Enhancement of Vaccine-Induced T-Cell Responses by Probiotics in Calves
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Collection
2.2. PBMC Cultivation Assay
2.3. Flow Cytometric Analysis of T Cells
2.4. Quantification of Cytokines by Enzyme-Linked Immunosorbent Assay
2.5. Statistical Analysis
3. Results
3.1. Enhancement of Weight Gain by Feeding of Zeosapo KB and CB
3.2. Activation of Whole T-Cell Subsets by CB Feeding
3.3. Activation of Vaccine-Specific CD4+ T-Cell Responses in Zeosapo KB- and CB-Fed Groups
3.4. Enhancement of Vaccine-Induced Th1 Cytokine Responses by CB Feeding
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seder, R.A.; Hill, A.V.S. Vaccines against Intracellular Infections Requiring Cellular Immunity. Nature 2000, 406, 793–798. [Google Scholar] [CrossRef]
- Panigrahi, P.; Parida, S.; Nanda, N.C.; Satpathy, R.; Pradhan, L.; Chandel, D.S.; Baccaglini, L.; Mohapatra, A.; Mohapatra, S.S.; Misra, P.R.; et al. A Randomized Synbiotic Trial to Prevent Sepsis among Infants in Rural India. Nature 2017, 548, 407–412. [Google Scholar] [CrossRef]
- Kayasaki, F.; Okagawa, T.; Konnai, S.; Kohara, J.; Sajiki, Y.; Watari, K.; Ganbaatar, O.; Goto, S.; Nakamura, H.; Shimakura, H.; et al. Direct Evidence of the Preventive Effect of Milk Replacer–Based Probiotic Feeding in Calves against Severe Diarrhea. Vet. Microbiol. 2021, 254, 108976. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.J.; Benson, S.C.; Lynn, M.A.; Pulendran, B. Modulation of Immune Responses to Vaccination by the Microbiota: Implications and Potential Mechanisms. Nat. Rev. Immunol. 2021, 22, 33–46. [Google Scholar] [CrossRef]
- Wen, K.; Tin, C.; Wang, H.; Yang, X.; Li, G.; Giri-Rachman, E.; Kocher, J.; Bui, T.; Clark-Deener, S.; Yuan, L. Probiotic Lactobacillus rhamnosus GG Enhanced Th1 Cellular Immunity but did not Affect Antibody Responses in a Human Gut Microbiota Transplanted Neonatal Gnotobiotic Pig Model. PLoS ONE 2014, 9, e94504. [Google Scholar] [CrossRef]
- Wang, H.; Gao, K.; Wen, K.; Allen, I.C.; Li, G.; Zhang, W.; Kocher, J.; Yang, X.; Giri-Rachman, E.; Li, G.H.; et al. Lactobacillus rhamnosus GG Modulates Innate Signaling Pathway and Cytokine Responses to Rotavirus Vaccine in Intestinal Mononuclear Cells of Gnotobiotic Pigs Transplanted with Human Gut Microbiota. BMC Microbiol. 2016, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Liao, S.; Li, J.; Liu, Q.; Luo, S.; Lv, M.; Lin, X.; Hu, J.; Zhang, J.; Qi, N.; et al. Single and Combined Effects of Clostridium butyricum and Coccidiosis Vaccine on Growth Performance and the Intestinal Microbiome of Broiler Chickens. Front. Microbiol. 2022, 13, 811428. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, M.K.; Garcia-So, J.; Justice, N.; Myers, J.; Tyagi, S.; Nemchek, M.; McMurdie, P.J.; Kolterman, O.; Eid, J. Butyrate-Producing Human Gut Symbiont, Clostridium butyricum, and its Role in Health and Disease. Gut Microbes 2021, 13, 1907272. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Lv, J.; Dou, X.; Zhang, Y. Effects of Dietary Supplementation with Clostridium butyricum on the Amelioration of Growth Performance, Rumen Fermentation, and Rumen Microbiota of Holstein Heifers. Front. Nutr. 2021, 8, 763700. [Google Scholar] [CrossRef]
- Kohiruimaki, M.; Ohtsuka, H.; Tanami, E.; Kitagawa, M.; Masui, M.; Ando, T.; Kawamura, S. Effects of Active Egg White Product/Clostridium butyricum Miyairi 588 Additive on Peripheral Leukocyte Populations in Periparturient Dairy Cows. J. Vet. Med. Sci. 2008, 70, 321–323. [Google Scholar] [CrossRef]
