Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bollinger, T.; Bollinger, A.; Oster, H.; Solbach, W. Sleep, immunity, and circadian clocks: A mechanistic model. Gerontology 2010, 56, 574–580. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y.; Xie, B.; Yao, H.; Yuan, Y.; Yuan, S.; Zhang, J. The spleen mediates chronic sleep restriction-mediated enhancement of LPS-induced neuroinflammation, cognitive deficits, and anxiety-like behavior. Aging 2020, 12, 15446–15461. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.B.; Coiffard, B.; Leone, M.; Mezouar, S.; Mege, J.L. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front. Immunol. 2020, 11, 1457. [Google Scholar] [CrossRef]
- Druzd, D.; Matveeva, O.; Ince, L.; Harrison, U.; He, W.; Schmal, C.; Herzel, H.; Tsang, A.H.; Kawakami, N.; Leliavski, A.; et al. Lymphocyte Circadian Clocks Control Lymph Node Trafficking and Adaptive Immune Responses. Immunity 2017, 46, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cernysiov, V.; Gerasimcik, N.; Mauricas, M.; Girkontaite, I. Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin. Int. Immunol. 2010, 22, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNaughton, C.D.; Adams, N.M.; Hirschie Johnson, C.; Ward, M.J.; Schmitz, J.E.; Lasko, T.A. Diurnal Variation in SARS-CoV-2 PCR Test Results: Test Accuracy May Vary by Time of Day. J. Biol. Rhythm. 2021, 36, 595–601. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, W.; Borrmann, H.; Balfe, P.; Matthews, P.C.; Eyre, D.W.; Klerman, E.B.; McKeating, J.A. Time-of-Day Variation in SARS-CoV-2 RNA Levels during the Second Wave of COVID-19. Viruses 2022, 14, 1728. [Google Scholar] [CrossRef]
- Prather, A.A.; Pressman, S.D.; Miller, G.E.; Cohen, S. Temporal Links Between Self-Reported Sleep and Antibody Responses to the Influenza Vaccine. Int. J. Behav. Med. 2021, 28, 151–158. [Google Scholar] [CrossRef]
- Lange, T.; Dimitrov, S.; Bollinger, T.; Diekelmann, S.; Born, J. Sleep after vaccination boosts immunological memory. J. Immunol. 2011, 187, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Long, J.E.; Drayson, M.T.; Taylor, A.E.; Toellner, K.M.; Lord, J.M.; Phillips, A.C. Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial. Vaccine 2016, 34, 2679–2685. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.C.; Gallagher, S.; Carroll, D.; Drayson, M. Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology 2008, 45, 663–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppeta, L.; Ferrari, C.; Trabucco Aurilio, M.; Ferrazza, G.; Magrini, A.; Rizza, S. Night Shift Work Is Associated with Reduced Rate of Humoral Response Following Vaccination for HBV. Int. J. Environ. Res. Public. Health. 2022, 19, 8834. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). ECDC Technical Report. Hepatitis B and C in the EU Neighbourhood: Prevalence, Burden of Disease and Screening Policies. 2010. Available online: http://ecdc.europa.eu/en/publications/Publications/TER_100914_Hep_B_C%20_EU_neighbourhood.pdf (accessed on 27 April 2016).
- Coppeta, L.; Pompei, A.; Balbi, O.; Zordo, L.M.; Mormone, F.; Policardo, S.; Lieto, P.; Pietroiusti, A.; Magrini, A. Persistence of Immunity for Hepatitis B Virus among Heathcare Workers and Italian Medical Students 20 Years after Vaccination. Int. J. Environ. Res. Public. Health. 2019, 16, 1515. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO) Hepatitis, B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 2 July 2019).
