Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance
Abstract
:1. Introduction
2. Ion-Selective Membranes (ISM)
3. Construction of Sensors
4. Pretreatment and Operation
5. Conclusions
Funding
Conflicts of Interest
References
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef] [PubMed]
- Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chem. Rev. 1998, 98, 1593–1688. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Balach, M.M.; Casale, C.H.; Campetelli, A.N. Erythrocyte plasma membrane potential: Past and current methods for its measurement. Biophys. Rev. 2019, 11, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical Overview on the Application of Sensors and Biosensors for Clinical Analysis. Trends Anal. Chem. 2016, 85, 36–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.; Decker, V.; Meyerhoff, M.E. Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis. ACS Appl. Mater. Interfaces 2020, 12, 25616–25624. [Google Scholar] [CrossRef]
- De Marco, R.; Clarke, G.; Pejcic, B. Ion-Selective Electrode Potentiometry in Environmental Analysis. Electroanalysis 2007, 19, 1987–2001. [Google Scholar] [CrossRef]
- Zuliani, C.; Diamond, D. Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim. Acta 2012, 84, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.U.; Cheong, J.H.; Taitt, B.J.; Bühlmann, P. Solid Contact Ion-Selective Electrodes with a Well-Controlled Co(II)/Co(III) Redox Buffer Layer. Anal. Chem. 2013, 85, 9350–9355. [Google Scholar] [CrossRef]
- Zou, X.U.; Zhen, X.V.; Cheong, J.H.; Bühlmann, P. Calibration-Free Ionophore-Based Ion-Selective Electrodes With a Co(II)/Co(III) Redox Couple-Based Solid Contact. Anal. Chem. 2014, 86, 8687–8692. [Google Scholar] [CrossRef]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.U.; Chen, L.D.; Lai, C.-Z.; Buhlmann, P. Ionic Liquid Reference Electrodes with a Well-Controlled Co(II)/Co(III) Redox Buffer as Solid Contact. Electroanalysis 2015, 27, 602–608. [Google Scholar] [CrossRef]
- Jaworska, E.; Naitana, M.L.; Stelmach, E.; Pomarico, G.; Wojciechowski, M.; Bulska, E.; Maksymiuk, K.; Paolesse, R.; Michalska, A. Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes. Anal. Chem. 2017, 89, 7107–7114. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, E.; Pomarico, G.; Berna, B.B.; Maksymiuk, K.; Paolesse, R.; Michalska, A. All-solid-state paper based potentiometric potassium sensors containing cobalt(II) porphyrin/cobalt(III) corrole in the transducer layer. Sens. Actuators B Chem. 2018, 277, 306–311. [Google Scholar] [CrossRef]
- Jansod, S.; Wang, L.; Cuartero, M.; Bakker, E. Electrochemical Ion Transfer Mmediated by Alipophilic Os(II)/Os(III) Dinonyl Bipyridyl Probe Incorporated in Thin Film Membranes. Chem. Commun. 2017, 53, 10757–10760. [Google Scholar] [CrossRef]
- Bakker, E. Enhancing ion-selective polymeric membrane electrodes by instrumental control. TrAC Trends Anal. Chem. 2014, 53, 98–105. [Google Scholar] [CrossRef]
- Fiedler, U.; Růžička, J. Selectrode—The Uuniversal Ion-Selective Electrode: Part VII. A Valinomycin-Based Potassium Electrode with Nonporous Polymer Membrane and Solid-State Inner Reference System. Anal. Chim. Acta 1973, 67, 179–193. [Google Scholar] [CrossRef]
- Mascini, M.; Pallozzi, F. Selectivity of neutral carriep-pvc membrane electrodes. Anal. Chim. Acta 1974, 73, 375–382. [Google Scholar] [CrossRef]
- Manning, D.L.; Stokely, J.R.; Magouyrk, D.W. Studies on Several Uranyl Organophosphorus Compounds in a Poly(vinyl chloride) (PVC) Matrix as Ion Sensors for Uranium. Anal. Chem. 1974, 46, 1116–1119. [Google Scholar] [CrossRef]
- Moody, G.J.; Slater, J.M.; Thomas, J.D.R. Poly(vinyl chloride) Matrix Membrane Uranyl lon-selective Electrodes Based on Organophosphorus Sensors. Analyst 1988, 113, 669–703. [Google Scholar]