- Ikehata, M.; Konnai, S.; Okagawa, T.; Abe, K.; Honma, M.; Kitamura, T.; Maekawa, N.; Suzuki, Y.; Murata, S.; Ohashi, K. In vitro Evaluation of Lactiplantibacillus plantarum HOKKAIDO strain, Effective Lactic Acid Bacteria for Calf Diarrhea. Front. Vet. Sci. 2023, 10, 1145445. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Poloni, C.; Schonhofer, C.; Ivison, S.; Levings, M.K.; Steiner, T.S.; Cook, L. T-cell Activation-Induced Marker Assays in Health and Disease. Immunol. Cell Biol. 2023, 101, 491–503. [Google Scholar] [CrossRef]
- Ames, T.R. Dairy Calf Pneumonia: The Disease and its Impact. Vet. Clin. N. Am. Food Anim. Pract. 1997, 13, 379–391. [Google Scholar] [CrossRef]
- Valdez, J.R.; Gonzalez-Avalos, R.; Avila-Cisneros, R.; Peña-Revuelta, B.; Reyes-Romero, A. Economic Impact of Mortality and Morbidity from Diseases in Dairy Calves. Abanico Vet. 2019, 9, 209. [Google Scholar]
- Hodgins, D.C.; Conlon, J.A.; Shewen, P.E. Respiratory Viruses and Bacteria in Cattle. In Polymicrobial Diseases; Brogden, K.A., Guthmiller, J.M., Eds.; ASM Press: Washington, DC, USA, 2002; pp. 213–229. [Google Scholar]
- Fulton, R.W. Viral Diseases of the Bovine Respiratory Tract. In Food Animal Practice; Smith, B.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 171–191. [Google Scholar]
- Sacco, R.E.; McGill, J.L.; Palmer, M.V.; Lippolis, J.D.; Reinhardt, T.A.; Nonnecke, B.J. Neonatal Calf Infection with Respiratory Syncytial Virus: Drawing Parallels to the Disease in Human Infants. Viruses 2012, 4, 3731–3753. [Google Scholar] [CrossRef]
- Guzman, E.; Taylor, G. Immunology of Bovine Respiratory Syncytial Virus in Calves. Mol. Immunol. 2015, 66, 48–56. [Google Scholar] [CrossRef]
- Gershwin, L.J. Immunology of Bovine Respiratory Syncytial Virus Infection of Cattle. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 253–257. [Google Scholar] [CrossRef]
- Ridpath, J.F. Immunology of BVDV vaccines. Biologicals 2013, 41, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Griebel, P.J. BVDV Vaccination in North America: Risks versus Benefits. Anim. Health Res. Rev. 2015, 16, 27–32. [Google Scholar] [CrossRef]
- Peroni, D.G.; Morelli, L. Probiotics as Adjuvants in Vaccine Strategy: Is There More Room for Improvement? Vaccines 2021, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Vitetta, L.; Saltzman, E.T.; Thomsen, M.; Nikov, T.; Hall, S. Adjuvant Probiotics and the Intestinal Microbiome: Enhancing Vaccines and Immunotherapy Outcomes. Vaccines 2017, 5, 50. [Google Scholar] [CrossRef]
- Wen, K.; Liu, F.; Li, G.; Bai, M.; Kocher, J.; Yang, X.; Wang, H.; Clark-Deener, S.; Yuan, L. Lactobacillus rhamnosus GG Dosage Affects the Adjuvanticity and Protection Against Rotavirus Diarrhea in Gnotobiotic Pigs. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.N.; Chattha, K.S.; Kandasamy, S.; Liu, Z.; Esseili, M.; Shao, L.; Rajashekara, G.; Saif, L.J. Lactobacilli and Bifidobacteria Promote Immune Homeostasis by Modulating Innate Immune Responses to Human Rotavirus in Neonatal Gnotobiotic Pigs. PLoS ONE 2013, 8, e76962. [Google Scholar] [CrossRef]
- Chattha, K.S.; Vlasova, A.N.; Kandasamy, S.; Rajashekara, G.; Saif, L.J. Divergent Immunomodulating Effects of Probiotics on T-cell Responses to Oral Attenuated Human Rotavirus Vaccine and Virulent Human Rotavirus Infection in a Neonatal Gnotobiotic Piglet Disease Model. J. Immunol. 2013, 191, 2446–2456. [Google Scholar] [CrossRef]
