Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Determination of Total Phenolics in Wines
2.3. Measurement of the Free Radical-Scavenging Activity in Wine
2.4. Extraction of Spices
2.5. Determination of Total Phenol in Spice Extracts
2.6. Measurement of Spice Free Radical-Scavenging Activity
3. Results and Discussion
3.1. Total Phenolic Compounds and Radical Scavenging Activity of Wines
Entry | Region | Vintage | Price $ | Total phenols (mg/L) | LC50 (mg of phenol/L) |
---|---|---|---|---|---|
1 | California | 2005 | 40 | 2940 | 1.5 ± 0.2 |
2 | California | 2006 | 27 | 3475 | 1.4 ± 0.2 |
3 | California | 2007 | 9 | 2403 | 1.5 ± 0.2 |
4 | California | 2007 | 12 | 2658 | 1.6 ± 0.3 |
5 | California | 2007 | 8 | 1648 | 1.0 ± 0.1 |
6 | California | 2007 | 11 | 3094 | 1.6 ± 0.3 |
7 | California | 2007 | 14 | 2735 | 1.6 ± 0.3 |
8 | California | 2008 | 12 | 2312 | 1.5 ± 0.2 |
9 | California | 2008 | 6 | 2285 | 1.7 ± 0.2 |
10 | California | 2008 | 12 | 2467 | 1.6 ± 0.2 |
11 | Chile | 2007 | 10 | 2841 | 1.7 ± 0.3 |
12 | Chile | 2007 | 12 | 3910 | 1.9 ± 0.3 |
13 | Chile | 2007 | 11 | 2878 | 1.8 ± 0.3 |
14 | Chile | 2007 | 21 | 2874 | 1.7 ± 0.3 |
15 | Chile | 2008 | 18 | 2678 | 1.7 ± 0.2 |
16 | Chile | 2008 | 10 | 2783 | 1.9 ± 0.3 |
17 | Chile | 2008 | 15 | 3001 | 1.8 ± 0.3 |
18 | Chile | 2008 | 10 | 2568 | 1.7 ± 0.2 |
19 | Chile | 2008 | 20 | 2456 | 1.8 ± 0.3 |
20 | Chile | 2008 | 15 | 2874 | 1.9 ± 0.3 |
21 | Argentina | 2007 | 20 | 2885 | 1.3 ± 0.1 |
22 | Argentina | 2007 | 11 | 3375 | 1.7 ± 0.2 |
23 | Argentina | 2007 | 9 | 4495 | 1.9 ± 0.2 |
24 | Argentina | 2008 | 11 | 3299 | 1.6 ± 0.2 |
25 | Argentina | 2008 | 9 | 3456 | 1.7 ± 0.2 |
26 | Australia | 2007 | 10 | 3621 | 1.9 ± 0.3 |
27 | Australia | 2007 | 15 | 2185 | 1.4 ± 0.1 |
28 | Australia | 2007 | 8 | 2739 | 1.7 ± 0.2 |
29 | Australia | 2007 | 15 | 2988 | 1.5 ± 0.1 |
30 | Australia | 2008 | 8 | 2345 | 1.7 ± 0.2 |
31 | France | 2006 | 8 | 3412 | 1.7 ± 0.2 |
32 | France | 2006 | 12 | 2849 | 1.4 ± 0.2 |
33 | France | 2007 | 16 | 3211 | 1.7 ± 0.2 |
34 | France | 2007 | 13 | 2789 | 1.7 ± 0.2 |
35 | France | 2007 | 12 | 2887 | 1.6 ± 0.2 |
36 | South Africa | 2006 | 10 | 2671 | 1.7 ± 0.3 |
37 | South Africa | 2007 | 10 | 2703 | 1.6 ± 0.2 |
38 | South Africa | 2007 | 10 | 2434 | 1.6 ± 0.2 |
Region | Vintage | Months in barrels | Total phenols mg/L | LC50 mg of phenol/L |
---|---|---|---|---|
California | 2005 | 24 | 2987 | 1.9 ± 0.2 |
California | 2005 | 24 | 3005 | 1.7 ± 0.2 |
California | 2006 | 14 | 3578 | 1.5 ± 0.1 |
California | 2007 | 14 | 2398 | 1.3 ± 0.1 |
California | 2007 | 14 | 2398 | 1.5 ± 0.1 |
Pennsylvania | 2011 | 11 | 3132 | 1.7 ± 0.2 |
Pennsylvania | 2011 | 11 | 2879 | 1.6 ± 0.2 |
Pennsylvania | 2011 | 11 | 2856 | 1.8 ± 0.2 |
Chile | 2007 | 10 | 4011 | 1.9 ± 0.2 |
Chile | 2007 | 10 | 3450 | 1.7 ± 0.2 |
Argentina | 2007 | 4 | 2995 | 1.5 ± 0.2 |
Argentina | 2007 | 4 | 2902 | 1.3 ± 0.1 |
3.2. Total Phenolics and Radical Scavenging Activity of Spice Extracts
Spice | Total phenol (mg/L) | LC50 (mg of phenol/L) |
---|---|---|
Eucalyptus | 1387.5 ± 10.5 | 324.5 ± 15.5 |
Marjoram | 1159.0 ± 9.2 | 408.0 ± 10.3 |
Rosemary | 1972.3 ± 7.5 | 414.2 ± 14.6 |
Thyme | 1987.3 ± 5.2 | 484.3 ± 18.5 |
Oregano | 4033.1 ± 10.1 | 592.5 ± 15.5 |
