions (5–25 inches H2O), the
superhydrophobic membrane surface appeared to have no significant effect on the perm-selectivity
(i.e., not showing preferred permeation of ethanol while inhibiting water permeation). The ratio of
the MBMS ion signals for water over ethanol on the permeate side, (RI)Permeate, varied from about
0.44 to 0.54 for both the bare alumina membrane and the superhydrophobic membrane. These RI

values for permeate are very close to the RI values for the feed mixture (~0.48), indicating that both
membranes showed little selectivity for ethanol or water vapor. However, it was observed that for
both bare and superhydrophobic membranes the ratio (RI)Permeate decreased as the feed pressure was
increased, indicating that as the feed pressure was increased the ethanol flux increased slightly relative
to the water flux. As the pressure increases, the interaction (adsorption) between the gas molecules
and the surface is expected to increase. A visual inspection of a water droplet beading up on the
inside surface of the superhydrophobic membrane after completion of these high temperatures tests
shows the overall superhydrophobicity appears to be stable under the test conditions. However, the
possibility of membrane defects (over-sized pores) or small areas of surface degradation into the bare
alumina areas (defects) on the inner wall of the tube cannot be excluded. Either because of weak
surface interaction under the test conditions or the presence of defects, the superhydrophobic surface
effect on water/ethanol separations was not obvious in our experiment in comparison with the bare
alumina-surfaced membrane. Such minor differences in membrane performance may be due to the
observation that the hydrophilic-natured alumina-surfaced membrane contains hydrophobic spots
(as confirmed by visual observation by placing a water droplet on the inner wall of the membrane
tube). Additionally, the minor difference could be due to non-separative flow through over-sized
pores. Separation resulting from Knudsen diffusion does not occur in large pores as the mean free path
between molecules is decreased as the pressure increases.

For the superhydrophilic membrane, the values for the water/ethanol ratio (RI)Permeate were in
the range of 0.66 to 0.8 (Figure 5, red circles), which is higher than the bare alumina-coated membrane
and superhydrophobic membrane. Using an average (RI)Permeate of 0.76, the separation factor for water
over ethanol was calculated using Equation (1), where C represents the concentration of the molecular
species in the feed and permeate determined by MBMS, and found to be 1.53.

Separation Factor = (Cwater permeate/Cethanol permeate)/(Cwater feed/Cethanol feed) =

(RI)Permeate/(RI)Feed
(1)

For a membrane, the mechanisms for gas (or vapor) selectivity can be due to many factors
including Knudsen diffusion [50], size exclusion, surface diffusion, adsorption, and capillary
condensation [51]. For membranes with no surface interaction, Knudsen diffusion and size exclusion
are the two most commonly employed mechanisms for separation of gases. Size exclusion, or also
sometimes referred to as molecular sieving, requires membrane pores that are on the order of molecular
dimensions so that one molecule fits in the pores and transports through while the other molecule is
too large to fit in the pores. Since the pores in these membranes are on the order of 6 nm and most
gas molecules, including water and ethanol, are smaller than 0.5 nm, size exclusion is an unlikely
separation mechanism for this separation. Knudsen diffusion employs the relative kinetic velocity of
the gases for separation by a typical mesoporous membrane (2–50 nm diameter long narrow pores).
When the gas density is low, the mean free path between molecules is much greater than the pore-size
and Knudsen diffusion can be assumed as the gas molecules collide elastically (no surface interaction)
with the pore walls more frequently than with each other. The theoretical perm-selectivity for Knudsen
diffusion is the inverse ratio of the square root of the molecular weights.