- Rodrigues, V.; Baudier, J.B.; Chantal, I. Development of a Bead-Based Multiplexed Assay for Simultaneous Quantification of Five Bovine Cytokines by Flow Cytometry. Cytometry A 2017, 91, 901–907. [Google Scholar] [CrossRef]
- Bowyer, G.; Rampling, T.; Powlson, J.; Morter, R.; Wright, D.; Hill, A.V.S.; Ewer, K.J. Activation-Induced Markers Detect Vaccine-Specific CD4+ T-cell Responses Not Measured by Assays Conventionally Used in Clinical Trials. Vaccines 2018, 6, 50. [Google Scholar] [CrossRef]
- Okagawa, T.; Konnai, S.; Nakamura, H.; Ganbaatar, O.; Sajiki, Y.; Watari, K.; Noda, H.; Honma, M.; Kato, Y.; Suzuki, Y.; et al. Enhancement of Vaccine-Induced T-Cell Responses by PD-L1 Blockade in Calves. Vaccines 2023, 11, 559. [Google Scholar] [CrossRef]
- Barcelos, L.S.; Ford, A.K.; Frühauf, M.I.; Botton, N.Y.; Fischer, G.; Maggioli, M.F. Interactions between bovine respiratory syncytial virus and cattle: Aspects of pathogenesis and immunity. Viruses 2024, 16, 1753. [Google Scholar] [CrossRef]
- Kaplan, B.S.; Hofstetter, A.R.; McGill, J.L.; Lippolis, J.D.; Norimine, J.; Dassanayake, R.P.; Sacco, R.E. Identification of a DRB3011:01-restricted CD4+ T-cell response against bovine respiratory syncytial virus fusion protein. Front. Immunol. 2023, 14, 1040075. [Google Scholar] [CrossRef] [PubMed]
- Van Anne, T.R.; Rinehart, C.L.; Buterbaugh, R.E.; Bauer, M.J.; Young, A.J.; Blaha, M.L.; Klein, A.L.; Chase, C.C.L. Cell-mediated and humoral immune responses to bovine herpesvirus type 1 and bovine viral diarrhea virus in calves following administration of a killed-virus vaccine and bovine herpesvirus type 1 challenge. Am. J. Vet. Res. 2018, 79, 1166–1178. [Google Scholar] [CrossRef]
- Miller, R.J.; Durie, I.A.; Gingerich, A.D.; Elbehairy, M.A.; Branch, A.G.; Davis, R.G.; Abbadi, N.; Brindley, M.A.; Mousa, J.J. The structural basis of protective and nonprotective human monoclonal antibodies targeting the parainfluenza virus type 3 hemagglutinin-neuraminidase. Nat. Commun. 2024, 15, 55101. [Google Scholar] [CrossRef]
- Sayedahmed, E.E.; Elshafie, N.O.; Zhang, G.; Mohammed, S.I.; Sambhara, S.; Mittal, S.K. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front. Immunol. 2023, 14, 1305937. [Google Scholar] [CrossRef]
- Taylor, G.; Thomas, L.H.; Wyld, S.G.; Furze, J.; Sopp, P.; Howard, C.J. Role of T-Lymphocyte Subsets in Recovery from Respiratory Syncytial Virus Infection in Calves. J. Virol. 1995, 69, 6658–6664. [Google Scholar] [CrossRef]
- Hussell, T.; Openshaw, P.J.M. Intracellular IFN-γ Expression in Natural Killer Cells Precedes Lung CD8+ T-cell Recruitment during Respiratory Syncytial Virus Infection. J. Gen. Virol. 1998, 79, 2593–2601. [Google Scholar] [CrossRef]
- Woolums, A.R.; Singer, R.S.; Boyle, G.A.; Gershwin, L.J. Interferon Gamma Production during Bovine Respiratory Syncytial Virus (BRSV) Infection Is Diminished in Calves Vaccinated with Formalin-Inactivated BRSV. Vaccine 1999, 17, 1293–1297. [Google Scholar] [CrossRef]
- Durbin, J.E.; Johnson, T.R.; Durbin, R.K.; Mertz, S.E.; Morotti, R.A.; Peebles, R.S.; Graham, B.S. The Role of IFN in Respiratory Syncytial Virus Pathogenesis. J. Immunol. 2002, 168, 2944–2952. [Google Scholar] [CrossRef] [PubMed]