- Cammann, K. Working with Ion.-Selective Electrodes; Springer Science and Business Media LLC: Berlin, Germany, 1979. [Google Scholar]
- Mikhelson, K.N. Ion-Selective Electrodes; Springer: Berlin Germany, 2013. [Google Scholar]
- Pechenkina, I.A.; Mikhelson, K. Materials for the ionophore-based membranes for ion-selective electrodes: Problems and achievements (review paper). Russ. J. Electrochem. 2015, 51, 93–102. [Google Scholar] [CrossRef]
- Jaworska, E.; Schmidt, M.; Scarpa, G.; Maksymiuk, K.; Michalska, A. Spray-coated all-solid-state potentiometric sensors. Analyst 2014, 139, 6010–6015. [Google Scholar] [CrossRef] [PubMed]
- Heng, L.Y.; Hall, E.A. Methacrylate-acrylate based polymers of low plasticiser content for potassium ion-selective membranes. Anal. Chim. Acta 1996, 324, 47–56. [Google Scholar] [CrossRef]
- Heng, L.Y.; Hall, E.A.H. Producing “Self-Plasticizing” Ion-Selective Membranes. Anal. Chem. 2000, 72, 42–51. [Google Scholar] [CrossRef]
- Michalska, A.; Appaih-Kusi, C.; Heng, L.Y.; Walkiewicz, S.; Hall, E.A.H. An Experimental Study of Membrane Materials and Inner Contacting Layers for Ion-Selective K+ Electrodes with a Stable Response and Good Dynamic Range. Anal. Chem. 2004, 76, 2031–2039. [Google Scholar] [CrossRef]
- Cánovas, R.; Sanchez, S.P.; Parrilla, M.; Cuartero, M.; Crespo, G.A. Cytotoxicity Study of Ionophore-Based Membranes: Toward On-Body and in Vivo Ion Sensing. ACS Sens. 2019, 4, 2524–2535. [Google Scholar] [CrossRef] [Green Version]
- Cuartero, M.; Acres, R.G.; Bradley, J.; Jarolimova, Z.; Wang, L.; Bakker, E.; Crespo, G.A.; De Marco, R. Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes. Electrochim. Acta 2017, 238, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Zhai, J.; Bakker, E. pH Independent Nano-Optode Sensors Based on Exhaustive Ion-Selective Nanospheres. Anal. Chem. 2014, 86, 2853–2856. [Google Scholar] [CrossRef]
- Bobacka, J. Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18, 7–18. [Google Scholar] [CrossRef]
- Michalska, A. All-Solid-State Ion Selective and All-Solid-State Reference Electrodes. Electroanalysis 2012, 24, 1253–1265. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Jarvis, J.M.; Guzinski, M.; Pendley, B.; Lindner, E. Poly(3-octylthiophene) as solid contact for ion-selective electrodes: Contradictions and possibilities. J. Solid State Electrochem. 2016, 20, 3033–3041. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Ping, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef] [PubMed]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors Based on Conducting Polymers. Electroanalysis 2003, 15, 366–374. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef]
- Liu, D.; Meruva, R.K.; Brown, R.B.; Meyerhoff, M.E. Enhancing EMF stability of solid-state ion-selective sensors by incorporating lipophilic silver-ligand complexes within polymeric films. Anal. Chim. Acta 1996, 321, 173–183. [Google Scholar] [CrossRef]
- Hauser, P.C.; Chiang, D.W.; Wright, G.A. A potassium-ion selective electrode with valinomycin based poly(vinyl chloride) membrane and a poly(vinyl ferrocene) solid contact. Anal. Chim. Acta 1995, 302, 241–248. [Google Scholar] [CrossRef]
- Cadogan, A.; Gao, Z.; Lewenstam, A.; Ivaska, A.; Diamond, D. All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Anal. Chem. 1992, 64, 2496–2501. [Google Scholar] [CrossRef]
- Michalska, A.; Hulanicki, A.; Lewenstam, A. All Solid-State Hydrogen Ion-Selective Electrode Based on a Conducting Poly(pyrro1e) Solid Contact. Analyst 1994, 119, 2417–2420. [Google Scholar] [CrossRef]