Sage | 1212.5 ± 8.5 | 788.2 ± 10.2 |
Linden leaves | 375.6 ± 7.8 | 3760.4 ± 101.5 |
Anise | 191.8 ± 9.3 | 5140.7 ± 105.0 |
Cumin | 220.0 ± 10.9 | 5910.9 ± 110.4 |
Ginger | 556.5 ± 70.5 | 7600.5 ± 230.5 |
Cilantro | 251.0 ± 32.3 | 7880.2 ± 118.2 |
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Bellomo, G. Cell demage by oxygen free radicals. Cytotechnology 1991, 5, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. Am. J. Med. 1991, 91 (Suppl. 3c), S14–S22. [Google Scholar]
- Salvi, A.; Carrupt, P.A.; Tillement, J.P.; Testa, B. Structural damage to proteins caused by free radicals: Assessment, protection by antioxidants, and influence of protein binding. Biochem. Pharmacol. 2001, 61, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Floyd, R.A.; Carney, J.M. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 1992, 32, S22–S27. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant derived phenolic flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef]
- Duthie, G.; Crozier, A. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 2000, 11, 43–47. [Google Scholar] [CrossRef]
- Stoclet, J.C.; Chataigneau, T.; Ndiaye, M.; Oak, M.H.; El Bedoui, J.; Chataigneau, M.; Schini-Kerth, V.B. Vascular protection by dietary polyphenols. Eur. J. Pharm. 2004, 500, 299–313. [Google Scholar] [CrossRef]
- Vinson, J.A.; Dabbagh, Y.A.; Serry, M.M.; Jang, J. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agric.Food Chem. 1995, 43, 2800–2802. [Google Scholar] [CrossRef]
- Tunstall-Pedoe, H.; Kuulasmaa, K.; Mahonen, N.; Tolonen, H.; Ruokokoski, E.; Amouyel, P. Contribution of trends in survival and coronary-event rates to changes in coranary heart disease mortality: 10-Year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet 1999, 353, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1999, 339, 1523–1523. [Google Scholar] [CrossRef]
- Rimm, E.B.; Klatsky, A.; Grobbe, D.; Stampfer, M.J. Review of moderate alcohol consumption and reduced risk of coronary heart disease: Is the effect due to beer, wine, or spirits. Br. Med. J. 1996, 312, 731–736. [Google Scholar] [CrossRef]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Wine as biological fluid: History, production, and role in disease prevention. J. Clin. Lab. Anal. 1997, 11, 287–313. [Google Scholar] [CrossRef]
- Frankel, E.N.; Waterhouse, A.L.; Kinsella, J.E. Inhibition of human LDL oxidation by resveratrol. Lancet 1993, 341, 1103–1104. [Google Scholar] [PubMed]
- Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.-L. Principal phenolic phytochemicals in selected Californian wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1995, 43, 890–894. [Google Scholar] [CrossRef]
- Teissedre, P.-L.; Frankel, E.N.; Waterhouse, A.L.; Peleg, H.; German, J.B. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wine. J. Sci. Food Agric. 1996, 70, 55–61. [Google Scholar] [CrossRef]
- Chipault, J.R.; Mizuto, G.R.; Hawkins, J.M.; Lundberg, W.O. The antioxidant properties of natural spices. J. Food Sci. 1952, 17, 46–55. [Google Scholar] [CrossRef]
- Chipault, J.R.; Mizuto, G.R.; Hawkins, J.M.; Lundberg, W.O. Antioxidant and antimicrobial constituents of herbs and spices. Food Res. 1955, 20, 443–449. [Google Scholar] [CrossRef]
