Biopharmaceutics 4.0, Advanced Pre-Clinical Development of mRNA-Encoded Monoclonal Antibodies to Immunosuppressed Murine Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Animal Justification towards Future Extrapolation to Human Populations
2.2. Study Design and Setting
2.3. Experimental Protocol, Animal Handling and Data Collection
2.4. Randomization and Blinding
2.5. Statistical Methods and Preliminary Feasibility Report
2.6. Preparation of Drug API Lead mRNA and Vehicle Formulation
2.7. Risk Assessment
2.8. Histological Examination and Toxicity Studies
2.9. Data Collection Analysis and Pharmacokinetic Simulations
2.10. Statistical Analysis
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McHeyzer-Williams, M.G.; McHeyzer-Williams, L.J.; Fanelli Panus, J.; Bikah, G.; Pogue-Caley, R.R.; Driver, D.J.; Eisenbraun, M.D. Antigen-specific immunity: Th cell-dependent B cell responses. Immunol. Res. 2000, 22, 223–236. [Google Scholar] [CrossRef]
- Merlo, L.M.F.; Mandik-Nayak, L. Adaptive Immunity: B Cells and Antibodies, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780123942968. [Google Scholar]
- DeKosky, B.J.; Kojima, T.; Rodin, A.; Charab, W.; Ippolito, G.C.; Ellington, A.D.; Georgiou, G. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 2015, 21, 86–91. [Google Scholar] [CrossRef]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, G.; Bentlage, A.E.H.; Stegmann, T.C.; Howie, H.L.; Lissenberg-Thunnissen, S.; Zimring, J.; Rispens, T.; Vidarsson, G. Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs 2017, 9, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Joller, N.; Weber, S.S.; Oxenius, A. Antibody—Fc receptor interactions in protection against intracellular pathogens. Eur. J. Immunol. 2011, 41, 889–897. [Google Scholar] [CrossRef]
- Sanseviero, E. NK Cell-Fc Receptors Advance Tumor Immunotherapy. J. Clin. Med. 2019, 8, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Huang, X.; Zhu, Y.; Lv, Z. A brief review of monoclonal antibody technology and its representative applications in immunoassays. J. Immunoass. Immunochem. 2018, 39, 351–364. [Google Scholar] [CrossRef]
- Yakes, F.M.; Chinratanalab, W.; Ritter, C.A.; King, W.; Seelig, S.; Arteaga, C.L. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 2002, 62, 4132–4141. [Google Scholar]
- Forssen, P.; Samuelsson, J.; Lacki, K.; Fornstedt, T. Advanced analysis of biosensor data for SARS-CoV-2 RBD and ACE2 interactions. Anal. Chem. 2020, 92, 11520–11524. [Google Scholar] [CrossRef] [PubMed]
- McKeage, K.; Perry, C.M. Trastuzumab: A review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs 2002, 62, 209–243. [Google Scholar] [CrossRef] [PubMed]
- Staffans, I. Annex I. In Evidence in European Asylum Procedures; Brill: Leiden, The Netherlands, 2012; p. 269. [Google Scholar]
- Keizer, R.J.; Huitema, A.D.R.; Schellens, J.H.M.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef]
- Bruno, R.; Washington, C.B.; Lu, J.F.; Lieberman, G.; Banken, L.; Klein, P. Population pharmacokinetics of Trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother. Pharmacol. 2005, 56, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Samaranayake, H.; Wirth, T.; Schenkwein, D.; Räty, J.K.; Ylä-Herttuala, S. Challenges in monoclonal antibody-based therapies. Ann. Med. 2009, 41, 322–331. [Google Scholar] [CrossRef]
- Awwad, S.; Angkawinitwong, U. Overview of antibody drug delivery. Pharmaceutics 2018, 10, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rissanou, A.N.; Ouranidis, A.; Karatasos, K. Complexation of single stranded RNA with an ionizable lipid: An all-atom molecular dynamics simulation study. Soft Matter 2020, 16, 6993–7005. [Google Scholar] [CrossRef] [PubMed]