- MacLachlan, J.H.; Locarnini, S.; Cowie, B.C. Estimating the global prevalence of hepatitis B. Lancet 2015, 386, 1515–1517. [Google Scholar] [CrossRef] [PubMed]
- Batra, V.; Goswami, A.; Dadhich, S.; Kothari, D.; Bhargava, N. Hepatitis B immunization in healthcare workers. Ann. Gastroenterol. 2015, 28, 276–280. [Google Scholar] [PubMed]
- Makan, N.; Song, E.; Kinge, C.W.; Kramvis, A. Hepatitis B virus immunity prior to and after administration of a ‘booster’ dose of vaccine among health-care students at a South African university. Vaccine X 2023, 14, 100284. [Google Scholar] [CrossRef]
- Ministero della salute. Piano Nazionale Prevenzione Vaccinale (PNPV) 2012–2014. Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_1721_allegato.pdf (accessed on 27 April 2016).
- Ministero Della Salute Decreto 20 Novembre 2000 Aggiornamento del Protocollo per L’esecuzione Della Vaccinazione Contro L’epatite Virale, B. Available online: http://www.salute.gov.it/imgs/C_17_normativa_1516_allegato.pdf (accessed on 27 April 2016).
- Ministero Della Salute. Vaccinazione per Epatite B: Precisazioni al DM 20/11/2000 (Aggiornamento Del Protocollo Per L’esecuzione Della Vaccinazione Contro L’epatite Virale B) e Alla Circolare n.19 del 30/11/2000 (Protocollo per L’esecuzione Della Vaccinazione Contro L’epatite Virale B). Available online: http://www.salute.gov.it/imgs/c_17_normativa_1602_allegato.pdf (accessed on 2 July 2023).
- Melardo, C.; Foglia, F.; Della Rocca, M.T.; Zaino, A.; Morone, M.V.; De Filippis, A.; Finamore, E.; Galdiero, M. Hepatitis B Virus prevalence and serological profiles in a hospital in Southern Italy. New Microbiol. 2022, 10, 45. [Google Scholar]
- Lange, T.; Perras, B.; Fehm, H.L.; Born, J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom. Med. 2003, 65, 831–835. [Google Scholar] [CrossRef]
- Prather, A.A.; Hall, M.; Fury, J.M.; Ross, D.C.; Muldoon, M.F.; Cohen, S.; Marsland, A.L. Sleep and antibody response to hepatitis B vaccination. Sleep 2012, 35, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- de Bree, L.C.J.; Mourits, V.P.; Koeken, V.A.; Moorlag, S.J.; Janssen, R.; Folkman, L.; Barreca, D.; Krausgruber, T.; Fife-Gernedl, V.; Novakovic, B.; et al. Circadian rhythm influences induction of trained immunity by BCG vaccination. J. Clin. Invest. 2020, 130, 5603–5617. [Google Scholar] [CrossRef]
- Baxter, M.; Ray, D.W. Circadian rhythms in innate immunity and stress responses. Immunology 2020, 161, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Palomino-Segura, M.; Hidalgo, A. Circadian immune circuits. J. Exp. Med. 2021, 218, e20200798. [Google Scholar] [CrossRef]
- Scheiermann, C.; Gibbs, J.; Ince, L.; Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 2018, 18, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Scheiermann, C.; Kunisaki, Y.; Frenette, P.S. Circadian control of the immune system. Nat. Rev. Immunol. 2013, 13, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Hayano, Y.; Nakai, A.; Furuta, F.; Noda, M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J. Exp. Med. 2016, 213, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Y.; Liu, D.; Zeng, Q.; Li, L.; Zhou, Q.; Li, M.; Mei, J.; Yang, N.; Mo, S.; et al. Time of day influences immune response to an inactivated vaccine against SARS-CoV-2. Cell Res. 2021, 31, 1215–1217. [Google Scholar] [CrossRef]
