LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. The LCA Methodology
2.2. Goals and Scope
2.2.1. Functional Unit
2.2.2. Impact Categories
2.2.3. Description of the Two Studied Wastewater Treatment Units
2.3. Software
3. Results
3.1. Systems Modelling
3.2. Life Cycle Inventory (LCI)
3.3. Limitation of the Study and Data Quality
3.4. Life Cycle Impact Analyses (LCIA)
3.5. Contribution Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zorpas, A.A.; Coumi, C.; Drtil, M.; Voukalli, I. Municipal sewage sludge characteristics and waste water treatment plant effectiveness under warm climate conditions. Desalin. Water Treat. 2011, 36, 319–333. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Coumi, C.; Drtil, M.; Voukalli, I.; Samaras, P. Operation description and physicochemical characteristics of influent, effluent and the tertiary treatment from a sewage treatment plant of the Eastern Region of Cyprus under warm climates. Desalin. Water Treat. 2010, 22, 244–257. [Google Scholar] [CrossRef] [Green Version]
- Malik, O.A.; Hsu, A.; Johnson, L.A.; de Sherbinin, A. A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs). Environ. Sci. Policy 2015, 48, 172–185. [Google Scholar] [CrossRef]
- Tabesh, M.; Feizee Masooleh, M.; Roghani, B.; Motevallian, S.S. Life-Cycle Assessment (LCA) of Wastewater Treatment Plants: A Case Study of Tehran, Iran. Int. J. Civ. Eng. 2019, 17, 1155–1169. [Google Scholar] [CrossRef]
- Banti, D.; Mitrakas, M.; Fytianos, G.; Tsali, A.; Samaras, P. Combined Effect of Colloids and SMP on Membrane Fouling in MBRs. Membranes 2020, 10, 118. [Google Scholar] [CrossRef]
- Banti, D.; Tsali, A.; Mitrakas, M.; Samaras, P. The dissolved oxygen effect on the controlled growth of filamentous microorganisms in membrane bioreactors. Environ. Sci. Proc. 2020, 2, 39. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, M.; Wang, F.; Meng, F.; Liao, B.Q.; Hong, H.; Gao, W. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. J. Membr. Sci. 2014, 460, 110–125. [Google Scholar] [CrossRef]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 2017, 527, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Garcia, G.; Hospido, F.; Alfonsin, C.; Omil, F.; Moreira, M.T.; Feijoo, G. LCA of membrane biorreactors for wastewater treatment. In Proceedings of the 6th International Conference on Life Cycle Management, Gothenburg, Sweden, 25–28 August 2013. [Google Scholar]
- Zorpas, A.A. Chemical oxidation and Membrane Bioreactor for the treatment of Household heating wastewater. Desalin. Water Treat. 2013, 51, 6952–6960. [Google Scholar] [CrossRef]
- Ioannou-Ttofa, L.; Foteinis, S.; Chatzisymeon, E.; Fatta-Kassinos, D. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis. Sci. Total Environ. 2016, 568, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Banti, D.C.; Karayannakidis, P.D.; Samaras, P.; Mitrakas, M.G. An innovative bioreactor set-up that reduces membrane fouling by adjusting the filamentous bacterial population. J. Membr. Sci. 2017, 542, 430–438. [Google Scholar] [CrossRef]
- Banti, D.C.; Samaras, P.; Tsioptsias, C.; Zouboulis, A.; Mitrakas, M. Mechanism of SMP aggregation within the pores of hydrophilic and hydrophobic MBR membranes and aggregates detachment. Sep. Purif. Technol. 2018, 202, 119–129. [Google Scholar] [CrossRef]
- Borzooei, S.; Campo, G.; Cerutti, A.; Meucci, L.; Panepinto, D.; Ravina, M.; Riggio, V.; Ruffino, B.; Scibilia, G.; Zanetti, M. Optimization of the wastewater treatment plant: From energy saving to environmental impact mitigation. Sci. Total Environ. 2019, 691, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xu, X.; Lv, Z.; Mao, H.; Wu, J. Environmental impact assessment of wastewater discharge with multi-pollutants from iron and steel industry. J. Environ. Manag. 2019, 245, 210–215. [Google Scholar] [CrossRef]
- Raghuvanshi, S.; Bhakar, V.; Sowmya, C.; Sangwan, K.S. Waste Water Treatment Plant Life Cycle Assessment: Treatment Process to Reuse of Water. Procedia CIRP 2017, 61, 761–766. [Google Scholar] [CrossRef]
- Santucci, G.; Martinez, C.; Vlad-Câlcic, D. The sensing enterprise. In Proceedings of the FInES Workshop in Aalborg, Aalborg, Denmark, 7–11 May 2012; pp. 1–14. [Google Scholar]
- McNamara, G.; Fitzsimons, L.; Horrigan, M.; Phelan, T.; Delaure, Y.; Corcoran, B.; Doherty, E.; Clifford, E. Life cycle assessment of wastewater treatment plants in Ireland. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 216–233. [Google Scholar] [CrossRef] [Green Version]
- Piao, W.; Kim, Y.; Kim, H.; Kim, M.; Kim, C. Life cycle assessment and economic efficiency analysis of integrated management of wastewater treatment plants. J. Clean. Prod. 2016, 113, 325–337. [Google Scholar] [CrossRef]
