Evaluation of Anthocyanin Profiling, Total Phenolic and Flavonoid Content, and Antioxidant Activity of Korean Rubus Accessions for Functional Food Applications and Breeding
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Genetic Resources
2.2. Color Value Measurement
2.3. Analysis of Total Phenolic and Flavonoid Content
2.4. Anthocyanin Analysis Using High-Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS)
2.5. Radical Scavenging Assays
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Coloration of Rubus Berries
4.2. Relationship Between Antioxidant Activity and Anthocyanin
4.3. Relationship Between Antioxidant Activity and Healthcare
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPC | Total phenolic content |
TFC | Total flavonoid content |
DPPH | 2-2-diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
FRAP | Ferric-reducing activity power |
TPTZ | iron[III]-2,4,6-tripyridyl-S-triazine |
HPLC-MS | High-performance liquid chromatography–mass spectrometer |
References
- Gevrenova, R.; Zheleva-Dimitrova, D.; Balananova, V. The genus Rubus L.: An insight into phytochemicals and pharmacological studies of leaves from the most promising species. Pharmacia 2024, 71, 1–12. [Google Scholar] [CrossRef]
- Schulz, M.; Chim, J.F. Nutritional and bioactive value of Rubus berries. Food Biosci. 2019, 31, 100438. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Z.; Wang, X.; Qian, J.; Hu, L.; Li, Z.; Li, W. Studies of value in use, chemical compositions, biological and pharmacological activities, and quality control of Rubus berries: A comprehensive review. J. Food Compos. Anal. 2023, 124, 105707. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.K. Review of functional and pharmacological activities of berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (Rubus idaeus): A general review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef] [PubMed]
- Rocabado, G.O.; Bedoya, L.M.; Abad, M.J.; Bermejo, P. Rubus—A review of its phytochemical and pharmacological profile. Nat. Prod. Commun. 2008, 3, 423–436. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Choi, I.S. Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, Bokbunja (Rubus coreanus Miquel) with those of six other berries. CyTA-J. Food 2017, 15, 110–117. [Google Scholar] [CrossRef]
- Gomathi, R.; Umamaheswari, T.N.; Prethipa, R. Evaluation of antioxidant, anti-inflammatory, and antimicrobial activities of raspberry fruit extract: An in vitro study. Cureus 2024, 16, e54045. [Google Scholar] [CrossRef]
- Hałasa, R.; Turecka, K.; Mizerska, U.; Krauze-Baranowska, M. Anti-Helicobactor pylori biofilm extracts from Rubus idaeus and Rubus occidentalis. Pharmaceutics 2024, 16, 501. [Google Scholar] [CrossRef]
- Hunter, R.S.; Harold, R.W. The Measurement of Appearance, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1987. [Google Scholar]
- Ogbunugafor, H.A.; Eneh, F.U.; Ozumba, A.N.; Igwo-Ezikpe, M.N.; Okpuzor, J.; Igwilo, I.O.; Adenekan, S.O.; Onyekwelu, O.A. Physico-chemical and antioxidant peroperties of Moringa oleifera seed oil. Pak. J. Nutr. 2011, 19, 409–414. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.J.; Jo, Y.D.; Choi, H.I.; Kang, K.-Y.; Nam, B.M.; Kim, D.-G.; Jin, C.-H.; Kim, J.-B.; Kim, E.-Y.; et al. Fruit quality and chemical contents of hybrid boysenberry (Rubus ursinus) lines developed by hybridization and gamma irradiation. Plant Breed. Biotechnol. 2017, 5, 228–236. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.J.; Jo, Y.D.; Jin, C.H.; Nam, B.M.; Lee, S.Y.; Jeong, S.W.; Im, S.B.; Oh, S.C.; Cho, L.; et al. Comparison of phytochemicals and antioxidant activity in blackberry (Rubus fruticosus L.) fruits of mutant lines at the different harvest time. Plant Breed. Biotechnol. 2016, 4, 242–251. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef]