- Karikó, K. In vitro-Transcribed mRNA Therapeutics: Out of the Shadows and Into the Spotlight. Mol. Ther. 2019, 27, 691–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlake, T.; Thran, M.; Fiedler, K.; Heidenreich, R.; Petsch, B.; Fotin-Mleczek, M. mRNA: A Novel Avenue to Antibody Therapy? Mol. Ther. 2019, 27, 773–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; DeRosa, F. The promise of mRNA vaccines: A biotech and industrial perspective. NPJ Vaccines 2020, 5, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Pitti, T.; Chen, C.T.; Lin, H.N.; Choong, W.K.; Hsu, W.L.; Sung, T.Y. N-GlyDE: A two-stage N-linked glycosylation site prediction incorporating gapped dipeptides and pattern-based encoding. Sci. Rep. 2019, 9, 1–11. [Google Scholar]
- Liu, H.; Bulseco, G.G.; Sun, J. Effect of posttranslational modifications on the thermal stability of a recombinant monoclonal antibody. Immunol. Lett. 2006, 106, 144–153. [Google Scholar] [CrossRef]
- de Taeye, S.W.; Bentlage, A.E.H.; Mebius, M.M.; Meesters, J.I.; Lissenberg-Thunnissen, S.; Falck, D.; Sénard, T.; Salehi, N.; Wuhrer, M.; Schuurman, J.; et al. FcγR Binding and ADCC Activity of Human IgG Allotypes. Front. Immunol. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y.; Yamada, T.; Mori, K.; Okazaki, A.; Inoue, M.; Kitajima-Miyama, K.; Kuni-Kamochi, R.; Nakano, R.; Yano, K.; Kakita, S.; et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: The high-mannose, hybrid, and complex types. Glycobiology 2007, 17, 104–118. [Google Scholar] [CrossRef] [PubMed]
- Lindroth, K.; Mastache, E.F.; Roos, I.; Fernández, Á.G.; Fernández, C. Understanding thymus-independent antigen-induced reduction of thymus-dependent immune responses. Immunology 2004, 112, 413–419. [Google Scholar] [CrossRef]
- Calina, D.; Docea, A.O.; Petrakis, D.; Egorov, A.M.; Ishmukhametov, A.A.; Gabibov, A.G.; Shtilman, M.I.; Kostoff, R.; Carvalho, F.; Vinceti, M.; et al. Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int. J. Mol. Med. 2020, 46, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Recino, A.; Gan, S.U.; Sia, K.C.; Sawyer, Y.; Trendell, J.; Kay, R.; Gribble, F.M.; Reimann, F.; Foale, R.; Notaridou, M.; et al. Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice. Gene Ther. 2019, 26, 40–56. [Google Scholar] [CrossRef]
- McKean, D.; Huppi, K.; Bell, M.; Staudt, L.; Gerhard, W.; Weigert, M. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA 1984, 81, 3180–3184. [Google Scholar] [CrossRef] [Green Version]
- Song, H.K.; Hwang, D.Y. Use of C57BL/6N mice on the variety of immunological researches. Lab. Anim. Res. 2017, 33, 119. [Google Scholar] [CrossRef] [Green Version]
- Lock, R.B.; Liem, N.; Farnsworth, M.L.; Milross, C.G.; Xue, C.; Tajbakhsh, M.; Haber, M.; Norris, M.D.; Marshall, G.M.; Rice, A.M. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood 2002, 99, 4100–4108. [Google Scholar] [CrossRef] [Green Version]
- Scott, G.B.; De Wynter, E.A.; Cook, G.P. Detecting variable (V), diversity (D) and joining (J) gene segment recombination using a two-colour fluorescence system. Mob. DNA 2010, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Okada, S.; Vaeteewoottacharn, K.; Kariya, R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells 2019, 8, 889. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, Y.; Tanaka, Y.; Kira, J.; Ito, M.; Hioki, K.; Misawa, N.; Kawano, Y.; Yamasaki, K.; Tanaka, R.; Suzuki, Y.; et al. Primary human immunodeficiency virus type 1 viremia and central nervous system invasion in a novel hu-PBL-immunodeficient mouse strain. J. Virol. 1997, 71, 2417–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starr, D.A. Proceedings of the SSIB 2016 Annual Meeting HHS Public Access. Physiol. Behav. 2011, 176, 139–148. [Google Scholar] [CrossRef]
- Commission of European Communities. Commission Directive 2005/28/EC of 8 April 2005 laying down principles and detailed guidelines for good clinical practice as regards investigational medicinal products for human use, as well as the requirements for authorisation of the manufacturing or im. Off. J. Eur. Union 2005, L, 13–19. [Google Scholar]
- GCP, V.T.G. Guideline on Good Clinical Practices, Emea. 2000, pp. 1–29. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl9-good-clinical-practices-step-7_en.pdf (accessed on 17 August 2021).