- Lindfors, T.; Ivaska, A. Stability of the Inner Polyaniline Solid Contact Layer in All-Solid-State K+ - Selective Electrodes Based on Plasticized Poly(vinyl chloride). Anal. Chem. 2004, 76, 4387–4394. [Google Scholar] [CrossRef]
- Bobacka, J.; McCarrick, M.; Lewenstam, A.; Ivaska, A. All Solid-State Poly(viny1 chloride) Membrane Ion-Selective Electrodes with Poly(3-octylthiophene) Solid Internal Contact. Analyst 1994, 119, 1985–1991. [Google Scholar] [CrossRef]
- Kałuża, D.; Jaworska, E.; Mazur, M.; Maksymiuk, K.; Michalska, A. Multiwalled Carbon Nanotubes–Poly(3-octylthiophene-2,5-diyl) Nanocomposite Transducer for Ion-Selective Electrodes: Raman Spectroscopy Insight into the Transducer/Membrane Interface. Anal. Chem. 2019, 91, 9010–9017. [Google Scholar] [CrossRef] [PubMed]
- Papp, S.; Bojtár, M.; Gyurcsányi, R.E.; Lindfors, T. Potential Reproducibility of Potassium-Selective Electrodes Having Perfluorinated Alkanoate Side Chain Functionalized Poly(3,4-ethylenedioxytiophene) as a Hydrophobic Solid Contact. Anal. Chem. 2019, 91, 9111–9118. [Google Scholar] [CrossRef] [PubMed]
- Paczosa-Bator, B. Ion-selective electrodes with superhydrophobic polymer/carbon nanocomposites as solid contact. Carbon 2015, 95, 879–887. [Google Scholar] [CrossRef]
- Woźnica, E.; Wojcik, M.; Mieczkowski, J.; Maksymiuk, K.; Michalska, A. Dithizone Modified Gold Nanoparticles Films as Solid Contact for Cu2+ Ion-Selective Electrodes. Electroanalysis 2012, 25, 141–146. [Google Scholar] [CrossRef]
- Zeng, X.; Qin, W. A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Anal. Chim. Acta 2017, 982, 72–77. [Google Scholar] [CrossRef]
- Rzewuska, A.; Wojciechowski, M.; Bulska, E.; Hall, E.A.H.; Maksymiuk, K.; Michalska, A. Composite Polyacrylate−Poly(3,4- ethylenedioxythiophene) Membranes for Improved All-Solid-State Ion-Selective Sensors. Anal. Chem. 2008, 80, 321–327. [Google Scholar] [CrossRef]
- Dumańska, J.; Maksymiuk, K. Studies on Spontaneous Charging/Discharging Processes of Polypyrrole in Aqueous Electrolyte Solutions. Electroanalysis 2001, 13, 567–573. [Google Scholar] [CrossRef]
- Maksymiuk, K. Chemical Reactivity of Polypyrrole and Its Relevance to Polypyrrole Based Electrochemical Sensors. Electroanalysis 2006, 18, 1537–1551. [Google Scholar] [CrossRef]
- Michalska, A.; Ivaska, A.; Lewenstam, A. Modeling Potentiometric Sensitivity of Conducting Polymers. Anal. Chem. 1997, 69, 4060–4064. [Google Scholar] [CrossRef]
- Michalska, A. Improvement of Analytical Characteristic of Calcium Selective Electrode with Conducting Polymer Contact. The Role of Conducting Polymer Spontaneous Charge Transfer Processes and Their Galvanostatic Compensation. Electroanalysis 2005, 17, 400–407. [Google Scholar] [CrossRef]
- Michalska, A.; Hulanicki, A.; Lewenstam, A. All-Solid-State Potentiometric Sensors for Potassium and Sodium Based on Poly(pyrrole) Solid Contact. Microchem. J. 1997, 57, 59–64. [Google Scholar] [CrossRef]
- Michalska, A.; Maksymiuk, K. All-plastic, disposable, low detection limit ion-selective electrodes. Anal. Chim. Acta 2004, 523, 97–105. [Google Scholar] [CrossRef]
- Vázquez, M.; Danielsson, P.; Bobacka, J.; Lewenstam, A.; Ivaska, A. Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sens. Actuators B Chem. 2004, 97, 182–189. [Google Scholar] [CrossRef]
- Michalska, A.; Skompska, M.; Mieczkowski, J.; Zagorska, M.; Maksymiuk, K. Tailoring Solution Cast Poly(3,4-dioctyloxythiophene) Transducers for Potentiometric All-Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18, 763–771. [Google Scholar] [CrossRef]
- Lindfors, T.; Ivaska, A. All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with tetraoctylammonium chloride as cationic additive. Anal. Chim. Acta 2000, 404, 111–119. [Google Scholar] [CrossRef]
