Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bollinger, T.; Bollinger, A.; Oster, H.; Solbach, W. Sleep, immunity, and circadian clocks: A mechanistic model. Gerontology 2010, 56, 574–580. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y.; Xie, B.; Yao, H.; Yuan, Y.; Yuan, S.; Zhang, J. The spleen mediates chronic sleep restriction-mediated enhancement of LPS-induced neuroinflammation, cognitive deficits, and anxiety-like behavior. Aging 2020, 12, 15446–15461. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.B.; Coiffard, B.; Leone, M.; Mezouar, S.; Mege, J.L. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front. Immunol. 2020, 11, 1457. [Google Scholar] [CrossRef]
- Druzd, D.; Matveeva, O.; Ince, L.; Harrison, U.; He, W.; Schmal, C.; Herzel, H.; Tsang, A.H.; Kawakami, N.; Leliavski, A.; et al. Lymphocyte Circadian Clocks Control Lymph Node Trafficking and Adaptive Immune Responses. Immunity 2017, 46, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Cernysiov, V.; Gerasimcik, N.; Mauricas, M.; Girkontaite, I. Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin. Int. Immunol. 2010, 22, 25–34. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, C.D.; Adams, N.M.; Hirschie Johnson, C.; Ward, M.J.; Schmitz, J.E.; Lasko, T.A. Diurnal Variation in SARS-CoV-2 PCR Test Results: Test Accuracy May Vary by Time of Day. J. Biol. Rhythm. 2021, 36, 595–601. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, W.; Borrmann, H.; Balfe, P.; Matthews, P.C.; Eyre, D.W.; Klerman, E.B.; McKeating, J.A. Time-of-Day Variation in SARS-CoV-2 RNA Levels during the Second Wave of COVID-19. Viruses 2022, 14, 1728. [Google Scholar] [CrossRef]
- Prather, A.A.; Pressman, S.D.; Miller, G.E.; Cohen, S. Temporal Links Between Self-Reported Sleep and Antibody Responses to the Influenza Vaccine. Int. J. Behav. Med. 2021, 28, 151–158. [Google Scholar] [CrossRef]
- Lange, T.; Dimitrov, S.; Bollinger, T.; Diekelmann, S.; Born, J. Sleep after vaccination boosts immunological memory. J. Immunol. 2011, 187, 283–290. [Google Scholar] [CrossRef]
- Long, J.E.; Drayson, M.T.; Taylor, A.E.; Toellner, K.M.; Lord, J.M.; Phillips, A.C. Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial. Vaccine 2016, 34, 2679–2685. [Google Scholar] [CrossRef]
- Phillips, A.C.; Gallagher, S.; Carroll, D.; Drayson, M. Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology 2008, 45, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Coppeta, L.; Ferrari, C.; Trabucco Aurilio, M.; Ferrazza, G.; Magrini, A.; Rizza, S. Night Shift Work Is Associated with Reduced Rate of Humoral Response Following Vaccination for HBV. Int. J. Environ. Res. Public. Health. 2022, 19, 8834. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). ECDC Technical Report. Hepatitis B and C in the EU Neighbourhood: Prevalence, Burden of Disease and Screening Policies. 2010. Available online: http://ecdc.europa.eu/en/publications/Publications/TER_100914_Hep_B_C%20_EU_neighbourhood.pdf (accessed on 27 April 2016).
- Coppeta, L.; Pompei, A.; Balbi, O.; Zordo, L.M.; Mormone, F.; Policardo, S.; Lieto, P.; Pietroiusti, A.; Magrini, A. Persistence of Immunity for Hepatitis B Virus among Heathcare Workers and Italian Medical Students 20 Years after Vaccination. Int. J. Environ. Res. Public. Health. 2019, 16, 1515. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Hepatitis, B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 2 July 2019).