- Chipault, J.R.; Mizuto, G.R.; Hawkins, J.M.; Lundberg, W.O. The antioxidant properties of spices in foods. Food Technol. 1956, 10, 209–211. [Google Scholar]
- Cort, W.M. Hemoglobin peroxidation test screen antioxidants. Food Technol. 1974, 28, 60–66. [Google Scholar]
- Lewis, E.J.; Watts, B.M. Lipid oxidation in heat-sterilized beef. Food Res. 1959, 23, 274–276. [Google Scholar]
- Bishov, S.J.; Masuoka, Y.; Kapsalis, J.G. Antioxidant effect of spices, herbs and protein hydolyzates in freeze-dried model systems: Synergistic action with synthetic phenolic antioxidants. J. Food Process. Preserv. 1977, 1, 153–166. [Google Scholar] [CrossRef]
- Economou, K.D.; Oreopoulou, V.; Thomopoulos, C.D. Antioxidant properties of some plant extracts of the Labiatae family. J. Am. Oil Chem. Soc. 1991, 68, 109–113. [Google Scholar] [CrossRef]
- Wu, J.W.; Lee, M.-H.; Ho, C.-T.; Chang, S.S. Elucidation of the chemical structures of natural antioxidants isolated from rosemary. J. Am. Oil Chem. Soc. 1982, 59, 339–345. [Google Scholar] [CrossRef]
- Tena, M.T.; Valcárcel, M.; Hidalgo, P.J.; Ubera, J.L. Supercritical fluid extraction of natural antioxidants from rosemary: Comparison with liquid solvent sonication. Anal. Chem. 1997, 69, 521–526. [Google Scholar] [CrossRef]
- Chang, S.S.; Ostric-Matijasevic, B.; Hsieh, O.A.L.; Huang, C.-L. Natural antioxidants from rosemary and sage. J. Food Sci. 1977, 42, 1102–1106. [Google Scholar] [CrossRef]
- Ibanez, E.; Kubatova, A.; Senorans, F.J.; Cavero, S.; Reglero, G.; Hawthorne, S.B. Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food Chem. 2003, 51, 375–382. [Google Scholar] [CrossRef]
- Chun, S.-S.; Vattem, D.A.; Lin, Y.-T.; Shetty, K. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; LaVoie, E.J.; Huang, T.-C.; Ho, C.-T. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 1998, 46, 4869–4873. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Nakatani, N. Antioxidant effects of some ginger constituents. J. Food Sci. 1993, 58, 1407–1410. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 26, 1199–1200. [Google Scholar] [CrossRef]
- Lugemwa, F.N. Extraction of betulin, eugenol and carnosic acid using water-organic solvent mixtures. Molecules 2012, 17, 9274–9282. [Google Scholar] [CrossRef]
- Ikawa, M.; Schaper, T.D.; Dollard, C.A.; Sasner, J.J. Utilization of Folin–Ciocalteu phenol reagent for the detection of certain nitrogen compounds. J. Agric. Food Chem. 2003, 51, 1811–1815. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin−Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Ramarathnam, N.; Suzuki, Y.; Ohkubo, T.; Takeuchi, M.; Ochi, H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem. 1996, 44, 37–41. [Google Scholar] [CrossRef]
- Simonetti, P.; Pietta, P.; Testolin, G. Polyphenol content and total antioxidant potential of selected Italian wines. J. Agric. Food Chem. 1997, 45, 1152–1155. [Google Scholar] [CrossRef]
- Zafrilla, P.; Morillas, J.; Mulero, J.; Cayuela, J.M.; Martinez-Cacha, A.; Pardo, F.; Lopez-Nicola, J.M. Changes during storage in conventional and ecological wine: Phenolic content and antioxidant activity. J. Agric. Food Chem. 2003, 51, 4694–4700. [Google Scholar] [CrossRef]