Swater/ethanol = (MWethanol/MWwater)1/2 = 1.6 (2)



Membranes 2018, 8, 95 9 of 14

The separation factor from our experimental data, Ssuperhydrophilic = 1.53, is slightly less than
the theoretical value (Swater/ethanol = 1.6) predicted by separation solely due to Knudsen diffusion.
On the other hand, for the bare alumina membrane and superhydrophobic membrane, the separation
factors, Sbare alumina and Ssuperhydrophobic, were both around 1.0 and are much smaller than predicted
by Knudsen separation alone, where Swater/ethanol = 1.6. Thus, Knudsen diffusion mechanism cannot
explain the observed experimental data here. Note that capillary condensation phenomenon was not
observed in the experiment. But, such a difference in water/ethanol ratio data (Figure 5) between
superhydrophilic and superhydrophobic may be attributed to the adsorption and surface diffusion
mechanism. In fact, HiPAS membranes are designed on the principle of membrane surface interaction
with the liquid/molecules. Superhydrophilic surfaces should have a stronger attraction with polar
molecules (water) than with less-polar molecules (ethanol); while superhydrophobic surface have a
stronger repellence to water than ethanol. These strong surface interactions (attractive or repellant)
appear to have affected the adsorption and surface diffusion processes.

While the selectivity is a property of the membrane and separation mechanism alone, the
measured separation factor includes factors such as mixing, concentration polarization, and membrane
cut (i.e., the percentage of product removal from the feed) and is almost always lower than the
theoretical value of membrane selectivity defined by the mechanism (such as Equation (2)) under
ideal conditions. Clearly, the superhydrophilic surface did affect the measured separation factor S
relative to the non-modified bare alumina membrane. Therefore, the data indicates that at 200 ◦C,
the superhydrophilic surface showed a Knudsen diffusion-like selectivity, while the non-modified,
bare alumina-coated membrane shows no selectivity during transport of water-ethanol mixture.
However, the surface adsorption/diffusion mechanism may not be excluded here. The interaction
(absorption) of the molecules with the membrane surface increases as the temperature is decreased
and lower temperatures may be needed in order to observe enhanced influence from the surface
character. For the conditions tested here, the bare alumina-coated membrane and the superhydrophobic
membrane showed little or no Knudsen selectivity. Little Knudsen diffusion would usually indicate
viscous or non-separative flow, which is unlikely in the 6 nm pores. Thus, it is likely that surface
adsorption/diffusion and/or oversized pores contributed to the lack of selectivity as would be
predicted from Knudsen diffusion.

3.2. Liquid Separation by Pervaporation of Ethanol–Water Mixture

A nanoporous alumina ceramic-disc superhydrophobic membrane (172◦ contact angle, as shown
in Figure 3C,D) having a pore size of ~60 nm was employed to separate an ethanol–water liquid mixture
in pervaporation mode. A liquid feed solution containing 10 wt % ethanol was recirculated through the
membrane side of the holder (Figure 2) and the solution was continuously diluted due to preferential
ethanol permeation. The data in Figure 6 show that the ethanol concentration in the feed reservoir
decreased significantly down to 2 wt % over a period of time while the feed continuously re-circulated
in a flow-through configuration. As a baseline ceramic disc membrane (with no superhydrophobic
surface functionalization), we observed no selective permeation of ethanol and thus show no feed
ethanol concentration decrease with time as shown in Figure 6 for a superhydrophobic ceramic
disc membrane.
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Figure 6. Liquid-phase separation of an ethanol–water solution with a superhydrophobic HiPAS
membrane (SO disc). Ethanol concentration in the re-circulated feed stream as a function of time.

Permeation through the membrane was achieved under pervaporation conditions at 80 ◦C.
The collected condensate on the permeate side was ~30 wt% ethanol while the feed-side ethanol
concentration was reduced down to 3% at the end of the experiment, indicating an approximate
cumulative average perm-selectivity of 13.9 using the following equation:

Perm-selectivity = (CEthanol/CWater)Permeate/(CEthanol/CWater)Feed

= (30%/70%)/(3%/97%) = 13.9
(3)