- EMEA. Statistical Principles for Veterinary Clinical Trials. Comm. Vet. Med. Prod. 2001, 1–24. Available online: https://www.ema.europa.eu/en/statistical-principles-clinical-trials-veterinary-medicinal-products-pharmaceuticals (accessed on 2 August 2021).
- Osborne, N.; Avey, M.T.; Anestidou, L.; Ritskes-Hoitinga, M.; Griffin, G. Improving animal research reporting standards. EMBO Rep. 2018, 19, e46069. [Google Scholar] [CrossRef]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- National Research Council, N.R. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- Hro, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; Dore, C.J.; Parulekar, W.R.; Summerskill, W.S.M.; Groves, T.; Schulz, K.F.; Sox, H.C.; et al. Research and Reporting Methods Annals of Internal Medicine SPIRIT 2013 Statement: Defining Standard Protocol Items for Clinical Trials. Ann. Intern. Med. 2015, 1, 200–207. [Google Scholar]
- Bespalov, A.; Michel, M.C. Good Research Practice in Pharmacology and Biomedicine. 2020. Available online: http://link.springer.com/10.1007/978-3-030-33656-1 (accessed on 2 August 2021).
- Di Paola, G.; Bertani, A.; De Monte, L.; Tuzzolino, F. A brief introduction to probability. J. Thorac. Dis. 2018, 10, 1129–1132. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.G.; Kim, J.H. Cornerstone of Modern Statistics. Korean J. Anesthesiol. 2017, 70, 144–156. [Google Scholar] [CrossRef]
- Wan, M.; Orlu-Gul, M.; Legay, H.; Tuleu, C. Blinding in pharmacological trials: The devil is in the details. Arch. Dis. Child. 2013, 98, 656–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsong, Y.; Zhang, J.; Levenson, M. Choice of δ noninferiority margin and dependency of the noninferiority trials. J. Biopharm. Stat. 2007, 17, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Viala, M.; Vinches, M.; Alexandre, M.; Mollevi, C.; Durigova, A.; Hayaoui, N.; Homicsko, K.; Cuenant, A.; Gongora, C.; Gianni, L.; et al. Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: Tested doses and rationale for dose selection. Br. J. Cancer 2018, 118, 679–697. [Google Scholar] [CrossRef] [Green Version]
- Ouranidis, A.; Gkampelis, N.; Vardaka, E.; Karagianni, A.; Tsiptsios, D.; Nikolakakis, I.; Kachrimanis, K. Overcoming the solubility barrier of ibuprofen by the rational process design of a nanocrystal formulation. Pharmaceutics 2020, 12, 969. [Google Scholar] [CrossRef]
- Ouranidis, A.; Gkampelis, N.; Markopoulou, C.; Nikolakakis, I.; Kachrimanis, K. Development of a Nanocrystal Formulation of a Low Melting Point API Following a Quality by Design Approach. Processes 2021, 9, 954. [Google Scholar] [CrossRef]
- Brophy, J.A.N.; Voigt, C.A. Principles of genetic circuit design. Nat. Methods 2014, 11, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Karlin, S.; Altschul, S.F. Applications and statistics for multiple high-scoring segments in molecular sequences. Proc. Natl. Acad. Sci. USA 1993, 90, 5873–5877. [Google Scholar] [CrossRef] [Green Version]
- Kudla, G.; Lipinski, L.; Caffin, F.; Helwak, A.; Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006, 4, 933–942. [Google Scholar] [CrossRef]
- Akashi, H. Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 2001, 11, 660–666. [Google Scholar] [CrossRef]
- Caput, D.; Beutler, B.; Hartog, K.; Thayer, R.; Brown-Shimer, S.; Cerami, A. Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 1986, 83, 1670–1674. [Google Scholar] [CrossRef] [Green Version]
- Jani, B.; Fuchs, R. In vitro transcription and capping of Gaussia luciferase mRNA followed by HeLa cell transfection. J. Vis. Exp. 2012, 61, 3702. [Google Scholar] [CrossRef] [Green Version]
- Grudzien, E.; Stepinski, J.; Jankowska-Anyszka, M.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R.E. Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. Rna 2004, 10, 1479–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhao, W.; Nguyen, G.N.; Zhang, C.; Zeng, C.; Yan, J.; Du, S.; Hou, X.; Li, W.; Jiang, J.; et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 2020, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, K.J.; Dorkin, J.R.; Yang, J.H.; Heartlein, M.W.; Derosa, F.; Mir, F.F.; Fenton, O.S.; Anderson, D.G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015, 15, 7300–7306. [Google Scholar] [CrossRef] [PubMed]