- Vázquez, M.; Bobacka, J.; Ivaska, A.; Lewenstam, A. Small-volume radial flow cell for all-solid-state ion-selective electrodes. Talanta 2004, 62, 57–63. [Google Scholar] [CrossRef]
- McGraw, C.M.; Radu, T.; Radu, A.; Diamond, D. Evaluation of Liquid- and Solid-Contact, Pb2+ - Selective Polymer-Membrane Electrodes for Soil Analysis. Electroanalysis 2008, 20, 340–346. [Google Scholar] [CrossRef]
- Michalska, A.; Wojciechowski, M.; Bulska, E.; Maksymiuk, K. Experimental study on stability of different solid contact arrangements of ion-selective electrodes. Talanta 2010, 82, 151–157. [Google Scholar] [CrossRef]
- Michalska, A.; Pyrzyńska, K.; Maksymiuk, K. Method of Achieving Desired Potentiometric Responses of Polyacrylate-Based Ion-Selective Membranes. Anal. Chem. 2008, 80, 3921–3924. [Google Scholar] [CrossRef]
- Rubinova, N.; Chumbimuni-Torres, K.; Bakker, E. Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level. Sens. Actuators B Chem. 2006, 121, 135–141. [Google Scholar] [CrossRef]
- Chumbimuni-Torres, K.Y.; Thammakhet, C.; Galík, M.; Calvo-Marzal, P.; Wu, J.; Bakker, E.; Flechsig, G.-U.; Wang, J. High-Temperature Potentiometry: Modulated Response of Ion-Selective Electrodes During Heat Pulses. Anal. Chem. 2009, 81, 10290–10294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumbimuni-Torres, K.Y.; Calvo-Marzal, P.; Wang, J.; Bakker, E. Electrochemical Sample Matrix Elimination for Trace-Level Potentiometric Detection with Polymeric Membrane Ion-Selective Electrodes. Anal. Chem. 2008, 80, 6114–6118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumbimuni-Torres, K.Y.; Rubinova, N.; Radu, A.; Kubota, A.L.T.; Bakker, E. Solid Contact Potentiometric Sensors for Trace Level Measurements. Anal. Chem. 2006, 78, 1318–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutter, J.; Pretsch, E. Response Behavior of Poly(vinyl chloride)- and Polyurethane-Based Ca2+ - Selective Membrane Electrodes with Polypyrrole- and Poly(3-octylthiophene)-Mediated Internal Solid Contact. Electroanalysis 2006, 18, 19–25. [Google Scholar] [CrossRef]
- Kim, Y.; Amemiya, S. Stripping Analysis of Nanomolar Perchlorate in Drinking Water with a Voltammetric Ion-Selective Electrode Based on Thin-Layer Liquid Membrane. Anal. Chem. 2008, 80, 6056–6065. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, E.; Mazur, M.; Maksymiuk, K.; Michalska, A. Fate of Poly(3-octylthiophene) Transducer in Solid Contact Ion-Selective Electrodes. Anal. Chem. 2018, 90, 2625–2630. [Google Scholar] [CrossRef]
- Bobacka, J.; Lindfors, T.; McCarrick, M.; Ivaska, A.; Lewenstam, A. Single-piece all-solid-state ion-selective electrode. Anal. Chem. 1995, 67, 3819–3823. [Google Scholar] [CrossRef]
- Kłucińska, K.; Stelmach, E.; Kisiel, A.; Maksymiuk, K.; Michalska, A. Nanoparticles of Fluorescent Conjugated Polymers: Novel Ion-Selective Optodes. Anal. Chem. 2016, 88, 5644–5648. [Google Scholar] [CrossRef]
- Zielińska, R.; Mulik, E.; Michalska, A.; Achmatowicz, S.; Maj-Żurawska, M. All-solid-state planar miniature ion-selective chloride electrode. Anal. Chim. Acta 2002, 451, 243–249. [Google Scholar] [CrossRef]
- Lai, C.-Z.; Fierke, M.A.; Stein, A.A.; Bühlmann, P. Ion-Selective Electrodes with Three-Dimensionally Ordered Macroporous Carbon as the Solid Contact. Anal. Chem. 2007, 79, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, E.; Lewandowski, W.; Mieczkowski, J.; Maksymiuk, K.; Michalska, A. Critical assessment of graphene as ion-to-electron transducer for all-solid-state potentiometric sensors. Talanta 2012, 97, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Fibbioli, M.; Enger, O.; Diederich, F.; Pretsch, E.; Bandyopadhyay, K.; Liu, S.-G.; Echegoyen, L.; Bühlmann, P. Redox-active self-assembled monolayers as novel solid contacts for ion-selective electrodes. Chem. Commun. 2000, 339–340. [Google Scholar] [CrossRef]
