Methodology of Purification of Inactivated Cell-Culture-Grown SARS-CoV-2 Using Size-Exclusion Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Preparation of Inactivated Virus Concentrate
2.3. Chromatography
2.4. Analytical Methods
2.4.1. Total Protein Content Analysis
2.4.2. Viral Antigen Content Analysis with ELISA
2.4.3. Host Cell DNA (hcDNA) Content Analysis
2.4.4. Bovine Serum Albumin (BSA) Content Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- WHO. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 13 April 2022).
- ICTV. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 13 April 2022).
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Alhatlani, B. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J. 2021, 19, 2508–2517. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Huang, B.; Deng, W.; Quan, Y.; Wang, W.; Xu, W.; Zhao, Y.; Li, N.; Zhang, J.; et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell 2020, 182, 713–721.e9. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, Y.E.; van’t Oever, A.G.; Vinke, M.; Spiekstra, A.; Wijffels, R.H.; van der Pol, L.A.; Bakker, W.A. Scale-down of the inactivated polio vaccine production process. Biotechnol. Bioeng. 2013, 110, 1354–1365. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, J.; Holleman, M.; de Boer, O.; de Jong, P.; Luytjes, W. An international technology platform for influenza vaccines. Vaccine 2011, 29 (Suppl. S1), A8–A11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuck, C.P.; Wong, C.H.; Chow, L.M.; Fung, K.P.; Waye, M.M.; Tsui, S.K. Expression of SARS-coronavirus spike glycoprotein in Pichia pastoris. Virus Genes 2009, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierig, T.; Collu, G.; Blanc, A.; Poghosyan, E.; Benoit, R.M. Design, Expression, Purification, and Characterization of a YFP-Tagged 2019-nCoV Spike Receptor-Binding Domain Construct. Front. Bioeng. Biotechnol. 2020, 8, 618615. [Google Scholar] [CrossRef] [PubMed]
- Loa, C.C.; Lin, T.L.; Wu, C.C.; Bryan, T.; Hooper, T.; Schrader, D. Specific mucosal IgA immunity in turkey poults infected with turkey coronavirus. Vet. Immunol. Immunopathol. 2002, 88, 57–64. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Guo, J.; Wan, X.; Zhou, J.G.; Jin, W.P.; Lu, J.; Wang, W.H.; Yang, A.N.; Liu, D.X.; Shi, Z.L.; et al. Biochemical and antigenic characterization of the structural proteins and their post-translational modifications in purified SARS-CoV-2 virions of an inactivated vaccine candidate. Emerg. Microbes Infect. 2020, 9, 2653–2662. [Google Scholar] [CrossRef] [PubMed]
- Kozlovskaya, L.I.; Piniaeva, A.N.; Ignatyev, G.M.; Gordeychuk, I.V.; Volok, V.P.; Rogova, Y.V.; Shishova, A.A.; Kovpak, A.A.; Ivin, Y.Y.; Antonova, L.P.; et al. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerg. Microbes Infect. 2021, 10, 1790–1806. [Google Scholar] [CrossRef] [PubMed]
- Ishmukhametov, A.A.; Siniugina, A.A.; Yagovkina, N.V.; Kuzubov, V.I.; Zakharov, K.A.; Volok, V.P.; Dodina, M.S.; Gmyl, L.V.; Korotina, N.A.; Theodorovich, R.D.; et al. Safety and immunogenicity of inactivated whole virion vaccine CoviVac against COVID-19: A multicenter, randomized, double-blind, placebo-controlled phase I/II clinical trial. medRxiv 2022. [Google Scholar] [CrossRef]
- Kozlovskaya, L.; Piniaeva, A.; Ignatyev, G.; Selivanov, A.; Shishova, A.; Kovpak, A.; Gordeychuk, I.; Ivin, Y.; Berestovskaya, A.; Prokhortchouk, E.; et al. Isolation and phylogenetic analysis of SARS-CoV-2 variants collected in Russia during the COVID-19 outbreak. Int. J. Infect. Dis. 2020, 99, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Waterborg, J.H.; Matthews, H.R. The Lowry method for protein quantitation. Methods Mol. Biol. 1994, 32, 7–10. [Google Scholar] [CrossRef]
- Registration of Drugs in Russia and EAEU (CIS). Available online: https://pharmacopoeia.ru/ofs-1-2-3-0012-15-opredelenie-belka/ (accessed on 13 April 2022).
