Purification of Sucrose in Sugar Beet Molasses by Utilizing Ceramic Nanofiltration and Ultrafiltration Membranes
Abstract
:1. Introduction
- Determine the process parameter settings for achieving high filtration fluxes for the UF and NF of sugar beet molasses.
- Examine the retention of various compounds of interest, depending on the process parameter settings, for both the UF and the NF.
- Study the effects of fouling and cleaning of the membranes.
2. Materials and Methods
2.1. Membranes and Filtration Test Scheme
2.2. Experimental Setup of Nanofiltration Trials
2.3. Experimental Setup of Ultrafiltration Trials
2.4. Fouling and Cleaning Studies
2.4.1. Nanofiltration (NF) Fouling and Cleaning Sequence
2.4.2. Ultrafiltration (UF) Fouling and Cleaning Sequence
2.5. Analysis Methods
2.5.1. Sugar Compounds
2.5.2. Total Solids and Ash
2.5.3. Total Nitrogen and Nitrogen Salts
2.5.4. Refractive Index, Turbidity, pH and Conductivity
2.5.5. Starch
2.5.6. Particle Size and Aggregates
2.5.7. Organic Acids
2.5.8. Macromolecules
3. Results
3.1. Raw Material Composition
3.2. Nanofiltration Parameter Study
3.3. Ultrafiltration Parameter Study
3.4. Fouling and Cleaning
3.4.1. NF Fouling and Cleaning
3.4.2. UF Fouling and Cleaning
3.5. Aggregate Formation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviation | Description | Abbreviation | Description |
---|---|---|---|
5-HMF | 5-Hydroxymethylfurfural | PAD | Pulsed Amperometric Detection |
CFV | Crossflow Velocity | PWF | Pure Water Flux |
DLS | Dynamic Light Scattering | RI | Refractive Index |
HCM | High Concentration Molasses | RTS | Rapid Total Starch |
HPAEC | High-Performance Anion-Exchange Chromatography | TMP | Transmembrane Pressure |
HPLC | High-Performance Liquid Chromatography | TN | Total Nitrogen |
LCM | Low Concentration Molasses | TS | Total Solids |
MWCO | Molecular Weight Cutoff | UF | Ultrafiltration |
NF | Nanofiltration | Z-AVE | Average Particle Size |
References
- Krajnc, D.; Mele, M.; Glavič, P. Improving the economic and environmental performance of the beet sugar industry in Slovenia: increasing fuel efficiency and using by-products for ethanol. J. Clean. Prod. 2007, 15, 1240–1252. [Google Scholar] [CrossRef]
- Ergun, M.; Ferda Mutlu, S. Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresour. Technol. 2000, 73, 251–255. [Google Scholar] [CrossRef]
- Escudero, I.; Ruiz, O.M. Extraction of betaine from beet molasses using membrane contactors. J. Membr. Sci. 2011, 372, 258–268. [Google Scholar] [CrossRef]
- Atiyeh, H.; Duvnjak, Z. Production of Fructose and Ethanol from Sugar Beet Molasses Using Saccharomyces cerevisiae ATCC 368558. Biotechnol. Prog. 2002, 18, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces marxianus for producing value-added aroma compounds via solid-state fermentation. J. Clean. Prod. 2017, 158, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhao, Z.; Meng, H.; Yu, S. The antibiotic activity and mechanisms of sugar beet (Beta Vulgaris) molasses polyphenols against selected food-borne pathogens. LWT Food Sci. Technol. 2017, 82, 354–360. [Google Scholar] [CrossRef]
- Roukas, T. Pretreatment of beet molasses to increase pullulan production. Process. Biochem. 1998, 33, 805–810. [Google Scholar] [CrossRef]
- Lipnizki, F. Membrane Processes for Sugar and Starch Processing. In Engineering Aspects of Membrane Separation and Application in Food Processing, 1st ed.; Field, R., Bekassy-Molnar, E., Lipnizki, F., Vatai, G., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 241–267. [Google Scholar] [CrossRef]
- Lipnizki, F. Membranes in Food Technology. In Handbook of Food Engineering, 3rd ed.; Heldman, D., Lund, D., Sabliov, C., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 765–798. [Google Scholar] [CrossRef]