- Savych, A.; Marchyshyn, S.; Polonets, O.; Mala, O.; Shcherba, I.; Morozova, L. HPLC-DAD assay of flavonoids and evaluation of antioxidant activity of some herbal mixtures. Pharmacia 2022, 69, 873–881. [Google Scholar] [CrossRef]
- Taveepanich, S.; Chayajarus, K.; Jittimanee, J.; Phusri, N.; Thongdee, P.; Sawatdee, K.; Kamsri, P.; Punkvang, A.; Suttisintong, K.; Pungpo, P.; et al. Iron chelating, antioxidant, and anti-inflammatory properties of brazilin from Caesalpinia sappan Linn. Heliyon 2024, 10, e38213. [Google Scholar] [CrossRef]
- Amarowica, R.; Pegg, R.B. Natural antioxidants of plant origin. Adv. Food Nutr. Res. 2019, 90, 1–81. [Google Scholar] [CrossRef]
- Pradubyat, N.; Wunnakup, T.; Praparatana, R.; Wongwiwatthananukit, S.; Jongrungruangchok, S.; Songsak, T.; Madaka, F.; Sudsai, T. Evaluation of antioxidant and anti-inflammatory properties, bioactive compound profiling, and molecular mechanisms of a multicomponent Thai herbal formulation. Phytomed. Plus 2024, 4, 100662. [Google Scholar] [CrossRef]
- Mendonça, J.d.S.; Guimaraes, R.d.C.A.; Zorgetto-Pinheiro, V.A.; Fernandes, C.D.P.; Marcelino, G.; Bogo, D.; Freitas, K.D.C.; Hiane, P.A.; Melo, E.S.D.P.; Vilela, M.L.B.; et al. Natural antioxidant evaluation: A review of detection methods. Molecules 2022, 27, 3563. [Google Scholar] [CrossRef]
- Esmaeili, A.K.; Taha, R.M.; Mohajer, S.; Banisalam, B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red clover). BioMed Res. Int. 2015, 2015, 643285. [Google Scholar] [CrossRef]
- Vega, E.N.; Molina, A.K.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Stojković, D.; Soković, M.; et al. Anthocyanins from Rubus fruticosus L. and Morus nigra L. applied as food colorants: A natural alternative. Plants 2021, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Pei, X.; Zhang, H.; Li, X.; Zhang, X.; Zhao, M.; Chiang, V.L.; Sederoff, R.R.; Zhao, X. MYB-mediated regulation of anthocyanin biosynthesis. Int. J. Mol. Sci. 2021, 22, 3103. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xin, W.; Li, Y.; Wang, A.; Yang, G. An R2R3-MYB transcription factor RoMYB10 regulates anthocyanin biosynthesis in black raspberry. Agronomy 2023, 13, 1823. [Google Scholar] [CrossRef]
- Baldassi, C.; Lee, C.; Dossett, M.; Castellarin, S.D. High-throughput color determination of red raspberry puree and correlation of color parameters with total anthocyanins. Plant Methods 2024, 20, 78. [Google Scholar] [CrossRef]
- Martins, M.S.; Goncalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with significant health-promoting properties. Int. J. Mol. Sci. 2023, 24, 12024. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Girones-Vilaplana, A.; Djilas, S.; Mena, P.; Cetkovic, G.; Moreno, D.A.; Canadanovic-Brunet, J.; Vulic, J.; Stajcic, S.; Krunic, M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J. Sci. Food Agric. 2014, 94, 2393–2400. [Google Scholar] [CrossRef]
- Lee, J.; Dossett, M.; Finn, C.E. Mistaken identity: Clarification of Rubus coreanus Miquel (Bokbunja). Molecules 2014, 19, 10524–10533. [Google Scholar] [CrossRef]
- Ku, C.S.; Mun, S.P. Antioxidant activities of ethanol extracts from seeds in fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste. Bioresour. Technol. 2008, 99, 4503–4509. [Google Scholar] [CrossRef]
- Foster, T.M.; Bassil, N.V.; Dossett, M.; Worthington, M.L.; Grham, J. Genetic and genomic resources for Rubus breeding: A roadmap for the future. Hortic. Res. 2019, 6, 116. [Google Scholar] [CrossRef]
- Probst, Y. A Review of the Nutrient Composition of Selected Rubus Berries. Faculty of Science, Medicine, and Health-Papers: Part A.2919. 2015. Available online: https://ro.uow.edu.au/smhpapers/2919 (accessed on 21 April 2025).