- Hitoshi, A.; Hideaki, T.; Hirofumi, K.; Yoshinobu, K. Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agric. Food Chem. 2004, 52, 5240–5244. [Google Scholar] [CrossRef]
- Carole, V.; Augustin, S.; Catherine, L.; Michel, M. Ellagitannins and Lignins in aging of spirits in oak barrels. J. Agric. Food Chem. 1993, 41, 1872–1879. [Google Scholar] [CrossRef]
- Atsumi, T.; Tonosaki, K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res. 2007, 150, 89–96. [Google Scholar] [CrossRef]
- Bakirel, T.; Bakirel, U.; Keles, O.U.; Ulgen, S.G.; Yardibi, H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J. Ethnopharmacol. 2008, 116, 64–73. [Google Scholar] [CrossRef]
- Karpiska-Tymoszczyk, M. Effect of addition of ground rosemary on the quality and shelf life of turkey meatballs during refrigerated storage. Br. Poult. Sci. 2008, 49, 742–750. [Google Scholar] [CrossRef]
- Perez-Fons, L.; Garzon, M.T.; Micol, V. Relationship between the antioxidant capacity and effect of rosemary polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar] [CrossRef]
- Ho, C.T.; Wang, M.; Wei, G.J.; Huang, T.C.; Huang, M.T. Chemistry and antioxidative factors in rosemary and sage. Biofactors 2000, 13, 161–166. [Google Scholar] [CrossRef]
- Cheung, S.; Tai, J. Anti-proliferative and antioxidant properties of rosemary (Rosmarinus officinalis). Oncol. Rep. 2007, 17, 1525–1531. [Google Scholar] [PubMed]
- Exarchou, V.; Nenadis, N.; Tsimidou, M.; Gerothanassis, I.P.; Troganis, A.; Boshkou, D. Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage and summer savory. J. Agric. Food Chem. 2002, 50, 5294–5299. [Google Scholar] [CrossRef]
- Cuvelier, M.-E.; Berset, C.; Richard, H. Antioxidant constituents in sage (Salvia officinalis). J. Agric. Food Chem. 1994, 42, 665–669. [Google Scholar] [CrossRef]
- Lorena, P.; Renzo, B.; Stefania, V.; Eva, Ü.; Lanfranco, S.C. Antioxidant activity of sage (Salvia officinalis and S fruticosa) and oregano (Origanum onites and O indercedens) extracts related to their phenolic compound content. J. Sci. Food Agric. 2002, 82, 1645–1651. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S.-W.; Aeschbach, R.; Prior, E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Sci. Food Agric. 1996, 44, 131–135. [Google Scholar] [CrossRef]
- Nakatani, N. Natural Antioxidants from Spices. In Phenolic Compounds in Food and Their Effects on Health II; Huang, M.-T., Ho, C.T., Lee, C.Y., Eds.; American Chemical Society: Washington, DC, USA, 1992; pp. 72–86. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lugemwa, F.N.; Snyder, A.L.; Shaikh, K. Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study. Antioxidants 2013, 2, 110-121. https://doi.org/10.3390/antiox2030110
Lugemwa FN, Snyder AL, Shaikh K. Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study. Antioxidants. 2013; 2(3):110-121. https://doi.org/10.3390/antiox2030110
Chicago/Turabian StyleLugemwa, Fulgentius Nelson, Amanda L. Snyder, and Koonj Shaikh. 2013. "Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study" Antioxidants 2, no. 3: 110-121. https://doi.org/10.3390/antiox2030110
APA StyleLugemwa, F. N., Snyder, A. L., & Shaikh, K. (2013). Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study. Antioxidants, 2(3), 110-121. https://doi.org/10.3390/antiox2030110