- MacLachlan, J.H.; Locarnini, S.; Cowie, B.C. Estimating the global prevalence of hepatitis B. Lancet 2015, 386, 1515–1517. [Google Scholar] [CrossRef] [PubMed]
- Batra, V.; Goswami, A.; Dadhich, S.; Kothari, D.; Bhargava, N. Hepatitis B immunization in healthcare workers. Ann. Gastroenterol. 2015, 28, 276–280. [Google Scholar] [PubMed]
- Makan, N.; Song, E.; Kinge, C.W.; Kramvis, A. Hepatitis B virus immunity prior to and after administration of a ‘booster’ dose of vaccine among health-care students at a South African university. Vaccine X 2023, 14, 100284. [Google Scholar] [CrossRef]
- Ministero della salute. Piano Nazionale Prevenzione Vaccinale (PNPV) 2012–2014. Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_1721_allegato.pdf (accessed on 27 April 2016).
- Ministero Della Salute Decreto 20 Novembre 2000 Aggiornamento del Protocollo per L’esecuzione Della Vaccinazione Contro L’epatite Virale, B. Available online: http://www.salute.gov.it/imgs/C_17_normativa_1516_allegato.pdf (accessed on 27 April 2016).
- Ministero Della Salute. Vaccinazione per Epatite B: Precisazioni al DM 20/11/2000 (Aggiornamento Del Protocollo Per L’esecuzione Della Vaccinazione Contro L’epatite Virale B) e Alla Circolare n.19 del 30/11/2000 (Protocollo per L’esecuzione Della Vaccinazione Contro L’epatite Virale B). Available online: http://www.salute.gov.it/imgs/c_17_normativa_1602_allegato.pdf (accessed on 2 July 2023).
- Melardo, C.; Foglia, F.; Della Rocca, M.T.; Zaino, A.; Morone, M.V.; De Filippis, A.; Finamore, E.; Galdiero, M. Hepatitis B Virus prevalence and serological profiles in a hospital in Southern Italy. New Microbiol. 2022, 10, 45. [Google Scholar]
- Lange, T.; Perras, B.; Fehm, H.L.; Born, J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom. Med. 2003, 65, 831–835. [Google Scholar] [CrossRef]
- Prather, A.A.; Hall, M.; Fury, J.M.; Ross, D.C.; Muldoon, M.F.; Cohen, S.; Marsland, A.L. Sleep and antibody response to hepatitis B vaccination. Sleep 2012, 35, 1063–1069. [Google Scholar] [CrossRef]
- de Bree, L.C.J.; Mourits, V.P.; Koeken, V.A.; Moorlag, S.J.; Janssen, R.; Folkman, L.; Barreca, D.; Krausgruber, T.; Fife-Gernedl, V.; Novakovic, B.; et al. Circadian rhythm influences induction of trained immunity by BCG vaccination. J. Clin. Invest. 2020, 130, 5603–5617. [Google Scholar] [CrossRef]
- Baxter, M.; Ray, D.W. Circadian rhythms in innate immunity and stress responses. Immunology 2020, 161, 261–267. [Google Scholar] [CrossRef]
- Palomino-Segura, M.; Hidalgo, A. Circadian immune circuits. J. Exp. Med. 2021, 218, e20200798. [Google Scholar] [CrossRef]
- Scheiermann, C.; Gibbs, J.; Ince, L.; Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 2018, 18, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Scheiermann, C.; Kunisaki, Y.; Frenette, P.S. Circadian control of the immune system. Nat. Rev. Immunol. 2013, 13, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Hayano, Y.; Nakai, A.; Furuta, F.; Noda, M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J. Exp. Med. 2016, 213, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Y.; Liu, D.; Zeng, Q.; Li, L.; Zhou, Q.; Li, M.; Mei, J.; Yang, N.; Mo, S.; et al. Time of day influences immune response to an inactivated vaccine against SARS-CoV-2. Cell Res. 2021, 31, 1215–1217. [Google Scholar] [CrossRef]