- Buyukkamaci, N. Life Cycle Assessment Applications in Wastewater Treatment. J. Pollut. Eff. Control 2013, 1, 10–11. [Google Scholar] [CrossRef] [Green Version]
- Tsangas, M.; Gavriel, I.; Doula, M.; Xeni, F.; Zorpas, A.A. Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region. Sustainability 2020, 12, 1813. [Google Scholar] [CrossRef] [Green Version]
- Zorpas, A.A. Strategy development in the framework of waste management. Sci. Total Environ. 2020, 716, 137088. [Google Scholar] [CrossRef]
- Rashid, S.S.; Liu, Y.Q. Assessing environmental impacts of large centralized wastewater treatment plants with combined or separate sewer systems in dry/wet seasons by using LCA. Environ. Sci. Pollut. Res. 2020, 27, 15674–15690. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.P.; Urbano, L.; Brito, A.G.; Janknecht, P.; Salas, J.J.; Nogueira, R. Life cycle assessment of wastewater treatment options for small and decentralized communities. Water Sci. Technol. 2007, 56, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.K.L.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nguyen, T.V.; Nghiem, D.L. Contribution of the construction phase to environmental impacts of the wastewater treatment plant. Sci. Total Environ. 2020, 743, 140658. [Google Scholar] [CrossRef]
- Zepon Tarpani, R.R.; Azapagic, A. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). J. Environ. Manag. 2018, 215, 258–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.L.; Stadler, L.B.; Cao, L.; Love, N.G.; Raskin, L.; Skerlos, S.J. Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ. Sci. Technol. 2014, 48, 5972–5981. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Ren, N.Q.; Yu, H.Q.; Lee, D.J.; Guo, X. Assessment of multiple sustainability demands for wastewater treatment alternatives: A refined evaluation scheme and case study. Environ. Sci. Technol. 2012, 46, 5542–5549. [Google Scholar] [CrossRef] [PubMed]
- Renou, S.; Thomas, J.S.; Aoustin, E.; Pons, M.N. Influence of impact assessment methods in wastewater treatment LCA. J. Clean. Prod. 2008, 16, 1098–1105. [Google Scholar] [CrossRef]
- Fang, L.L.; Valverde-Pérez, B.; Damgaard, A.; Plósz, B.G.; Rygaard, M. Life cycle assessment as development and decision support tool for wastewater resource recovery technology. Water Res. 2016, 88, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Luo, X.; Huang, X.; Wang, D.; Zhang, W. Life Cycle Assessment of a municipal wastewater treatment plant: A case study in Suzhou, China. J. Clean. Prod. 2013, 57, 221–227. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14040: Environmental Management–Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Arzoumanidis, I.; Salomone, R.; Petti, L.; Mondello, G.; Raggi, A. Is there a simplified LCA tool suitable for the agri-food industry? An assessment of selected tools. J. Clean. Prod. 2017, 149, 406–425. [Google Scholar] [CrossRef]
- Goudouva, G.; Loizia, P.; Inglezakis, V.; Zorpas, A.A. Quarries environmental footprint in the framework of sustainable development: The case study of Milos island. Desalin. Water Treat. 2018, 133, 307–314. [Google Scholar] [CrossRef]
- Goudouva, G.T.; Zorpas, A.A. Water footprint determination by quarry operation in island regions. Desalin. Water Treat. 2017, 86, 271–276. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, L. Application review of LCA (Life Cycle Assessment) in circular economy: From the perspective of PSS (Product Service System). Procedia CIRP 2019, 83, 210–217. [Google Scholar] [CrossRef]
- Monteith, H.D.; Sahely, H.R.; MacLean, H.L.; Bagley, D.M. A Rational Procedure for Estimation of Greenhouse-Gas Emissions from Municipal Wastewater Treatment Plants. Water Environ. Res. 2005, 77, 390–403. [Google Scholar] [CrossRef]
- Parravicini, V.; Svardal, K.; Krampe, J. Greenhouse Gas Emissions from Wastewater Treatment Plants. Energy Procedia 2016, 97, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Microdyn-Nadir. Product Specification—MICRODYN BIO-CEL® 52F-C26-UP150; Microdyn-Nadir: Wiesbaden, Germany, 2020; Volume 1, pp. 4–5. [Google Scholar]
- International Organization for Standardization (ISO). International Standard ISO 14044 Environmental Management—Life Cycle Assessment—Requirements and Guidelines Management; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Guinée, J. Handbook on Life Cycle Assessment—Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- GreenDelta Software. Available online: https://www.greendelta.com/software/ (accessed on 20 June 2018).