- Roces, C.B.; Lou, G.; Jain, N.; Abraham, S.; Thomas, A.; Halbert, G.W.; Perrie, Y. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics 2020, 12, 1095. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Quality, Non-Clinical and Clinical Requirements for Investigational Advanced Therapy Medicinal Products in Clinical Trials, Ema/Cat/852602/2018. 2019, Volume 44, pp. 1–53. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy_en.pdf (accessed on 2 August 2021).
- European Medicines Agency. ICH guideline Q11 on development and manufacture of drug substances (chemical entities and biotechnological/biological entities). Eur. Med. Agency 2012, 224, 69634–69635. [Google Scholar]
- European Medicines Agency. Guidance for the Template for the Qualified Person’s Declaration Concerning GMP Compliance of Active Substance Manufacture “The QP Declaration Template.” 2014, Volume 44. Available online: https://www.ema.europa.eu/en/template-qualified-persons-qp-declaration-concerning-good-manufacturing-practice-compliance-active (accessed on 2 August 2021).
- Knoblaugh, S.E.; Hohl, T.M.; La Perle, K.M.D. Pathology Principles and Practices for Analysis of Animal Models. ILAR J. 2018, 59, 40–50. [Google Scholar] [CrossRef]
- Denayer, T.; Stöhrn, T.; Van Roy, M. Animal models in translational medicine: Validation and prediction. New Horiz. Transl. Med. 2014, 2, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Danial, J.S.; Aguib, Y.; Yacoub, M.H. Advanced fluorescence microscopy techniques for the life sciences. Glob. Cardiol. Sci. Pract. 2016, 2016, e201616. [Google Scholar] [CrossRef]
- Woodworth, A.; Thompson, M.A.; Rice, T.; Bissonnette, S. Biochemical and hematological markers of inflammation accurately predict sepsis and its severity in ICU patients. Sysmex J. Int. 2019, 29, 1–7. [Google Scholar]
- Mackensen, D.G.; Jain, R.K. Physiologically Based Pharmacokinetic Model for Specific and Nonspecific Monoclonal Antibodies and Fragments in Normal Tissues and Human Tumor Xenografts in Nude Mice1. Cancer Res. 1994, 54, 1517–1528. [Google Scholar]
- Shah, D.K.; Betts, A.M. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J. Pharmacokinet. Pharmacodyn. 2012, 39, 67–86. [Google Scholar] [CrossRef]
- Forssén, P.; Multia, E.; Samuelsson, J.; Andersson, M.; Aastrup, T.; Altun, S.; Wallinder, D.; Wallbing, L.; Liangsupree, T.; Riekkola, M.L.; et al. Reliable Strategy for Analysis of Complex Biosensor Data. Anal. Chem. 2018, 90, 5366–5374. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gardner, I.; Dostalek, M.; Jamei, M. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model. AAPS J. 2014, 16, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Bulitta, J.B.; Holford, N.H.G. Noncompartmental Analysis. Methods Appl. Stat. Clin. Trials 2014, 2, 457–482. [Google Scholar]
- Hirst, J.A.; Howick, J.; Aronson, J.K.; Roberts, N.; Perera, R.; Koshiaris, C.; Heneghan, C. The need for randomization in animal trials: An overview of systematic reviews. PLoS ONE 2014, 9, e98856. [Google Scholar] [CrossRef]
- Cummings, J.; Tractenberg, R.; Gamst, A.; Teri, L.; Masterman, D.; Thal, L. Regression to the Mean: Implications for Clinical Trials of Psychotropic Agents in Dementia. Curr. Alzheimer Res. 2005, 1, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, F. Mechanisms of placebo and placebo-related effects across diseases and treatments. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 33–60. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Micieli, G.; Russell, D.; Solomon, S.; Tfelt-Hansen, P.; Waldenlind, E. Guidelines for controlled trials of drugs in cluster headache. Cephalalgia 1995, 15, 452–45262. [Google Scholar] [CrossRef]
- The European Medicines Agency’s (EMEA’s). Overview of Comments ‘Guideline on Similar Biological Medicinal Products Containing Monoclonal Antibodies’. Available online: https://www.ema.europa.eu/en/documents/other/overview-comments-received-guideline-similar-biological-medicinal-products-containing-monoclonal/chmp/bmwp/403543/2010_en.pdf (accessed on 10 August 2021).