- Jaworska, E.; Wójcik, M.; Kisiel, A.; Mieczkowski, J.; Michalska, A. Gold Nanoparticles Solid Sontact for Ion-Selective Electrodes of Highly Stable Potential Readings. Talanta 2011, 85, 1986–1989. [Google Scholar] [CrossRef]
- Górski, Ł.; Matusevich, A.; Pietrzak, M.; Wang, L.; Meyerhoff, M.E.; Malinowska, E. Influence of inner transducer properties on EMF response and stability of solid-contact anion-selective membrane electrodes based on metalloporphyrin ionophores. J. Solid State Electrochem. 2008, 13, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespo, G.A.; Macho, S.; Rius, F.X. Ion-Selective Electrodes Using Carbon Nanotubesas Ion-to-Electron Transducers. Anal. Chem. 2008, 80, 1316–1322. [Google Scholar] [CrossRef]
- Crespo, G.A.; Macho, S.; Bobacka, J.; Rius, F.X. Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes. Anal. Chem. 2009, 81, 676–681. [Google Scholar] [CrossRef]
- Jaworska, E.; Maksymiuk, K.; Michalska, A. Optimizing Carbon Nanotubes Dispersing Agents from the Point of View of Ion-selective Membrane Based Sensors Performance—Introducing Carboxymethylcellulose as Dispersing Agent for Carbon Nanotubes Based Solid Contacts. Electroanalysis 2016, 28, 947–953. [Google Scholar] [CrossRef]
- Michalska, A.; Ocypa, M.; Maksymiuk, K. Highly Selective All-Plastic, Disposable, Cu2+ - Selective Electrodes. Electroanalysis 2005, 17, 327–333. [Google Scholar] [CrossRef]
- Novell, M.; Parrilla, M.; Crespo, G.A.; Rius, F.X.; Andrade, F. Paper-Based Ion-Selective Potentiometric Sensors. Anal. Chem. 2012, 84, 4695–4702. [Google Scholar] [CrossRef]
- Mensah, S.T.; Gonzalez, Y.; Calvo-Marzal, P.; Chumbimuni-Torres, K.Y. Nanomolar Detection Limits of Cd2+, Ag+, and K+ Using Paper-Strip Ion-Selective Electrodes. Anal. Chem. 2014, 86, 7269–7273. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espadas-Torre, C.; Bakker, E.; Barker, S.; Meyerhoff, M.E. Influence of Nonionic Surfactants on the Potentiometric Response of Hydrogen Ion-Selective Polymeric Membrane Electrodes. Anal. Chem. 1996, 68, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, E.; Meyerhoff, M.E. Influence of nonionic surfactants on the potentiometric response of ion-selective polymeric membrane electrodes designed for blood electrolyte measurements. Anal. Chem. 1998, 70, 1477–1488. [Google Scholar] [CrossRef]
- Malinowska, E.; Manzoni, A.E.; Meyerhoff, M. Potentiometric response of magnesium-selective membrane electrode in the presence of nonionic surfactants. Anal. Chim. Acta 1999, 382, 265–275. [Google Scholar] [CrossRef]
- Guzinski, M.; Jarvis, J.M.; Pendley, B.; Lindner, E. Equilibration Time of Solid Contact Ion-Selective Electrodes. Anal. Chem. 2015, 87, 6654–6659. [Google Scholar] [CrossRef]
- Michalska, A.; Wojciechowski, M.; Wagner, B.; Bulska, E.; Maksymiuk, K. Laser Ablation Inductively Coupled Plasma Mass Spectrometry Assisted Insight into Ion-Selective Membranes. Anal. Chem. 2006, 78, 5584–5589. [Google Scholar] [CrossRef]
- Bakker, E. Determination of Unbiased Selectivity Coefficients of Neutral Carrier-Based Cation-Selective Electrodes. Anal. Chem. 1997, 69, 1061–1069. [Google Scholar] [CrossRef]
- Schneider, B.; Zwickl, T.; Federer, B.; Pretsch, E.; Lindner, E. Spectropotentiometry: A New Method for in Situ Imaging of Concentration Profiles in Ion-Selective Membranes with Simultaneous Recording of Potential-Time Transients. Anal. Chem. 1996, 68, 4342–4350. [Google Scholar] [CrossRef]
- Sokalski, T.; Ceresa, A.; Fibbioli, M.; Zwickl, T.; Bakker, E.; Pretsch, E. Lowering the Detection Limit of Solvent Polymeric Ion-Selective Membrane Electrodes. 2. Influence of Composition of Sample and Internal Electrolyte Solution. Anal. Chem. 1999, 71, 1210–1214. [Google Scholar] [CrossRef]