- Bdajakov, I.; Nikolova, M.; Gevenova, R.; Kondakova, V.; Todorovska, E.; Atanassov, A. Bioactive compounds in small fruits and their influence on human health. Biotechnol. Biotechnol. Equip. 2014, 22, 581–587. [Google Scholar] [CrossRef]
- Lee, H.H.; Moon, Y.S.; Yun, H.K.; Park, P.J.; Kwak, E.J. Contents of bioactive constituents and antioxidant activities of cultivated and wild raspberries. Korean J. Hortic. Sci. Technol. 2014, 32, 115–122. [Google Scholar] [CrossRef]
- Kalt, W.; McDonald, J.E.; Ricker, R.D.; Lu, X. Anthocyanin content and profile within and among blueberry species. Can. J. Plant Sci. 1999, 79, 617–623. [Google Scholar] [CrossRef]
- Campbell, T.F.; Mckenzie, J.; Murray, J.; Delgoda, R.; Bowen-Forbes, C.S. Rubus rosifolius varieties as antioxidant and potential chemopreventive agents. J. Funct. Foods 2017, 37, 49–57. [Google Scholar] [CrossRef]
- Future Market Insights Inc. Antioxidants Market: Antioxidants Market Size, Growth, and Forecast for 2025 to 2035. Future Market Insights Inc. 2025. Available online: https://futuremarketinsights.com/reports/antioxidants-market (accessed on 25 July 2025).
- Huang, X.; Wu, Y.; Zhang, S.; Yang, H.; Wu, W.; Lyu, L.; Li, W. Variation in bioactive compounds and antioxidant activity of Rubus fruits at different developmental stages. Foods 2022, 11, 1169. [Google Scholar] [CrossRef]
- Bartkiene, E.; Juodeikiene, G.; Basinskiene, L.; Liukkonen, K.H.; Adlercreutz, H.; Kluge, H. Enterolignans enterolactone and enterodiol formation from their precursors by the action of intestinal microflora and their relationship with non-starch polysaccharides in various berries and vegetables. LWT-Food Sci. Technol. 2011, 44, 48–53. [Google Scholar] [CrossRef]
- Choi, E.Y.; Kim, E.H.; Lee, J.B.; Kim, H.; Kim, M.-S.; Lee, S.; Kim, S.-H.; Lee, U.; Kim, D.-K.; Lee, J.-T. Bioactive component analysis, antioxidant activity, and cytotoxicity on cancer cells on Rubus crataegifolius clones by region. J. Korean For. Soc. 2016, 105, 193–201. [Google Scholar] [CrossRef]
- Jung, H.; Lee, H.J.; Cho, H.; Hwang, K.T. Antioxidant and anti-proliferative activities of Rubus fruits in Korea. J. Korean Soc. Food Sci. Nutr. 2012, 41, 1649–1655. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, E.; Lee, J.E.; Auh, J.H.; Choi, H.K.; Lee, J.; Cho, S.; Kim, J.H. Effects of a Rubus coreanus Miquel supplement on plasma antixoidant capacity in healthy Korean men. Nutr. Res. Pract. 2011, 5, 429–434. [Google Scholar] [CrossRef]