- Sayed Ali Sayed, M. Microbial and Enzymatic Syntheses of Polymer Building Blocks through Selective Transformation of Polyols and Furans. Ph.D. Thesis, Department of Chemistry, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Muranaka, Y.; Nakagawa, H.; Masaki, R.; Maki, T.; Mae, K. Continuous 5-hydroxymethylfurfural production from monosaccharides in a microreactor. Ind. Eng. Chem. Res. 2017, 75, 164–170. [Google Scholar] [CrossRef]
- Guo, S.; Luo, J.; Yang, Q.; Qiang, X.; Feng, S.; Wan, Y. Decoloration of Molasses by Ultrafiltration and Nanofiltration Unraveling the Mechanisms of High Sucrose Retention. Food Bioprocess Technol. 2019, 12, 39–53. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, J.; Guo, S.; Hang, X.; Chen, X.; Wan, Y. Threshold flux in concentration mode: Fouling control during clarification of molasses by ultrafiltration. J. Membr. Sci. 2019, 586, 130–139. [Google Scholar] [CrossRef]
- Qiang, X.; Luo, J.; Guo, S.; Cao, W.; Hang, X.; Liu, J.; Wan, Y. A novel process for molasses utilization by membrane filtration and resin adsorption. J. Clean. Prod. 2019, 207, 432–443. [Google Scholar] [CrossRef]
- Luo, J.; Guo, S.; Wu, Y.; Wan, Y. Separation of sucrose and reducing sugar cane molasses by nanofiltration. Food Bioprocess Technol. 2018, 11, 913–925. [Google Scholar] [CrossRef]
- Bernal, M.; Ruiz, M.O.; Geanta, R.M.; Benito, J.M.; Escudero, I. Colour removal from beet molasses by ultrafiltration with activated charcoal. Chem. Eng. J. 2016, 283, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Djordjević, M.; Šereš, Z.; Došenović, T.; Soronja-Simović, D.; Maravić, N.; Šaranović, Ž.; Šereš, L.; Šćiban, M.; Djordjević, M. Modelling of cross-flow microfiltration coupled with bentonite treatment in sugar beet molasses purification. Can. J. Chem. Eng. 2019, 97, 947–954. [Google Scholar] [CrossRef]
- Kaseno; Kokugan, T. The effect of molasses pretreatment by ceramic microfiltration membrane on ethanol fermentation. J. Ferment. Bioeng. 1997, 83, 577–582. [Google Scholar] [CrossRef]
- Ryan, D.; Johnson, R. Dialysis and ultrafiltration of molasses for fermentation enhancement. Sep. Purif. Technol. 2001, 22–23, 239–245. [Google Scholar] [CrossRef]
- Goulas, A.K.; Kapasakalidis, P.G.; Sinclair, H.R.; Rastall, R.A.; Grandison, A.S. Purification of oligosaccharides by nanofiltration. J. Membr. Sci. 2002, 209, 321–335. [Google Scholar] [CrossRef]
- Bandini, S.; Morelli, V. Effect of temperature, pH and composition on nanofiltration of mono/disaccharides: Experiments and modeling assessment. J. Membr. Sci. 2017, 533, 57–74. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, H.; Nguyen, P.; Li, A.; Jiang, L.; Xia, Q.; Rong, Y.; Qui, Y.; Zhou, J. Separation performance of multi-components solution by membrane technology in continual diafiltration mode. Desalination 2013, 322, 113–120. [Google Scholar] [CrossRef]
- Kuhn, R.C.; Filho, F.M.; Silva, V.; Palacio, L.; Hernández, A.; Prádanos, P. Mass transfer and transport during purification of fructooligosaccharides by nanofiltration. J. Membr. Sci. 2010, 365, 356–365. [Google Scholar] [CrossRef]
- Trägårdh, G. Membrane Cleaning. Desalination 1989, 71, 325–335. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Protein (Crude) in Animal Feed, Dumas Method, Final Action (7.016–7.020). In Official Methods of Analysis, 13th ed.; AOAC: Arlington, VA, USA, 1980; pp. 126–127. [Google Scholar]
- Megazyme. Total Starch HK Assay Procedure, K-TSHK 08/18, 2018. Available online: https://secure.megazyme.com/Total-Starch-HK-Assay-Kit (accessed on 3 July 2019).