- Sokalski, T.; Ceresa, A.; Zwickl, T.; Pretsch, E. Large Improvement of the Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes. J. Am. Chem. Soc. 1997, 119, 11347–11348. [Google Scholar] [CrossRef]
- Gyurcsányi, R.E.; Pergel, É.; Nagy, R.; Kapui, I.; Lan, B.T.T.; Tóth, K.; Bitter, I.; Lindner, E. Direct evidence of ionic fluxes across ion-selective membranes: A scanning electrochemical microscopic and potentiometric study. Anal. Chem. 2001, 73, 2104–2111. [Google Scholar] [CrossRef]
- Michalska, A.; Dumańska, J.; Maksymiuk, K. Lowering the Detection Limit of Ion-Selective Plastic Membrane Electrodes with Conducting Polymer Solid Contact and Conducting Polymer Potentiometric Sensors. Anal. Chem. 2003, 75, 4964–4974. [Google Scholar] [CrossRef]
- Konopka, A.; Sokalski, T.; Michalska, A.; Lewenstam, A.; Maj-Żurawska, M. Factors Affecting the Potentiometric Response of All-Solid-State Solvent Polymeric Membrane Calcium-Selective Electrode for Low-Level Measurements. Anal. Chem. 2004, 76, 6410–6418. [Google Scholar] [CrossRef] [PubMed]
- Woźnica, E.; Wojcik, M.; Wojciechowski, M.; Mieczkowski, J.; Bulska, E.; Maksymiuk, K.; Michalska, A. Improving the Upper Detection Limit of Potentiometric Sensors. Electroanalysis 2015, 27, 720–726. [Google Scholar] [CrossRef]
- Woźnica, E.; Wojcik, M.; Wojciechowski, M.; Mieczkowski, J.; Bulska, E.; Maksymiuk, K.; Michalska, A. Dithizone Modified Gold Nanoparticles Films for Potentiometric Sensing. Anal. Chem. 2012, 84, 4437–4442. [Google Scholar] [CrossRef]
- Michalska, A.; Ocypa, M.; Maksymiuk, K. Effect of interferents present in the internal solution or in the conducting polymer transducer on the responses of ion-selective electrodes. Anal. Bioanal. Chem. 2006, 385, 203–207. [Google Scholar] [CrossRef]
- Michalska, A.; Wojciechowski, M.; Bulska, E.; Maksymiuk, K. Quantifying Primary Silver Ions Contents in Poly(vinyl chloride) and Poly(n-butyl acrylate) Ion-Selective Membranes. Electroanalysis 2009, 21, 1931–1938. [Google Scholar] [CrossRef]
- Woźnica, E.; Mieczkowski, J.; Michalska, A. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes. Analyst 2011, 136, 4787–4793. [Google Scholar] [CrossRef]
- Woźnica, E.; Maksymiuk, K.; Michalska, A. Polyacrylate Microspheres for Tunable Fluorimetric Zinc Ions Sensor. Anal. Chem. 2014, 86, 411–418. [Google Scholar] [CrossRef]
- Baranowska-Korczyc, A.; Jaworska, E.; Strawski, M.; Paterczyk, B.; Maksymiuk, K.; Michalska, A. A Potentiometric Sensor Based on Modified Electrospun PVDF Nanofibers—towards 2D Ion-Selective Membranes. Analyst 2020, 145, 5594–5602. [Google Scholar] [CrossRef] [PubMed]
- Baranowska-Korczyc, A.; Maksymiuk, K.; Michalska, A. Electrospun nanofiber supported optodes: Scaling down the receptor layer thickness to nanometers – towards 2D optodes. Analyst 2019, 144, 4667–4676. [Google Scholar] [CrossRef] [PubMed]
- Bühlmann, P.; Amemiya, S.; Yajima, S.; Umezawa, Y. Co-Ion Interference for Ion-Selective Electrodes Based on Charged and Neutral Ionophores: A Comparison. Anal. Chem. 1998, 70, 4291–4303. [Google Scholar] [CrossRef]
- Lindner, E.; Zwickl, T.; Bakker, E.; Lan, B.T.T.; Tóth, K.; Pretsch, E. Spectroscopic in Situ Imaging of Acid Coextraction Processes in Solvent Polymeric Ion-Selective Electrode and Optode Membranes. Anal. Chem. 1998, 70, 1176–1181. [Google Scholar] [CrossRef]
- Mathison, S.; Bakker, E. Effect of Transmembrane Electrolyte Diffusion on the Detection Limit of Carrier-Based Potentiometric Ion Sensors. Anal. Chem. 1998, 70, 303–309. [Google Scholar] [CrossRef]
- Gyurcsányi, R.E.; Lindner, E. Spectroscopic Method for the Determination of the Ionic Site Concentration in Solvent Polymeric Membranes and Membrane Plasticizers. Anal. Chem. 2002, 74, 4060–4068. [Google Scholar] [CrossRef]