- Cho, J.M.; Chae, J.; Jeong, S.R.; Moon, M.J.; Ha, K.C.; Kim, S.; Lee, J.H. The cholesterol-lowering effect of unripe Rubus coreanus is associated with decreased oxidized LDL and apolipoprotein B levels in subjects with borderline-high cholesterol levels: A randomized controlled trial. Lipids Health Dis. 2020, 19, 166. [Google Scholar] [CrossRef]
- Franck, M.; de Toro-Martín, J.; Garneau, V.; Guay, V.; Kearney, M.; Pilon, G.; Roy, D.; Couture, P.; Couillard, C.; Marette, A.; et al. Effects of daily raspberry consumption on immune-metabolic health in subjects at risk of metabolic syndrome: A randomized controlled trial. Nutrients 2020, 12, 3858. [Google Scholar] [CrossRef]
- Calderaro, A.; Patanè, G.T.; Tellone, E.; Barreca, D.; Ficarra, S.; Misiti, F.; Laganá, G. The neuroprotective potentiality of flavonoids on Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 14835. [Google Scholar] [CrossRef] [PubMed]
No. | Resources | Common Name | Korean Name | Botanical Name (Scientific Name) | Origin of Resource | Donor | Extraction Solvent for Anthocyanin | Fruit Shape and Color | Leaf Shape |
---|---|---|---|---|---|---|---|---|---|
1 | V7 | Blackberry | - | Rubus ursinus | Wanju, Jeonbuk, Korea | Hanjik Cho | 1% formic acid in absolute methanol | ||
2 | Maple | Wanju, Jeonbuk, Korea | Hanjik Cho | ||||||
3 | Blackpearl | Wanju, Jeonbuk, Korea | Hanjik Cho | ||||||
4 | Resource A | Boysenberry | - | Rubus ursinus × Rubus idaeus | Wanju, Jeonbuk, Korea | Hanjik Cho | |||
5 | Resource B | Wanju, Jeonbuk, Korea | Hanjik Cho | ||||||
6 | Resource C | USA to Wanju, Jeonbuk, Korea | Hanjik Cho | ||||||
7 | Resource D | Raspberry | Santtalki | Rubus crataegifolius | Jeongeup, Jeonbuk, Korea | Wild variety | |||
8 | Resource E | Namwon, Jeonbuk, Korea | Wild variety | Not available | |||||
9 | Resource F | Wanju, Jeonbuk, Korea | Wild variety | ||||||
10 | Resource G | Bokbunjattalki | Rubus coreanus | Jeongeup, Jeonbuk, Korea | Wild variety | ||||
11 | Resource H | Wanju, Jeonbuk, Korea | Wild variety | ||||||
12 | Resource I | Wanju, Jeonbuk, Korea | Hanjik Cho | ||||||
13 | Resource J | Meongseokttalgi | Rubus parvifolius | Jeongeup, Jeonbuk, Korea | Wild variety | ||||
14 | Resource K | Wanju, Jeonbuk, Korea | Wild variety | ||||||
15 | Resource N | Gomttalgi | Rubus phoenicolasius | Jeongeup, Jeonbuk, Korea | Wild variety |
No. | Resources | Botanical Name (Scientific Name) | Hunter’s Color Value | ||
---|---|---|---|---|---|
Lightness (L*) | Redness (a*) | Yellowness (b*) | |||
1 | V7 | Rubus ursinus | 56.39 ± 0.01 i | 66.16 ± 3.76 a | 21.69 ± 2.28 d,e |
2 | Maple | 56.30 ± 0.39 i | 66.57 ± 0.80 a | 25.62 ± 3.59 c,d | |