- Ince, L.M.; Barnoud, C.; Lutes, L.K.; Pick, R.; Wang, C.; Sinturel, F.; Chen, C.S.; de Juan, A.; Weber, J.; Holtkamp, S.J.; et al. Influence of circadian clocks on adaptive immunity and vaccination responses. Nat. Commun. 2023, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Cermakian, N.; Stegeman, S.K.; Tekade, K.; Labrecque, N. Circadian rhythms in adaptive immunity and vaccination. Semin. Immunopathol. 2022, 44, 193–207. [Google Scholar] [CrossRef]
- Dimitrov, S.; Benedict, C.; Heutling, D.; Westermann, J.; Born, J.; Lange, T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 2009, 113, 5134–5143. [Google Scholar] [CrossRef] [Green Version]
- Silver, A.C.; Arjona, A.; Hughes, M.E.; Nitabach, M.N.; Fikrig, E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav. Immun. 2012, 26, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Balfe, P.; Eyre, D.W.; Lumley, S.F.; O’Donnell, D.; Warren, F.; Crook, D.W.; Jeffery, K.; Matthews, P.C.; Klerman, E.B.; et al. Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. J. Biol. Rhythm. 2022, 37, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, A.C.; Gallagher, S.; Drayson, M. Time of day of vaccination does not relate to antibody response to thymus-independent vaccinations. Vaccine X 2022, 11, 100178. [Google Scholar] [CrossRef]
- Zanetti, A.R.; Mariano, A.; Romanò, L.; D’Amelio, R.; Chironna, M.; Coppola, R.C.; Cuccia, M.; Mangione, R.; Marrone, F.; Negrone, F.S.; et al. Long-term immunogenicity of hepatitis B vaccination and policy for booster: An Italian multicentre study. Lancet 2005, 366, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, A.; Gagliardi, M.C.; Anticoli, S. Sex-Dependent Outcome of Hepatitis B and C Viruses Infections: Synergy of Sex Hormones and Immune Responses? Front. Immunol. 2018, 9, 2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadali, R.A.K.; Janagama, R.; Peruru, S.; Malayala, S.V. Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. Int. J. Infect. Dis. 2021, 106, 376–381. [Google Scholar] [CrossRef]
- Coppeta, L.; Ferrari, C.; Mazza, A.; Trabucco Aurilio, M.; Rizza, S. Factors Associated with Pre-Vaccination SARS-CoV-2 Infection Risk among Hospital Nurses Facing COVID-19 Outbreak. Int. J. Environ. Res. Public. Health 2021, 18, 13053. [Google Scholar] [CrossRef]
- Coppeta, L.; Ferrari, C.; Iannuzzi, I.; D’Alessandro, I.; Balbi, O.; Pietroiusti, A.; Trabucco Aurilio, M. Rubella Immunity among Italian Female Healthcare Workers: A Serological Study. Int. J. Environ. Res. Public. Health 2020, 17, 7992. [Google Scholar] [CrossRef]
- Coppeta, L.; Somma, G.; Ferrari, C.; Mazza, A.; Rizza, S.; Trabucco Aurilio, M.; Perrone, S.; Magrini, A.; Pietroiusti, A. Persistence of Anti-S Titre among Healthcare Workers Vaccinated with BNT162b2 mRNA COVID-19. Vaccines 2021, 9, 947. [Google Scholar] [CrossRef]
- Leuridan, E.; Van Damme, P. Hepatitis B and the need for a booster dose. Clin. Infect. Dis. 2011, 53, 68–75. [Google Scholar] [CrossRef]
- Ripabelli, G.; Tamburro, M.; Buccieri, N.; Adesso, C.; Caggiano, V.; Cannizzaro, F.; Di Palma, M.A.; Mantuano, G.; Montemitro, V.G.; Natale, A.; et al. Active Surveillance of Adverse Events in Healthcare Workers Recipients After Vaccination with COVID-19 BNT162b2 Vaccine (Pfizer-BioNTech, Comirnaty): A Cross-Sectional Study. J. Community Health 2022, 47, 211–225. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Marinkovic, A.; Prakash, S.; Desai, P.; Haider, N.; Abbasi, A.F.; Mehraban, N.; Jain, I.; Ekeh, A.; Shazley, O.; et al. Reactogenicity to COVID-19 vaccination in the United States of America. Clin. Exp. Vaccine Res. 2022, 11, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef] [PubMed]