- Gyurcsányi, R.E.; Lindner, E. Spectroelectrochemical Microscopy: Spatially Resolved Spectroelectrochemistry of Carrier-Based Ion-Selective Membranes. Anal. Chem. 2005, 77, 2132–2139. [Google Scholar] [CrossRef]
- Bühlmann, P.; Hayakawa, M.; Ohshiro, T.; Amemiya, S.; Umezawa, Y. Influence of Natural, Electrically Neutral Lipids on the Potentiometric Responses of Cation-Selective Polymeric Membrane Electrodes. Anal. Chem. 2001, 73, 3199–3205. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Petrović, S.; Harrison, D.J. Dual-Sorption Model of Water Uptake in Poly(vinyl chloride)-Based Ion-Selective Membranes: Experimental Water Concentration and Transport Parameters. Anal. Chem. 1996, 68, 1717–1725. [Google Scholar] [CrossRef]
- Chan, A.D.C.; Harrison, D.J. NMR study of the state of water in ion-selective electrode membranes. Anal. Chem. 1993, 65, 32–36. [Google Scholar] [CrossRef]
- Chan, A.D.C.; Li, X.; Harrison, D.J. Evidence for a water-rich surface region in poly(vinyl chloride)-based ion-selective electrode membranes. Anal. Chem. 1992, 64, 2512–2517. [Google Scholar] [CrossRef]
- Sundfors, F.; Lindfors, T.; Höfler, L.; Bereczki, R.; Gyurcsányi, R.E. FTIR-ATR Study of Water Uptake and Diffusion through Ion-Selective Membranes Based on Poly(acrylates) and Silicone Rubber. Anal. Chem. 2009, 81, 5925–5934. [Google Scholar] [CrossRef]
- Appiah-Kusi, C.; Kew, S.J.; Hall, E. Water Transport in Poly(n-butyl acrylate) Ion-Selective Membranes. Electroanalysis 2009, 21, 1992–2003. [Google Scholar] [CrossRef]
- Lindfors, T.; Höfler, L.; Jágerszki, G.; Gyurcsányi, R.E. Hyphenated FT-IR-Attenuated Total Reflection and Electrochemical Impedance Spectroscopy Technique to Study the Water Uptake and Potential Stability of Polymeric Solid-Contact Ion-Selective Electrodes. Anal. Chem. 2011, 83, 4902–4908. [Google Scholar] [CrossRef] [PubMed]
- Lindfors, T.; Sundfors, F.; Höfler, L.; Gyurcsanyi, R.E. FTIR-ATR Study of Water Uptake and Diffusion Through Ion-Selective Membranes Based on Plasticized Poly(vinyl chloride). Electroanalysis 2009, 21, 1914–1922. [Google Scholar] [CrossRef]
- He, N.; Lindfors, T. Determination of Water Uptake of Polymeric Ion-Selective Membranes with the Coulometric Karl Fischer and FT-IR-Attenuated Total Reflection Techniques. Anal. Chem. 2012, 85, 1006–1012. [Google Scholar] [CrossRef]
- Kalinichev, A.V.; Solovyeva, E.V.; Ivanova, A.R.; Khripoun, G.A.; Mikhelson, K. Non-constancy of the bulk resistance of ionophore-based Cd2+-selective electrode: A correlation with the water uptake by the electrode membrane. Electrochim. Acta 2020, 334, 135541. [Google Scholar] [CrossRef]
- Veder, J.-P.; Patel, K.; Clarke, G.; Grygolowicz-Pawlak, E.; Silvester, D.S.; De Marco, R.; Pretsch, E.; Bakker, E.; Silvester, D.S. Synchrotron Radiation/Fourier Transform-Infrared Microspectroscopy Study of Undesirable Water Inclusions in Solid-Contact Polymeric Ion-Selective Electrodes. Anal. Chem. 2010, 82, 6203–6207. [Google Scholar] [CrossRef]
- Cha, G.S.; Liu, D.; Meyeroff, M.E.; Cantor, H.C.; Midgley, A.R.; Goldberg, H.D.; Brown, R.B. Electrochemical Performance, Biocompatibility, and Adhesion of New Polymer Matrices for Solid-State Ion Sensors. Anal. Chem. 1991, 63, 1666–1672. [Google Scholar] [CrossRef]
- Fibbioli, M.; Morf, W.E.; Badertscher, M.; de Rooij, N.; Pretsch, E. Potential Drifts of Solid-Contacted Ion-Selective Electrodes Due to Zero-Current Ion Fluxes Through the Sensor Membrane. Electroanalysis 2000, 12, 1286–1292. [Google Scholar] [CrossRef]
- Kisiel, A.; Kaluza, D.; Paterczyk, B.; Maksymiuk, K.; Michalska, A. Quantifying plasticizer leakage from ion-selective membranes—A nanosponge approach. Analyst 2020, 145, 2966–2974. [Google Scholar] [CrossRef] [PubMed]