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. Overview and Methodology. Data Quality Guideline for the Ecoinvent Database Version 3; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2013. [Google Scholar]
Element | Input | Output | Quantity/Day | Quantity /FU | Unit | Notes |
---|---|---|---|---|---|---|
Sewage Treatment Unit | Capacity 1.9 × 108 L/year (20 years lifetime) | 5.21 × 105 | 1.01 × 10−7 | items | Ecospold 2 1/5 of conventional unit size | |
Wastewater Qin | 528 m3/day | 528 | 1.03 | m3 | ||
Influent Pump Electricity | 7.67 kW × 7.34 h/day | 56.3 | 1.10 × 10−1 | kWh | ||
Denitrification Mixer Electricity | 1.2 kW × 24 h/day | 28.8 | 5.60 × 10−2 | kWh | ||
Aeration Blower Electricity | 10 kW × 24 h/day | 240 | 4.67 × 10−1 | kWh | ||
Membrane Blower Electricity | 12 kW × 24 h/day | 288 | 5.60 × 10−1 | kWh | ||
Membranes [39] | 450 kg | 0.25 | 4.80 × 10−4 | Kg | Polyethylene instead of Polyethersulfone (PES), 5 years lifetime | |
Sludge Circulation Pump Electricity | 4 kW × 24 h/day | 96 | 1.87 × 10−1 | kWh | ||
Sludge Removal Pump Electricity | 0.25 kW × 6 h/day | 1.5 | 2.92 × 10−3 | kWh | ||
Diffuse Pump Electricity | 0.60 kW × 24 h/day | 14.4 | 2.80 × 10−2 | kWh | ||
Q Sludge Out | 14 m3/day | 130 Kg/day | 130 | 2.53 × 10−1 | Kg | To landfill |
Sludge Transportation | 35 Km × 14 m3/day | 4550 | 8.85 | Km Kg | Lorry EURO6 10 tons | |
Treated Wastewater Qout | 514 m3/day | 514 | 1.00 | m3 |
Element | Input | Output | Quantity/Day | Quantity/FU | Unit | Notes |
---|---|---|---|---|---|---|
Sewage Treatment Unit | Capacity 1.9 × 108 L/year (20 years lifetime) | 2.60 × 10−4 | 5.22 × 10−7 | items | EcoSpold 2 | |
Wastewater Qin | 528 m3/day | 528 | 1.06 | m3 | ||
Influent Pump Electricity | 7.67 kW × 7.34 h/day | 56.3 | 1.13 × 10−1 | kWh | ||
Equalization Tank Mixer Electricity | 1.2 kW × 24 h/day | 28.8 | 5.77 × 10−2 | kWh | ||
Denitrification Mixer Electricity | 1.2 kW × 24 h/day | 28.8 | 5.77 × 10−2 | kWh | ||
Nitrification Blowers Electricity | 2 × 10 kW × 24 h/day | 480 | 9.62 × 10−1 | kWh | ||
Sedimentation Bridge Electricity | 0.75 kW × 24 h/day | 18 | 3.61 × 10−2 | kWh | ||
Sludge Circulation Pump Electricity | 4 kW × 24 h/day | 96 | 1.92 × 10−1 | kWh | ||
Sludge Removal Pump Electricity | 0.25 kW × 6 h/day | 1.5 | 3.01 × 10−3 | kWh | ||
Q Sludge Out | 269.3 Kg/day | 269.3 | 5.40 × 10−1 | Kg | to landfill | |
Sludge Transportation | 35 Km × 29 m3/day | 9425.5 | 1.89 × 101 | Km Kg | Lorry EURO6 10 tons | |
PAC (flocculent) | 90.6 kg/day | 90.6 | 1.82 × 10−1 | Kg | EcoSpold 2 iron(II) chloride | |
