Resistance towards ChadOx1 nCoV-19 in an 83 Years Old Woman Experiencing Vaccine Induced Thrombosis with Thrombocytopenia Syndrome
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Collection and Handling
2.2. Patient and Controls Description
2.3. Analytical Procedures
2.4. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tatsis, N.; Ertl, H.C. Adenoviruses as vaccine vectors. Mol. Ther. 2004, 10, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C., Jr. Innate immune recognition: Mechanisms and pathways. Immunol. Rev. 2000, 173, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, K.L.; Best, E. Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Front. Immunol. 2020, 11, 579250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.-C.; Guan, X.-H.; Li, Y.-H.; Huang, J.-Y.; Jiang, T.; Hou, L.-H.; Li, J.-X.; Yang, B.-F.; Wang, L.; Wang, W.-J.; et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Pine, S.O.; Kublin, J.G. Pre-Existing Adenovirus Immunity Modifies a Complex Mixed Th1 and Th2 Cytokine Response to an Ad5/HIV-1 Vaccine Candidate in Humans. PLoS ONE 2011, 6, e18526. [Google Scholar] [CrossRef]
- McCoy, K.; Tatsis, N.; Korioth-Schmitz, B.; Lasaro, M.O.; Hensley, S.E.; Lin, S.-W.; Li, Y.; Giles-Davis, W.; Cun, A.; Zhou, D.; et al. Effect of Preexisting Immunity to Adenovirus Human Serotype 5 Antigens on the Immune Responses of Nonhuman Primates to Vaccine Regimens Based on Human- or Chimpanzee-Derived Adenovirus Vectors. J. Virol. 2007, 81, 6594–6604. [Google Scholar] [CrossRef] [Green Version]
- Varnavski, A.N.; Zhang, Y.; Schnell, M.; Tazelaar, J.; Louboutin, J.-P.; Yu, Q.-C.; Bagg, A.; Gao, G.-P.; Wilson, J.M. Preexisting Immunity to Adenovirus in Rhesus Monkeys Fails to Prevent Vector-Induced Toxicity. J. Virol. 2002, 76, 5711–5719. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.R.; Lynch, D.M.; Iampietro, M.J.; Borducchi, E.N.; Barouch, D.H. Adenovirus Serotype 5 Neutralizing Antibodies Target both Hexon and Fiber following Vaccination and Natural Infection. J. Virol. 2012, 86, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Sumida, S.M.; Truitt, D.M.; Lemckert, A.A.C.; Vogels, R.; Custers, J.H.H.V.; Addo, M.M.; Lockman, S.; Peter, T.; Peyerl, F.W.; Kishko, M.G.; et al. Neutralizing Antibodies to Adenovirus Serotype 5 Vaccine Vectors Are Directed Primarily against the Adenovirus Hexon Protein. J. Immunol. 2005, 174, 7179–7185. [Google Scholar] [CrossRef] [Green Version]
- Bottermann, M.; Foss, S.; van Tienen, L.M.; Vaysburd, M.; Cruickshank, J.; O’Connell, K.; Clark, J.; Mayes, K.; Higginson, K.; Hirst, J.C.; et al. TRIM21 mediates antibody inhibition of adenovirus-based gene delivery and vaccination. Proc. Natl. Acad. Sci. USA 2018, 115, 10440–10445. [Google Scholar] [CrossRef]
- Knoll, M.D.; Wonodi, C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet 2021, 397, 72–74. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Chang, J. Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Netw. 2021, 21, e6. [Google Scholar] [CrossRef]
- Excoffon, K.J.D.A. The coxsackievirus and adenovirus receptor: Virological and biological beauty. FEBS Lett. 2020, 594, 1828–1837. [Google Scholar] [CrossRef]
- Sharma, P.; Martis, P.C.; Excoffon, K.J. Adenovirus transduction: More complicated than receptor expression. Virology 2017, 502, 144–151. [Google Scholar] [CrossRef]
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet 2020, 396, 1979–1993. [Google Scholar] [CrossRef]
- Douxfils, J.; Vayne, C.; Pouplard, C.; Lecompte, T.; Favresse, J.; Potier, F.; Gasser, E.; Mathieux, V.; Dogné, J.-M.; Gruel, Y.; et al. Fatal exacerbation of ChadOx1-nCoV-19-induced thrombotic thrombocytopenia syndrome after initial successful therapy with intravenous immunoglobulins—A rational for monitoring immunoglobulin G levels. Haematologica 2021, 106, 3249–3252. [Google Scholar] [CrossRef]
- Morel-Kopp, M.-C.; Mullier, F.; Gkalea, V.; Bakchoul, T.; Minet, V.; Elalamy, I.; Ward, C.M.; Immunology, T.S.O.P. Heparin-induced multi-electrode aggregometry method for heparin-induced thrombocytopenia testing: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2016, 14, 2548–2552. [Google Scholar] [CrossRef]
- Robert, T. Proposed Brighton Collaboration Process for Developing a Standard Case Definition for Study of New Clinical Syndrome X, as Applied to Thrombosis with Thrombocytopenia Syndrome (TTS)-V10.16.3. 2021. Available online: https://brightoncollaboration.us/wp-content/uploads/2021/04/TTS-Case-Finding-and-Definition-Process.v9.0-April-16-202115853,pdf (accessed on 30 May 2021).