- Ince, L.M.; Barnoud, C.; Lutes, L.K.; Pick, R.; Wang, C.; Sinturel, F.; Chen, C.S.; de Juan, A.; Weber, J.; Holtkamp, S.J.; et al. Influence of circadian clocks on adaptive immunity and vaccination responses. Nat. Commun. 2023, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Cermakian, N.; Stegeman, S.K.; Tekade, K.; Labrecque, N. Circadian rhythms in adaptive immunity and vaccination. Semin. Immunopathol. 2022, 44, 193–207. [Google Scholar] [CrossRef]
- Dimitrov, S.; Benedict, C.; Heutling, D.; Westermann, J.; Born, J.; Lange, T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 2009, 113, 5134–5143. [Google Scholar] [CrossRef]
- Silver, A.C.; Arjona, A.; Hughes, M.E.; Nitabach, M.N.; Fikrig, E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav. Immun. 2012, 26, 407–413. [Google Scholar] [CrossRef]
- Wang, W.; Balfe, P.; Eyre, D.W.; Lumley, S.F.; O’Donnell, D.; Warren, F.; Crook, D.W.; Jeffery, K.; Matthews, P.C.; Klerman, E.B.; et al. Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. J. Biol. Rhythm. 2022, 37, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, A.C.; Gallagher, S.; Drayson, M. Time of day of vaccination does not relate to antibody response to thymus-independent vaccinations. Vaccine X 2022, 11, 100178. [Google Scholar] [CrossRef]
- Zanetti, A.R.; Mariano, A.; Romanò, L.; D’Amelio, R.; Chironna, M.; Coppola, R.C.; Cuccia, M.; Mangione, R.; Marrone, F.; Negrone, F.S.; et al. Long-term immunogenicity of hepatitis B vaccination and policy for booster: An Italian multicentre study. Lancet 2005, 366, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, A.; Gagliardi, M.C.; Anticoli, S. Sex-Dependent Outcome of Hepatitis B and C Viruses Infections: Synergy of Sex Hormones and Immune Responses? Front. Immunol. 2018, 9, 2302. [Google Scholar] [CrossRef] [PubMed]
- Kadali, R.A.K.; Janagama, R.; Peruru, S.; Malayala, S.V. Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. Int. J. Infect. Dis. 2021, 106, 376–381. [Google Scholar] [CrossRef]
- Coppeta, L.; Ferrari, C.; Mazza, A.; Trabucco Aurilio, M.; Rizza, S. Factors Associated with Pre-Vaccination SARS-CoV-2 Infection Risk among Hospital Nurses Facing COVID-19 Outbreak. Int. J. Environ. Res. Public. Health 2021, 18, 13053. [Google Scholar] [CrossRef]
- Coppeta, L.; Ferrari, C.; Iannuzzi, I.; D’Alessandro, I.; Balbi, O.; Pietroiusti, A.; Trabucco Aurilio, M. Rubella Immunity among Italian Female Healthcare Workers: A Serological Study. Int. J. Environ. Res. Public. Health 2020, 17, 7992. [Google Scholar] [CrossRef]
- Coppeta, L.; Somma, G.; Ferrari, C.; Mazza, A.; Rizza, S.; Trabucco Aurilio, M.; Perrone, S.; Magrini, A.; Pietroiusti, A. Persistence of Anti-S Titre among Healthcare Workers Vaccinated with BNT162b2 mRNA COVID-19. Vaccines 2021, 9, 947. [Google Scholar] [CrossRef]
- Leuridan, E.; Van Damme, P. Hepatitis B and the need for a booster dose. Clin. Infect. Dis. 2011, 53, 68–75. [Google Scholar] [CrossRef]
- Ripabelli, G.; Tamburro, M.; Buccieri, N.; Adesso, C.; Caggiano, V.; Cannizzaro, F.; Di Palma, M.A.; Mantuano, G.; Montemitro, V.G.; Natale, A.; et al. Active Surveillance of Adverse Events in Healthcare Workers Recipients After Vaccination with COVID-19 BNT162b2 Vaccine (Pfizer-BioNTech, Comirnaty): A Cross-Sectional Study. J. Community Health 2022, 47, 211–225. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Marinkovic, A.; Prakash, S.; Desai, P.; Haider, N.; Abbasi, A.F.; Mehraban, N.; Jain, I.; Ekeh, A.; Shazley, O.; et al. Reactogenicity to COVID-19 vaccination in the United States of America. Clin. Exp. Vaccine Res. 2022, 11, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef] [PubMed]