- McCoy, C.E. Understanding the intention-to-treat principle in randomized controlled trials. West. J. Emerg. Med. 2017, 18, 1075–1078. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Taylor, P.C.; Adams, A.C.; Hufford, M.M.; de la Torre, I.; Winthrop, K.; Gottlieb, R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021, 21, 382–393. [Google Scholar] [CrossRef] [PubMed]
Group | Type | Intervention | Route | Mice (n) | W.B.D. Regime (mg/Kg) | Dose (μL) | Monitoring Intervals (Days) |
---|---|---|---|---|---|---|---|
A1 | C57BL/6/J | Saline Solution | Iv | 2 | - | 100 | 12 |
B1 | NOD/SCID/J | Saline Solution | Iv | 2 | - | 100 | 12 |
A2 | C57BL/6/J | Placebo | Iv | 2 | - | 100 | 12, 24 |
B2 | NOD/SCID/J | Placebo | Iv | 2 | - | 100 | 12, 24 |
A3 | C57BL/6/J | Trastuzumab (mRNA + Carrier) | Iv | 36 | 2 | 40 | 0.5, 1.0, 1.5, 2, 3, 4, 5, 6, 7, 12, 24, 28 |
B3 | NOD/SCID/J | Trastuzumab (mRNA + Carrier) | Iv | 36 | 2 | 40 | 0.5, 1.0, 1.5, 2, 3, 4, 5, 6, 7, 12, 24, 28 |
A4 | C57BL/6/J | Trastuzumab (Protein) | Iv | 36 | 8 | 160 | 0.5, 1.0, 1.5, 2, 3, 4, 5, 6, 7, 12, 24, 28 |
Β4 | NOD/SCID/J | Trastuzumab (Protein) | Iv | 36 | 8 | 160 | 0.5, 1.0, 1.5, 2, 3, 4, 5, 6, 7, 12, 24, 28 |
A5 | C57BL/6/J | mRNA GFP | Iv | 4 | 2 | 40 | 6, 18, 24, 28 |
B5 | NOD/SCID/J | mRNA GFP | Iv | 4 | 2 | 40 | 6, 18, 24, 28 |
A6 | C57BL/6/J | GFP (Protein) | Iv | 4 | 8 | 160 | 6, 18, 24, 28 |
B6 | NOD/SCID/J | GFP (Protein) | Iv | 4 | 8 | 160 | 6, 18, 24, 28 |
Factor | Name | Units | Type | Minimum | Maximum | ||
---|---|---|---|---|---|---|---|
A | Animal Model | Categoric | C57BL/6/J | NOD/SCID/J | Levels: | 2 | |
B | Dosing W.B.D. | mg/Kg | Categoric | 2 | 8 | Levels: | 2 |
C | Time | days | Categoric | 0.5 | 28 | Levels: | 12 |
Effects of Interventions to be Measured on the Various Parameters of Serum | |||||||
Leukocytes | BA | EO | MO | LY | NE | WBC | |
Erythrocytes | RDW | MCHC | MCH | MCV | HCT | Hb | RBC |
Thrombocytes | MPV | PLT | |||||
Miscellaneous | Anion Gap | Phosphorus | Sodium | Potassium | Bicarbonate | Calcium | BUN |
Total Bilirubin | Globulin | Cholesterol | Alk Phos | AST | GGT | ALT | |
CK Bilirubin Unconjugated | BUN/Creatinine | Chloride | Bilirubin Conjugated | Creatinine | Glucose | CK | |
Total Protein | ALB/GLOB | Albumin | NA/K |
Measuring Points | E.1, KM.1 | E.2, KM.1 | PK.1, KM.2 | PK.2, KM.2, KM.3 |
---|---|---|---|---|
Study Day | D 0–12 | D 24 | D 28 | D 60 |
Study variable | Variable type | Variable Description | Unit | |
Outc. | Covar. | |||
Demographics | ||||
Body weight | X | Subjects mass | gr | |
Age | X | Age classification | months | |
Temperature | X | Body temperature measurements | °C | |
Dose (D) | Amount of drug to be administered | mg/kg | ||