- Association of Official Analytical Chemists (AOAC). Starch, Method 996.11. In Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Berg, T.H.A.; Ottosen, N.; van den Berg, F.; Ipsen, R. Inline UV-Vis spectroscopy to monitor and optimize cleaning-in-place (CIP) of whey filtration plants. LWT Food Sci. Technol. 2017, 56, 10998–11005. [Google Scholar] [CrossRef]
- Khazaei, M.; Nematbakhsh, M.; Moradi, A. A new equation for calculation of colloid osmotic pressure based on serum total protein concentration and UV-light absorption. Curr. Anaesth. Crit. Care 2008, 19, 8–11. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Patureau Mirand, P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Vučurović, V.M.; Puškaš, V.S.; Miljić, U.D. Bioethanol production from sugar beet molasses and thick juice by free and immobilised Saccharomyces cerevisiae. J. Inst. Brew. 2018, 125, 134–142. [Google Scholar] [CrossRef]
- Steg, A.; Van Der Meer, J.M. Differences in chemical composition and digestibility of beet and cane molasses. Anim. Feed Sci. Technol. 1985, 13, 83–91. [Google Scholar] [CrossRef]
- Filipčev, B.; Mišan, A.; Šaric, B.; Šimurina, O. Sugar beet molasses as an ingredient to enhance the nutritional and functional properties of gluten-free cookies. Int. J. Food Sci. Nutr. 2016, 67, 249–256. [Google Scholar] [CrossRef]
- Field, R.W.; Pearce, G.K. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 2011, 164, 38–44. [Google Scholar] [CrossRef]
- Bacchin, P.; Aimar, P.; Field, R.W. Critical and sustainable fluxes: Theory, experiments and applications. J. Membr. Sci. 2006, 281, 42–69. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Heldman, D.R. Membrane separation. In Introduction to Food Engineering, 5th ed.; Taylor, S.L., Ed.; Academic Press, Elsevier: San Diego, CA, USA, 2014; pp. 645–674. [Google Scholar] [CrossRef]
- Linde, K.; Jönsson, A.-S. Nanofiltration of salt solutions and landfill leachate. Desalination 1995, 103, 223–232. [Google Scholar] [CrossRef]
- Ser, W.Y.; Arntfield, S.D.; Hydamaka, A.W.; Slominski, B.A. Use of diabetic test kits to assess the recovery of glucosinolates during isolation of canola protein. LWT Food Sci. Technol. 2008, 41, 934–941. [Google Scholar] [CrossRef]
- Jones, S.A.; Chew, Y.M.J.; Wilson, D.I.; Bird, M.R. Fluid dynamic gauging of microfiltration membranes fouled with sugar beet molasses. J. Food Eng. 2012, 108, 22–29. [Google Scholar] [CrossRef]
- Cheryan, M. Performance and Engineering models. In Ultrafiltration and Microfiltration Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 113–170. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Rosa, M.J.; Nyström, M. The role of membrane charge on nanofiltration performance. J. Membr. Sci. 2005, 265, 160–166. [Google Scholar] [CrossRef]
- Carpineti, M.; Giglio, M. Aggregation Phenomena. Adv. Colloid Interface Sci. 1993, 46, 73–90. [Google Scholar] [CrossRef]