- Pendley, B.D.; Lindner, E. A Chronoamperometric Method to Estimate Ionophore Loss from Ion-Selective Electrode Membranes. Anal. Chem. 1999, 71, 3673–3676. [Google Scholar] [CrossRef] [PubMed]
- Pendley, B.D.; Gyurcsányi, R.E.; Buck, R.P.; Lindner, E. A Chronoamperometric Method To Estimate Changes in the Membrane Composition of Ion-Selective Membranes. Anal. Chem. 2001, 73, 4599–4606. [Google Scholar] [CrossRef]
- Paczosa-Bator, B.; Piech, R.; Lewenstam, A. Determination of the leaching of polymeric ion-selective membrane components by stripping voltammetry. Talanta 2010, 81, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Telting-Diaz, M.; Bakker, E. Effect of Lipophilic Ion-Exchanger Leaching on the Detection Limit of Carrier-Based Ion-Selective Electrodes. Anal. Chem. 2001, 73, 5582–5589. [Google Scholar] [CrossRef] [PubMed]
- Bühlmann, P.; Umezawa, Y.; Rondinini, S.; Vertova, A.; Pigliucci, A.; Bertesago, L. Headspace Solid-Phase Microextraction. Anal. Chem. 2000, 72, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.; Peper, S.; Bakker, E.; Diamond, D. Guidelines for Improving the Lower Detection Limit of Ion-Selective Electrodes: A Systematic Approach. Electroanalysis 2007, 19, 144–154. [Google Scholar] [CrossRef]
- Qin, Y.; Bakker, E. Elimination of Dimer Formation in InIIIPorphyrin-Based Anion-Selective Membranes by Covalent Attachment of the Ionophore. Anal. Chem. 2004, 76, 4379–4386. [Google Scholar] [CrossRef]
- Wang, L.; Meyerhoff, M.E. Polymethacrylate polymers with appended aluminum(III)-tetraphenylporphyrins: Synthesis, characterization and evaluation as macromolecular ionophores for electrochemical and optical fluoride sensors. Anal. Chim. Acta 2008, 611, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xue, Y.; Tang, H.; Wang, M.; Qin, Y. Click-immobilized K+-selective ionophore for potentiometric and optical sensors. Sens. Actuators B Chem. 2012, 171, 556–562. [Google Scholar] [CrossRef]
- Qin, Y.; Peper, S.; Bakker, E. Plasticizer-Free Polymer Membrane Ion-Selective Electrodes Containing a Methacrylic Copolymer Matrix. Electroanalysis 2002, 14, 1375–1381. [Google Scholar] [CrossRef]
- Du, E.; Qiang, Y.; Liu, J. Erythrocyte Membrane Failure by Electromechanical Stress. Appl. Sci. 2018, 8, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grygołowicz-Pawlak, E.; Palys, B.; Biesiada, K.; Olszyna, A.R.; Malinowska, E. Covalent binding of sensor phases—A recipe for stable potentials of solid-state ion-selective sensors. Anal. Chim. Acta 2008, 625, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ocaña, C.; Abramova, N.; Bratov, A.; Lindfors, T.; Bobacka, J. Calcium-selective electrodes based on photo-cured polyurethane-acrylate membranes covalently attached to methacrylate functionalized poly(3,4-ethylenedioxythiophene) as solid-contact. Talanta 2018, 186, 279–285. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksymiuk, K.; Stelmach, E.; Michalska, A. Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance. Membranes 2020, 10, 266. https://doi.org/10.3390/membranes10100266
Maksymiuk K, Stelmach E, Michalska A. Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance. Membranes. 2020; 10(10):266. https://doi.org/10.3390/membranes10100266
Chicago/Turabian StyleMaksymiuk, Krzysztof, Emilia Stelmach, and Agata Michalska. 2020. "Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance" Membranes 10, no. 10: 266. https://doi.org/10.3390/membranes10100266
APA StyleMaksymiuk, K., Stelmach, E., & Michalska, A. (2020). Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance. Membranes, 10(10), 266. https://doi.org/10.3390/membranes10100266