Polyelectrolyte | 0.966 kg/day | 0.97 | 1.94 × 10−3 | Kg | EcoSpold 2 aluminium sulfate, powder | |
Mixer Electricity | 0.41 kW × 24 h/day | 9.84 | 1.97 × 10−2 | kWh | ||
Polyelectrolyte Pump Electricity | 0.40 kW × 24 h/day | 9.6 | 1.92 × 10−2 | kWh | ||
Flocculation Mixer Electricity | 0.41 kW × 24 h/day | 9.84 | 1.97 × 10−2 | kWh | ||
Drum Filter Electricity | 0.50 kW × 6 h/day | 3.0 | 6.01 × 10−3 | kWh | ||
Treated Wastewater Qout | 499 m3/day | 499 | 1.00 | m3 |
Assessment Indicator | Indicator Score Table 10.4 [43] | |
---|---|---|
Primary Data | Secondary Data | |
Reliability | 2 | 5 |
Completeness | 1 | 3 |
Temporal Correlation | 1 | 3 |
Geographical Correlation | 1 | 4 |
Further Technological Correlation | 1 | 4 |
Wastewater Treatment Unit | AP kg SO2-eq∙FU−1 | EP kg PO4-eq∙FU−1 | GWP kg CO2-eq∙FU−1 | ODP kg CFC-11-eq∙FU−1 | POCP kg C2H4-eq∙FU−1 |
---|---|---|---|---|---|
Membrane Bioreactor | 1.98 × 10−3 | 8.60 × 10−4 | 4.96 × 10−1 | 3.13 × 10−8 | 1.50 × 10−4 |
Convention Activated Sludge | 1.15 × 10−2 | 4.77 × 10−3 | 2.68 | 1.70 × 10−7 | 8.40 × 10−4 |
Wastewater Treatment Unit | AP kg SO2-eq∙FU−1 | EP kg PO4-eq∙FU−1 | GWP kg CO2-eq∙FU−1 | ODP kg CFC-11-eq∙FU−1 | POCP kg C2H4-eq∙FU−1 |
---|---|---|---|---|---|
Membrane Bioreactor | 6.23 × 10−6 | 1.94 × 10−6 | 2.35 × 10−3 | 3.65 × 10−10 | 3.83 × 10−7 |
Convention Activated Sludge | 1.32 × 10−3 | 3.40 × 10−4 | 1.38 × 10−1 | 1.12 × 10−8 | 5.62 × 10−5 |
Wastewater Treatment Unit | AP kg SO2-eq∙FU−1 | EP kg PO4-eq∙FU−1 | GWP kg CO2-eq∙FU−1 | ODP kg CFC-11-eq∙FU−1 | POCP kg C2H4-eq∙FU−1 |
---|---|---|---|---|---|
Membrane Bioreactor | 1.98 × 10−3 | 8.60 × 10−4 | 4.96 × 10−1 | 3.13 × 10−8 | 1.50 × 10−4 |
Convention Activated Sludge | 1.15 × 10−2 | 4.77 × 10−3 | 2.67 | 1.70 × 10−7 | 8.40 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banti, D.C.; Tsangas, M.; Samaras, P.; Zorpas, A. LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment. Membranes 2020, 10, 421. https://doi.org/10.3390/membranes10120421
Banti DC, Tsangas M, Samaras P, Zorpas A. LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment. Membranes. 2020; 10(12):421. https://doi.org/10.3390/membranes10120421
Chicago/Turabian StyleBanti, Dimitra C., Michail Tsangas, Petros Samaras, and Antonis Zorpas. 2020. "LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment" Membranes 10, no. 12: 421. https://doi.org/10.3390/membranes10120421
APA StyleBanti, D. C., Tsangas, M., Samaras, P., & Zorpas, A. (2020). LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment. Membranes, 10(12), 421. https://doi.org/10.3390/membranes10120421