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Bagrov, D.V.; Glukhov, G.S.; Moiseenko, A.V.; Karlova, M.G.; Litvinov, D.S.; Zaitsev, P.A.; Kozlovskaya, L.I.; Shishova, A.A.; Kovpak, A.A.; Ivin, Y.Y.; et al. Structural characterization of β-propiolactone inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particles. Microsc. Res. Tech. 2022, 85, 562–569. [Google Scholar] [CrossRef] [PubMed]
- European Directorate for the Quality of Medicines & Healthcare. European Pharmacopoeia (Ph. Eur.), 10th ed.; EDQM: Strasbourg, France, 2022. [Google Scholar]
Resin | Exclusion Limit 1 | H 2 (cm−1) | Vcol 3 (mL) | HETP 4 (mm) | Asym 5 |
---|---|---|---|---|---|
Seplife 6 FF | 10,000 kD ~4 × 106 globulin | 29.4 | 152 | 6345 | 1.35 |
WorkBeads 40/100 | 150 kD | 18.4 | 98 | 11,955 | 0.98 |
WorkBeads 40/1000 | 1200 kD | 34.0 | 180 | 9527 | 1.58 |
WorkBeads 40/10,000 | 10,000 kD | 29.2 | 152 | 7996 | 2.09 |
Resin | Fraction | Total Protein, μg/mL | hcDNA, ng/mL | BSA, μg/mL | Viral Antigen, μg/mL |
---|---|---|---|---|---|
Virus concentrate | - | 293,100 | >100 | >100 | 3900 |
Seplife 6 FF 1 | F1 | 479 ± 115 | 23.3 ± 5.6 | 0 | 125 ± 39 |
F2 | 1575 ± 526 | 45.0 ± 5.0 | >10 | 206 ± 39 | |
F3 | 3780 ± 320 | 4.60 ± 2.65 | >10 | 346 ± 127 | |
WorkBeads 40/100 | F1 | 2539 ± 108 | 55 ± 24 | 15.6 ± 15.4 | 721 ± 128 |
F2 | 2851 | 6.51 | >10 | 675 | |
F3 | 6679 | 1.42 | >10 | 1391 | |
WorkBeads 40/1000 | F1 | 1307 ± 94 | 20.0 ± 3.6 | 4.6 ± 4.7 | 226 ± 37 |
F2 | 1574 | 6.40 | >10 | 304 | |
F3 | 5012 | 1.57 | >10 | 1442 | |
WorkBeads 40/10,000 | F1 | 901 ± 45 | 0 | >10 | 216 ± 52 |
F2 | 1464 | 15.6 | >10 | 447 | |
F3 | 5448 | 22.5 | >10 | 1289 |
Resin | Purity, % |
---|---|
Seplife 6 FF | 99.63 |
WorkBeads 40/100 | 99.29 |
WorkBeads 40/1000 | 98.12 |
WorkBeads 40/10,000 | 99.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovpak, A.A.; Piniaeva, A.N.; Gerasimov, O.A.; Tcelykh, I.O.; Ermakova, M.Y.; Zyrina, A.N.; Danilov, D.V.; Ivin, Y.Y.; Kozlovskaya, L.I.; Ishmukhametov, A.A. Methodology of Purification of Inactivated Cell-Culture-Grown SARS-CoV-2 Using Size-Exclusion Chromatography. Vaccines 2022, 10, 949. https://doi.org/10.3390/vaccines10060949
Kovpak AA, Piniaeva AN, Gerasimov OA, Tcelykh IO, Ermakova MY, Zyrina AN, Danilov DV, Ivin YY, Kozlovskaya LI, Ishmukhametov AA. Methodology of Purification of Inactivated Cell-Culture-Grown SARS-CoV-2 Using Size-Exclusion Chromatography. Vaccines. 2022; 10(6):949. https://doi.org/10.3390/vaccines10060949
Chicago/Turabian StyleKovpak, Anastasia A., Anastasia N. Piniaeva, Oleg A. Gerasimov, Irina O. Tcelykh, Mayya Y. Ermakova, Anna N. Zyrina, Dmitry V. Danilov, Yury Y. Ivin, Liubov I. Kozlovskaya, and Aydar A. Ishmukhametov. 2022. "Methodology of Purification of Inactivated Cell-Culture-Grown SARS-CoV-2 Using Size-Exclusion Chromatography" Vaccines 10, no. 6: 949. https://doi.org/10.3390/vaccines10060949
APA StyleKovpak, A. A., Piniaeva, A. N., Gerasimov, O. A., Tcelykh, I. O., Ermakova, M. Y., Zyrina, A. N., Danilov, D. V., Ivin, Y. Y., Kozlovskaya, L. I., & Ishmukhametov, A. A. (2022). Methodology of Purification of Inactivated Cell-Culture-Grown SARS-CoV-2 Using Size-Exclusion Chromatography. Vaccines, 10(6), 949. https://doi.org/10.3390/vaccines10060949