- Amadori, A.; Zamarchi, R.; De Silvestro, G.; Forza, G.; Cavatton, G.; Danieli, G.A.; Clementi, M.; Chieco-Bianchi, L. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat. Med. 1995, 1, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Whitacre, C.C. Sex differences in autoimmune disease. Nat. Immunol. 2001, 2, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Dai, C.; Cai, P.; Wang, J.; Xu, L.; Li, J.; Hu, G.; Wang, Z.; Zheng, F.; Wang, L. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex. J. Med. Virol. 2020, 92, 2050–2054. [Google Scholar] [CrossRef]
- Bruce, M.G.; Bruden, D.; Hurlburt, D.; Zanis, C.; Thompson, G.; Rea, L.; Toomey, M.; Townshend-Bulson, L.; Rudolph, K.; Bulkow, L.; et al. Antibody Levels and Protection After Hepatitis B Vaccine: Results of a 30-Year Follow-up Study and Response to a Booster Dose. J. Infect. Dis. 2016, 214, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.L.; Liu, P.; Chen, T.; Ni, Z.; Lu, L.L.; Huang, F.; Lu, J.; Sun, Z.; Qu, C. Presence of immune memory and immunity to hepatitis B virus in adults after neonatal hepatitis B vaccination. Vaccine 2011, 29, 7835–7841. [Google Scholar] [CrossRef]
- Van Damme, P. Long-term Protection After Hepatitis B Vaccine. J. Infect. Dis. 2016, 214, 1–3. [Google Scholar] [CrossRef]
N | Percent (%) | |
---|---|---|
Total number | 875 | |
Mean age (SD) | 21.7 ± 1.69 | |
Anti-HBs titer | ||
>10 UI/mL | 516 | 59.0 |
<10 UI/mL | 359 | 41.0 |
Titer after booster | ||
>10 UI/mL | 294 | 83.8 |
<10 UI/mL | 57 | 16.2 |
N | Percent (%) | ||
---|---|---|---|
Sex | |||
Male | 102 | 86.5 | p < 0.05 |
Female | 192 | 79.1 | |
Time since first dose | |||
>22 years | 182 | 84.3 | p = n.s. |
<22 years | 112 | 83.0 | |
Nationality | |||
Italian | 260 | 83.1 | p = n.s. |
Foreign | 34 | 89.5 | |
Time of administration | |||
Morning | 217 | 86.1 | p < 0.05 |
Afternoon | 77 | 77.8 |
Variables | Odd Ratio | 95% CI for OR | p Value |
---|---|---|---|
Sex (male) | 0.563 | 0.314–1.007 | n.s. |
Time since first dose (>22 years) | 1.013 | 0.558–1.839 | n.s. |
Nationality (Italian) | 0.514 | 0.172–1.535 | n.s. |
Time of administration (morning) | 1.931 | 1.047–3.561 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppeta, L.; Ferrari, C.; Verno, G.; Somma, G.; Trabucco Aurilio, M.; Di Giampaolo, L.; Treglia, M.; Magrini, A.; Pietroiusti, A.; Rizza, S. Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood. Vaccines 2023, 11, 1326. https://doi.org/10.3390/vaccines11081326
Coppeta L, Ferrari C, Verno G, Somma G, Trabucco Aurilio M, Di Giampaolo L, Treglia M, Magrini A, Pietroiusti A, Rizza S. Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood. Vaccines. 2023; 11(8):1326. https://doi.org/10.3390/vaccines11081326
Chicago/Turabian StyleCoppeta, Luca, Cristiana Ferrari, Greta Verno, Giuseppina Somma, Marco Trabucco Aurilio, Luca Di Giampaolo, Michele Treglia, Andrea Magrini, Antonio Pietroiusti, and Stefano Rizza. 2023. "Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood" Vaccines 11, no. 8: 1326. https://doi.org/10.3390/vaccines11081326
APA StyleCoppeta, L., Ferrari, C., Verno, G., Somma, G., Trabucco Aurilio, M., Di Giampaolo, L., Treglia, M., Magrini, A., Pietroiusti, A., & Rizza, S. (2023). Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood. Vaccines, 11(8), 1326. https://doi.org/10.3390/vaccines11081326