- Treuheit, M.J.; Kosky, A.A.; Brems, D.N. Inverse Relationship of Protein Concentration and Aggregation. Pharm. Res. 2002, 19, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Cicuta, P.; Hopkinson, I. Studies of a weak polyampholyte at the air-buffer interface: The effect of varying pH and ionic strength. J. Chem. Phys. 2001, 114, 8659–8670. [Google Scholar] [CrossRef] [Green Version]
Study by | Feed Type | Dilution Factor | Membrane Type and MWCO | Flux (L/m2/h) | Temp. (°C) | Pressure (bar) | Sucrose Retention (%) |
---|---|---|---|---|---|---|---|
Guo et al. | Cane molasses | 3 | Polymeric UF/NF, 0.4–5 kDa | 17 | 60 | 5–10 | 10–90 |
Yang et al. | Cane molasses | 6 | Polymeric UF, 10–100 kDa | 40 | 60 | 0.5–10 | <10 |
Qiang et al. | Cane molasses | 4–12 | Ceramic UF/polymeric NF 300 kDa/400 Da | 27–230 | 25–60 | 2–17 | 0–70 |
Luo et al. | Cane molasses | 3+ (diafiltr.) | Polymeric NF (<97% MgSO4 rejection) | 15 | 55–60 | 5–22 | 87–99 |
Goulas et al. | Model solution | - | Polymeric NF/RO, 1 kDa–96% MgSO4 rejection | 10–110 | 25–60 | 7–28 | 45–99 |
Bernal et al. | Beet molasses | 10 | Ceramic UF, 100 kDa | 18–25 | 25 | 1 | - |
Zhao et al. | Model solution | - | Polymeric NF 150–250 Da | 5–120 | 30 | 12–14 | 82–99 |
Bandini & Morelli | Model solution | - | Polymeric NF/RO, 300 Da–98% MgSO4 rejection | 0–410 | 30–50 | 0–27 | 78–99 (maltose retention) |
Kuhn et al. | Model solution | - | Polymeric NF 150–1000 Da | - | 25 | 25 | 50–93 |
Kaseno & Kokugan | Cane molasses | 2.33 | Ceramic MF, 0.05 µm | 0.1–0.4 | 35 | 1–7 | <5 |
Ryan & Johnson | Cane molasses | 3 | Polymeric UF, 300 kDa | - | - | 2 | - |
Djordjevic et al. | Beet molasses | 1.7–2.1 | Ceramic MF, 0.2 µm | 9–114 | 50 | 2 | - |
Jones et al. | Beet molasses | - | Polymeric MF, 0.5–1.5 µm | 35–56 | 60 | 3 | - |
pH | TS | Conductivity | Turbidity |
---|---|---|---|
8.9 | 81% | 93 mS/cm | 1630 NTU |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sjölin, M.; Thuvander, J.; Wallberg, O.; Lipnizki, F. Purification of Sucrose in Sugar Beet Molasses by Utilizing Ceramic Nanofiltration and Ultrafiltration Membranes. Membranes 2020, 10, 5. https://doi.org/10.3390/membranes10010005
Sjölin M, Thuvander J, Wallberg O, Lipnizki F. Purification of Sucrose in Sugar Beet Molasses by Utilizing Ceramic Nanofiltration and Ultrafiltration Membranes. Membranes. 2020; 10(1):5. https://doi.org/10.3390/membranes10010005
Chicago/Turabian StyleSjölin, Mikael, Johan Thuvander, Ola Wallberg, and Frank Lipnizki. 2020. "Purification of Sucrose in Sugar Beet Molasses by Utilizing Ceramic Nanofiltration and Ultrafiltration Membranes" Membranes 10, no. 1: 5. https://doi.org/10.3390/membranes10010005
APA StyleSjölin, M., Thuvander, J., Wallberg, O., & Lipnizki, F. (2020). Purification of Sucrose in Sugar Beet Molasses by Utilizing Ceramic Nanofiltration and Ultrafiltration Membranes. Membranes, 10(1), 5. https://doi.org/10.3390/membranes10010005