- Favresse, J.; Eucher, C. Clinical Performance of the Elecsys Electrochemiluminescent Immunoassay for the Detection of SARS-CoV-2 Total Antibodies. Clin. Chem. 2020, 66, 1104–1106. [Google Scholar] [CrossRef]
- Sharma, P.; Kolawole, A.; Wiltshire, S.M.; Frondorf, K.; Excoffon, K.J.D.A. Accessibility of the coxsackievirus and adenovirus receptor and its importance in adenovirus gene transduction efficiency. J. Gen. Virol. 2012, 93, 155–158. [Google Scholar] [CrossRef]
- Zhong, Z.; Shi, S.; Han, J.; Zhang, Z.; Sun, X. Anionic Liposomes Increase the Efficiency of Adenovirus-Mediated Gene Transfer to Coxsackie-Adenovirus Receptor Deficient Cells. Mol. Pharm. 2010, 7, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, J.; Lin, T.; Huang, X.; Roth, J.A.; Fang, B. Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther. 2002, 9, 1262–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liikanen, I.; Monsurrò, V.; Ahtiainen, L.; Raki, M.; Hakkarainen, T.; Diaconu, I.; Escutenaire, S.; Hemminki, O.; Dias, J.D.; Cerullo, V.; et al. Induction of Interferon Pathways Mediates In Vivo Resistance to Oncolytic Adenovirus. Mol. Ther. 2011, 19, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Ockenhouse, C.F.; Regules, J.; Tosh, D.; Cowden, J.; Kathcart, A.; Cummings, J.; Paolino, K.; Moon, J.; Komisar, J.; Kamau, E.; et al. Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naïve Adults. PLoS ONE 2015, 10, e0131571. [Google Scholar] [CrossRef] [PubMed]
- Ophorst, O.J.; Radošević, K.; Klap, J.M.; Sijtsma, J.; Gillissen, G.; Mintardjo, R.; van Ooij, M.J.; Holterman, L.; Companjen, A.; Goudsmit, J.; et al. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant. Vaccine 2007, 25, 6501–6510. [Google Scholar] [CrossRef]
- Yusuf, Y.; Yoshii, T.; Iyori, M.; Yoshida, K.; Mizukami, H.; Fukumoto, S.; Yamamoto, D.S.; Alam, A.; Bin Emran, T.; Amelia, F.; et al. Adeno-Associated Virus as an Effective Malaria Booster Vaccine Following Adenovirus Priming. Front. Immunol. 2019, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Shahnaij, M.; Iyori, M.; Mizukami, H.; Kajino, M.; Yamagoshi, I.; Syafira, I.; Yusuf, Y.; Fujiwara, K.; Yamamoto, D.S.; Kato, H.; et al. Liver-Directed AAV8 Booster Vaccine Expressing Plasmodium falciparum Antigen Following Adenovirus Vaccine Priming Elicits Sterile Protection in a Murine Model. Front. Immunol. 2021, 12, 612910. [Google Scholar] [CrossRef]
Sample Dilution Factor | Sample D0 Absorbance | Sample D1 Absorbance |
---|---|---|
1/4 | 0.07 | 0.07 |
1/8 | 0.07 | 0.07 |
1/16 | 0.06 | 0.08 |
1/32 | 0.06 | 0.08 |
1/64 | 0.06 | 0.07 |
1/128 | 0.08 | 0.06 |
1/256 | 0.07 | 0.06 |
1/512 | 0.08 | 0.08 |
1/1024 | 0.07 | 0.07 |
Sample Dilution Factor | VAXZEVRIA Double-Vaccinated Patients Mean Concentration (ng/mL) |
---|---|
1/4 | 24.52 (95% CI: 17.23–31.81) |
1/8 | 23.36 (95% CI: 17.00–29.71) |
1/16 | 24.28 (95% CI: 17.21–31.35) |
1/32 | 21.98 (95% CI: 14.82–29.13) |
1/64 | 22.71 (95% CI: 14.24–31.19) |
1/128 | 22.81 (95% CI: 16.15–28.99) |
1/256 | 22.57 (95% CI: 16.15–28.99) |
1/512 | 21.60 (95% CI: 17.20–26.00) |
1/1024 | 24.06 (95% CI: 18.16–29.96) |
Overall mean (ng/mL) | 23.10 (95% CI: 22.31–23.89) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillot, C.; Favresse, J.; Maloteau, V.; Mathieux, V.; Dogné, J.-M.; Mullier, F.; Douxfils, J. Resistance towards ChadOx1 nCoV-19 in an 83 Years Old Woman Experiencing Vaccine Induced Thrombosis with Thrombocytopenia Syndrome. Vaccines 2022, 10, 2056. https://doi.org/10.3390/vaccines10122056
Gillot C, Favresse J, Maloteau V, Mathieux V, Dogné J-M, Mullier F, Douxfils J. Resistance towards ChadOx1 nCoV-19 in an 83 Years Old Woman Experiencing Vaccine Induced Thrombosis with Thrombocytopenia Syndrome. Vaccines. 2022; 10(12):2056. https://doi.org/10.3390/vaccines10122056
Chicago/Turabian StyleGillot, Constant, Julien Favresse, Vincent Maloteau, Valérie Mathieux, Jean-Michel Dogné, François Mullier, and Jonathan Douxfils. 2022. "Resistance towards ChadOx1 nCoV-19 in an 83 Years Old Woman Experiencing Vaccine Induced Thrombosis with Thrombocytopenia Syndrome" Vaccines 10, no. 12: 2056. https://doi.org/10.3390/vaccines10122056
APA StyleGillot, C., Favresse, J., Maloteau, V., Mathieux, V., Dogné, J. -M., Mullier, F., & Douxfils, J. (2022). Resistance towards ChadOx1 nCoV-19 in an 83 Years Old Woman Experiencing Vaccine Induced Thrombosis with Thrombocytopenia Syndrome. Vaccines, 10(12), 2056. https://doi.org/10.3390/vaccines10122056