3 | Blackpearl | 71.74 ± 0.33 g | 45.17 ± 1.61 b | 9.21 ± 1.05 g,h | |
4 | Resource A | Rubus ursinus × Rubus idaeus | 59.80 ± 0.60 h | 68.46 ± 1.75 a | 4.72 ± 0.53 h |
5 | Resource B | 54.64 ± 0.15 j | 68.56 ± 1.28 a | 12.41 ± 1.35 f,g,h | |
6 | Resource C | 59.05 ± 0.38 h | 68.68 ± 0.86 a | 6.54 ± 3.11 g,h | |
7 | Resource D | Rubus crataegifolius | 81.74 ± 0.29 e | 24.59 ± 2.27 d,e | 13.31 ± 1.47 e,f,g |
8 | Resource E | 78.48 ± 0.80 f | 33.82 ± 1.23 c | 9.92 ± 1.41 g,h | |
9 | Resource F | 82.18 ± 0.16 c,d | 26.78 ± 1.28 d | 12.70 ± 1.70 f,g,h | |
10 | Resource G | Rubus coreanus | 50.52 ± 0.44 l | 68.13 ± 2.32 a | 43.44 ±2.48 b |
11 | Resource H | 52.70 ± 0.72 k | 68.91 ± 0.72 a | 33.94 ± 2.85 c | |
12 | Resource I | 47.96 ± 0.36 m | 67.71 ± 0.71 a | 53.73 ± 7.19 a | |
13 | Resource J | Rubus parvifolius | 88.61 ± 0.35 a | 9.88 ± 0.71 f | 26.78 ± 1.96 c,d |
14 | Resource K | 84.63 ± 0.37 b | 20.67 ± 0.84 e | 20.62 ± 2.28 d,e,f | |
15 | Resource N | Rubus phoenicolasius | 83.12 ± 0.61 c | 26.91 ± 2.00 d | 6.19 ± 2.05 g,h |
No. | Resources | Botanical Name (Scientific Name) | Total Phenolic Contents (TAE, mg g−1 of Frozen Fruits) | Total Flavonoid Content (QE, mg g−1 of Frozen Fruits) |
---|---|---|---|---|
1 | V7 | Rubus ursinus | 3.40 ± 0.09 c,d | 4.54 ± 0.17 e,f |
2 | Maple | 3.56 ± 0.04 c | 5.99 ± 0.28 c | |
3 | Blackpearl | 1.92 ± 0.01 g | 3.72 ± 0.08 g | |
4 | Resource A | Rubus ursinus × Rubus idaeus | 3.18 ± 0.10 d,e | 5.06 ± 0.11 d,e |
5 | Resource B | 3.36 ± 0.01 c,d | 4.82 ± 0.14 e | |
6 | Resource C | 3.34 ± 0.21 c,d | 5.11 ± 0.16 d,e | |
7 | Resource D | Rubus crataegifolius | 3.05 ± 0.06 e | 4.43 ± 0.15 e,f |
8 | Resource E | 2.51 ± 0.02 f | 4.16 ± 0.21 f,g | |
9 | Resource F | 7.54 ± 0.10 a | 6.90 ± 0.25 a,b | |
10 | Resource G | Rubus coreanus | 3.46 ± 0.03 c,d | 7.02 ± 0.38 a,b |
11 | Resource H | 3.34 ± 0.08 c,d | 5.76 ± 0.20 c | |
12 | Resource I | 4.85 ± 0.20 b | 7.52 ± 0.14 a | |
13 | Resource J | Rubus parvifolius | 2.52 ± 0.03 f | 4.20 ± 0.25 f,g |
14 | Resource K | 1.03 ± 0.04 i | 2.75 ± 0.18 h | |
15 | Resource N | Rubus phoenicolasius | 1.43 ± 0.02 h | 3.22 ± 0.14 g,h |
No. | Resources | Botanical Name (Scientific Name) | DPPH Radical * IC50 (µg mL−1) | ABTS+ Radical IC50 (µg mL−1) | Superoxide Radical IC50 (µg mL−1) | Fe2+ Chelating IC50 (µg mL−1) |
---|---|---|---|---|---|---|
1 | V7 | Rubus ursinus | 112.15 #2 | 59.74 #2 | 201.75 | 415.68 |
2 | Maple | 240.82 | 73.31 | 155.66 #2 | 507.28 | |
3 | Blackpearl | 237.41 | 97.11 | 213.64 | 459.56 | |