AUC | X | Total area under the plasma drug concentration | (μg × h/mL) | |
AUMC | X | Total area under the first moment curve | (μg × h2/mL) | |
Drug conc. | ||||
A, B | X | Coefficients of biexponential equation | - | |
Cp(0) | X | Initial drug concentration in plasma | mL/h | |
Cp(12 h) | X | Plasma drug concentration at 12 h | mL/h | |
Cp(last) | X | Last measured plasma drug concentration | mL/h | |
Cp,ss | X | Plasma drug concentration at steady-state | mL/h | |
Cp,ss(max) | X | Maximum desirable plasma drug concentration | mL/h | |
Cp,ass(min) | X | Minimum effective plasma drug concentration | mL/h | |
Cp(avg) | X | Average plasma concentration | mL/h | |
Cmax | X | Peak concentration of drug in blood plasma | mL/h | |
Cmin | X | Minimum concentration of drug in blood plasma | mL/h | |
Time notations | ||||
t1/2 | X | Half-life | h | |
t1/2(a) | X | Absorption half-life | h | |
t1/2(d) | X | Apparent half-life | h | |
MRT | X | Mean residence time | h | |
MAT | X | Mean absorption time | h | |
tmax | X | Time at which peak plasma concentration occurs | h | |
Rate constants | ||||
a, b | X | Exponents of biexponential equation | - | |
k12,k21 | X | First-order rate constants | - | |
kel | X | First-order rate constant for elimination | - | |
ka | X | Apparent first-order absorption rate constant | - | |
kd | X | Apparent first-order disposition | -- | |
Volume terms | ||||
Vd | X | Apparent volume of distribution based on AUC | L/kg | |
Vd(ss) | X | Apparent volume of distribution at steady-state | L/kg | |
Vc | X | Apparent volume of pharmacokinetic model | L/kg | |
Clearance | ||||
ClB | X | Body (systemic) clearance | mL /h kg | |
ClR | X | Renal clearance | mL /h kg | |
ClH | X | Hepatic clearance | mL /h kg | |
Qorgan | X | Clearance expressed on unit body weight basis | mL /h kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouranidis, A.; Choli-Papadopoulou, T.; Papachristou, E.T.; Papi, R.; Kostomitsopoulos, N. Biopharmaceutics 4.0, Advanced Pre-Clinical Development of mRNA-Encoded Monoclonal Antibodies to Immunosuppressed Murine Models. Vaccines 2021, 9, 890. https://doi.org/10.3390/vaccines9080890
Ouranidis A, Choli-Papadopoulou T, Papachristou ET, Papi R, Kostomitsopoulos N. Biopharmaceutics 4.0, Advanced Pre-Clinical Development of mRNA-Encoded Monoclonal Antibodies to Immunosuppressed Murine Models. Vaccines. 2021; 9(8):890. https://doi.org/10.3390/vaccines9080890
Chicago/Turabian StyleOuranidis, Andreas, Theodora Choli-Papadopoulou, Eleni T. Papachristou, Rigini Papi, and Nikolaos Kostomitsopoulos. 2021. "Biopharmaceutics 4.0, Advanced Pre-Clinical Development of mRNA-Encoded Monoclonal Antibodies to Immunosuppressed Murine Models" Vaccines 9, no. 8: 890. https://doi.org/10.3390/vaccines9080890