- Ostler, T.; Davidson, W.; Ehl, S. Virus Clearance and Immunopathology by CD8+ T cells during Infection with Respiratory Syncytial Virus Are Mediated by IFN-γ. Eur. J. Immunol. 2002, 32, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.; Ansar, M.; Qu, Y.; Ivanciuc, T.; Casola, A.; Garofalo, R. Combined Blockade of IFN-Type I and TNF-α Receptors Provides Protection Against Respiratory Syncytial Virus-Induced Disease and Bronchoconstriction. J. Immunol. 2021, 206, 20. [Google Scholar] [CrossRef]
- Martinuzzi, E.; Afonso, G.; Gagnerault, M.C.; Naselli, G.; Mittag, D.; Combadière, B.; Boitard, C.; Chaput, N.; Zitvogel, L.; Harrison, L.C.; et al. Activated DCs Enhance Human Antigen-Specific T-Cell Responses. Blood 2011, 118, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Yakabe, K.; Uchiyama, J.; Akiyama, M.; Kim, Y.G. Understanding Host Immunity and the Gut Microbiota Inspires the New Development of Vaccines and Adjuvants. Pharmaceutics 2021, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. Efficacy of Single-Strain Probiotics Versus Multi-Strain Mixtures: Systematic Review of Strain and Disease Specificity. Dig. Dis. Sci. 2021, 66, 694–704. [Google Scholar] [CrossRef]
- Cai, L.; Hartanto, R.; Zhang, J.; Qi, D. Clostridium butyricum Improves Rumen Fermentation and Growth Performance of Heat-Stressed Goats In Vitro and In Vivo. Animals 2021, 11, 3261. [Google Scholar] [CrossRef]
- Dou, L.; Liu, C.; Chen, X.; Yang, Z.; Hu, G.; Zhang, M.; Sun, L.; Su, L.; Zhao, L.; Jin, Y. Supplemental Clostridium butyricum Modulates Skeletal Muscle Development and Meat Quality by Shaping the Gut Microbiota of Lambs. Meat Sci. 2024, 204, 109235. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Z.; Yang, Y.; Zhan, T.; Bu, D.; Ma, L. Early-Life Clostridium butyricum Supplementation Improved Rumen Development and Immunity by Promoting the Maturation of Intestinal Microbiota. Front. Microbiol. 2023, 14, 1176543. [Google Scholar]
- Qadis, A.Q.; Goya, S.; Yatsu, M.; Kimura, A.; Ichijo, T.; Sato, S. Effects of a Bacteria-Based Probiotic on Subpopulations of Peripheral Leukocytes and Their Cytokine mRNA Expression in Calves. J. Vet. Med. Sci. 2014, 76, 677–684. [Google Scholar] [CrossRef]
- Hayashi, A.; Nagao-Kitamoto, H.; Kitamoto, S.; Kim, C.H.; Kamada, N. The Butyrate-Producing Bacterium Clostridium butyricum Suppresses Clostridioides difficile Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms. J. Immunol. 2021, 206, 1576–1585. [Google Scholar] [CrossRef]





| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikehata, M.; Okagawa, T.; Nakamura, H.; Maekawa, N.; Suzuki, Y.; Murata, S.; Ohashi, K.; Konnai, S. Enhancement of Vaccine-Induced T-Cell Responses by Probiotics in Calves. Vaccines 2025, 13, 1120. https://doi.org/10.3390/vaccines13111120
Ikehata M, Okagawa T, Nakamura H, Maekawa N, Suzuki Y, Murata S, Ohashi K, Konnai S. Enhancement of Vaccine-Induced T-Cell Responses by Probiotics in Calves. Vaccines. 2025; 13(11):1120. https://doi.org/10.3390/vaccines13111120
Chicago/Turabian StyleIkehata, Mari, Tomohiro Okagawa, Hayato Nakamura, Naoya Maekawa, Yasuhiko Suzuki, Shiro Murata, Kazuhiko Ohashi, and Satoru Konnai. 2025. "Enhancement of Vaccine-Induced T-Cell Responses by Probiotics in Calves" Vaccines 13, no. 11: 1120. https://doi.org/10.3390/vaccines13111120
APA StyleIkehata, M., Okagawa, T., Nakamura, H., Maekawa, N., Suzuki, Y., Murata, S., Ohashi, K., & Konnai, S. (2025). Enhancement of Vaccine-Induced T-Cell Responses by Probiotics in Calves. Vaccines, 13(11), 1120. https://doi.org/10.3390/vaccines13111120
 
        



 
                        