where C is the concentration (wt %) in the solution. The values for feed were the average of the
starting and ending concentration. The separation mechanism here is believed to be similar to the
previous studies where pervaporation was used to remove organic molecules from water using
conventional hydrophobic membranes [52–55]. Relative to conventional hydrophobic surfaces, the
super hydrophobicity of HiPAS membranes may have a higher affinity for the organic (ethanol)
molecules than for the water molecules. This affinity difference was visually observed during ethanol
and water droplet penetration tests performed on the membrane disc surfaces having varying degrees
of hydrophobicity and hydrophilicity. The ethanol droplet penetrated faster into the superhydrophobic
disc surface than the less hydrophobic or hydrophilic disc surfaces. The data shown in Figure 6
demonstrate that a HiPAS membrane could be used to separate two molecules based on differences
in polarity. In addition, the superhydrophobic HiPAS membrane employed in these tests had pores
that are ~200× larger than those in a traditional zeolite membrane (~0.5 nm pore size). The high flux,
ethanol-permeable HiPAS membrane could have a potential impact on the energy and processing
efficiency of ethanol–water separations by extracting the smaller volume of ethanol from the water
(rather than permeating the larger volume of water from the ethanol) typically found in a representative
ethanol fermentation broth (e.g., 95% water and 5% ethanol). A conventional water perm-selective
zeolite membrane must process the large volume of water to obtain >99.5% ethanol, while the ethanol
perm-selective HiPAS membranes only needs to permeate the smaller quantity of ethanol in the mixture.
Beyond our current proof-of-principle studies on superhydrophobic membranes to extract ethanol via
pervaporation, future work will focus on improving the HiPAS membrane pore size/structure and
increasing the degree of surface superhydrophobicity (e.g., a contact angle larger than 172 degrees)
which may favor higher selectivity of ethanol permeation than water, with the ultimate goal of
achieving higher flux performance for selective ethanol/water separation by increasing the pore size.

Lastly, the chemical and thermal stability of HiPAS membranes (i.e., the coating and
functionalization materials) were investigated. For superhydrophilic texture deposition, typical silica
aerogel materials were inorganic materials, which do not display a stability concern for the application
conditions of interest. For the superhydrophobic membrane materials surface, the observed water
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droplet contact angle was unaffected by the experimental conditions. Thus, exposure to ethanol–water
or acid–water mixtures does not appear to cause observable degradation on the membrane surface
hydrophobicity. In addition, thermal stability of superhydrophobicity of the membrane was studied by
both visual inspection and contact angle measurements (Figure 7). Results show that the PDTMS-based
superhydrophobicity of the membrane surface can be stable up to 300 ◦C, which is high enough for
the example testing application conditions discussed in this paper.
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Figure 7. Surface hydrophobicity test to monitor the stability of wetting properties of a
superhydrophobic membrane surface. (A) Blank alumina disc surface (hydrophilic in nature); (B) After
PDTMS functionalization, showing superhydrophobicity (172◦ contact angle); (C) After PDTMS
modification and heated at 300 ◦C for 2 h (still showing 172◦ contact angle); (D) After 300 ◦C for
additional 4 h (172◦); (E) After 350 ◦C for 2 h (136◦); (F) 350 ◦C for additional 4 h (surface is wettable
now with water droplets); and (G) 400 ◦C for 2 h (surface becomes so hydrophilic, and water droplets
can penetrate into the disc surface and disappear).

4. Conclusions

This work reports on a novel surface-tailored HiPAS inorganic membrane concept where
separations by superhydrophobic and superhydrophilic membranes were compared to baseline
porous membranes without surface modification. (1) In the vapor-phase separation of ethanol–water,
a superhydrophilic membrane demonstrated higher water/ethanol ratio in permeate samples than the
superhydrophobic and baseline alumina-surfaced membranes. The potential separation mechanisms
were discussed in relation to the collected experimental data. (2) In liquid-phase pervaporation
separation studies on ethanol and water, a superhydrophobic membrane showed selective permeation
of ethanol from the ethanol–water mixture feed. In both cases, results show that the surfaces of HiPAS
membranes can be tailored for optimized separation of target molecule from a mixture.

Author Contributions: M.Z.H. originated the HiPAS membrane concept, synthesized the membranes and wrote
the original draft of the paper. M.A. conducted original proof-of-principle experiments to collect the ethanol–water
solution pervaporation data that demonstrate M.Z.H.’s HiPAS membrane concept. B.L.B. provided the nanoporous
support substrate tubes and C.E. conducted the vapor-phase separation evaluation with a MBMS. M.L. assisted
the final proof reading and revision.
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