- Amadori, A.; Zamarchi, R.; De Silvestro, G.; Forza, G.; Cavatton, G.; Danieli, G.A.; Clementi, M.; Chieco-Bianchi, L. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat. Med. 1995, 1, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Whitacre, C.C. Sex differences in autoimmune disease. Nat. Immunol. 2001, 2, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Dai, C.; Cai, P.; Wang, J.; Xu, L.; Li, J.; Hu, G.; Wang, Z.; Zheng, F.; Wang, L. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex. J. Med. Virol. 2020, 92, 2050–2054. [Google Scholar] [CrossRef]
- Bruce, M.G.; Bruden, D.; Hurlburt, D.; Zanis, C.; Thompson, G.; Rea, L.; Toomey, M.; Townshend-Bulson, L.; Rudolph, K.; Bulkow, L.; et al. Antibody Levels and Protection After Hepatitis B Vaccine: Results of a 30-Year Follow-up Study and Response to a Booster Dose. J. Infect. Dis. 2016, 214, 16–22. [Google Scholar] [CrossRef]
- Zhu, C.L.; Liu, P.; Chen, T.; Ni, Z.; Lu, L.L.; Huang, F.; Lu, J.; Sun, Z.; Qu, C. Presence of immune memory and immunity to hepatitis B virus in adults after neonatal hepatitis B vaccination. Vaccine 2011, 29, 7835–7841. [Google Scholar] [CrossRef]
- Van Damme, P. Long-term Protection After Hepatitis B Vaccine. J. Infect. Dis. 2016, 214, 1–3. [Google Scholar] [CrossRef]
N | Percent (%) | |
---|---|---|
Total number | 875 | |
Mean age (SD) | 21.7 ± 1.69 | |
Anti-HBs titer | ||
>10 UI/mL | 516 | 59.0 |
<10 UI/mL | 359 | 41.0 |
Titer after booster | ||
>10 UI/mL | 294 | 83.8 |
<10 UI/mL | 57 | 16.2 |
N | Percent (%) | ||
---|---|---|---|
Sex | |||
Male | 102 | 86.5 | p < 0.05 |
Female | 192 | 79.1 | |
Time since first dose | |||
>22 years | 182 | 84.3 | p = n.s. |
<22 years | 112 | 83.0 | |
Nationality | |||
Italian | 260 | 83.1 | p = n.s. |
Foreign | 34 | 89.5 | |
Time of administration | |||
Morning | 217 | 86.1 | p < 0.05 |
Afternoon | 77 | 77.8 |
Variables | Odd Ratio | 95% CI for OR | p Value |
---|---|---|---|
Sex (male) | 0.563 | 0.314–1.007 | n.s. |
Time since first dose (>22 years) | 1.013 | 0.558–1.839 | n.s. |
Nationality (Italian) | 0.514 | 0.172–1.535 | n.s. |
Time of administration (morning) | 1.931 | 1.047–3.561 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppeta, L.; Ferrari, C.; Verno, G.; Somma, G.; Trabucco Aurilio, M.; Di Giampaolo, L.; Treglia, M.; Magrini, A.; Pietroiusti, A.; Rizza, S. Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood. Vaccines 2023, 11, 1326. https://doi.org/10.3390/vaccines11081326
Coppeta L, Ferrari C, Verno G, Somma G, Trabucco Aurilio M, Di Giampaolo L, Treglia M, Magrini A, Pietroiusti A, Rizza S. Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood. Vaccines. 2023; 11(8):1326. https://doi.org/10.3390/vaccines11081326
Chicago/Turabian StyleCoppeta, Luca, Cristiana Ferrari, Greta Verno, Giuseppina Somma, Marco Trabucco Aurilio, Luca Di Giampaolo, Michele Treglia, Andrea Magrini, Antonio Pietroiusti, and Stefano Rizza. 2023. "Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood" Vaccines 11, no. 8: 1326. https://doi.org/10.3390/vaccines11081326
APA StyleCoppeta, L., Ferrari, C., Verno, G., Somma, G., Trabucco Aurilio, M., Di Giampaolo, L., Treglia, M., Magrini, A., Pietroiusti, A., & Rizza, S. (2023). Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood. Vaccines, 11(8), 1326. https://doi.org/10.3390/vaccines11081326