4 | Resource A | Rubus ursinus × Rubus idaeus | 276.58 | 84.42 | 189.89 #5 | 296.11 #4 |
5 | Resource B | 246.25 | 111.54 | 245.51 | 263.74 #2 | |
6 | Resource C | 212.61 | 68.93 #5 | 173.87 #4 | 343.98 #5 | |
7 | Resource D | Rubus crataegifolius | 169.52 #4 | 60.52 #3 | 296.62 | 509.39 |
8 | Resource E | 156.26 #3 | 156.26 | 706.60 | 707.53 | |
9 | Resource F | 45.88 #1 | 8.53 #1 | 272.33 | 266.40 #3 | |
10 | Resource G | Rubus coreanus | 204.40 #5 | 72.13 | 246.67 | 457.14 |
11 | Resource H | 374.85 | 76.31 | 158.94 #3 | 526.22 | |
12 | Resource I | 421.09 | 65.55 #4 | 192.40 | 457.24 | |
13 | Resource J | Rubus parvifolius | 224.61 | 74.84 | 149.55 #1 | 442.16 |
14 | Resource K | 225.83 | 111.78 | 210.61 | 238.87 #1 | |
15 | Resource N | Rubus phoenicolasius | 548.39 | 186.37 | 267.01 | 487.49 |
No. | Resources | Botanical Name (Scientific Name) | Ferric-Reducing Activity Power (O.D = 593 nm) | ||||
---|---|---|---|---|---|---|---|
Concentrations (µg mL−1) | |||||||
10 | 30 | 100 | 300 | 1000 | |||
1 | V7 | Rubus ursinus | 0.053 ± 0.001 g | 0.137 ± 0.000 fg | 0.390 ± 0.008 f | 1.024 ± 0.018 h | h 2.392 ± 0.065 #3 |
2 | Maple | 0.049 ± 0.001 fg | 0.113 ± 0.002 g | 0.321 ± 0.007 | 0.847 ± 0.010 fg | fg 2.187 ± 0.052 | |
3 | Blackpearl | 0.039 ± 0.002 cd | 0.082 ± 0.001 abc | 0.231 ± 0.002 c | 0.641 ± 0.021 bcd | de 1.787 ± 0.047 | |
4 | Resource A | Rubus ursinus × Rubus idaeus | 0.040 ± 0.003 cde | 0.093 ± 0.002 def | 0.292 ± 0.002 d | 0.765 ± 0.002 efg | f 2.136 ± 0.051 |
5 | Resource B | 0.037 ± 0.001 c | 0.080 ± 0.001 bcd | 0.218 ± 0.007 c | 0.582 ± 0.009 bc | cd 1.682 ± 0.037 | |
6 | Resource C | 0.044 ± 0.002 def | 0.110 ± 0.002 f | 0.330 ± 0.007 e | 0.883 ± 0.005 fg | gh 2.286 ± 0.037 #4 | |
7 | Resource D | Rubus crataegifolius | 0.045 ± 0.002 ef | 0.106 ± 0.002 ef | 0.335 ± 0.004 e | 0.922 ± 0.015 g | i 2.581 ± 0.056 #2 |
8 | Resource E | 0.037 ± 0.002 c | 0.081 ± 0.001 bcde | 0.238 ± 0.002 c | 0.655 ± 0.017 cde | e 1.838 ± 0.047 | |
9 | Resource F | 0.125 ± 0.001 h | 0.326 ± 0.007 h | 0.985 ± 0.024 g | 2.527 ± 0.011 i | j 2.940 ± 0.005 #1 | |
10 | Resource G | Rubus coreanus | 0.042 ± 0.001 cde | 0.090 ± 0.001 cdef | 0.271 ± 0.016 d | 0.739 ± 0.027 cde | f 2.103 ± 0.029 |
11 | Resource H | 0.038 ± 0.004 c | 0.095 ± 0.001 def | 0.270 ± 0.000 d | 0.727 ± 0.032 cde | f 2.094 ± 0.029 | |
12 | Resource I | 0.039 ± 0.002 cd | 0.101 ± 0.004 def | 0.296 ± 0.007 de | 0.802 ± 0.018 efg | g 2.264 ± 0.018 #5 | |
13 | Resource J | Rubus parvifolius | 0.040 ± 0.001 cde | 0.081 ± 0.003 bcde | 0.233 ± 0.004 c | 0.606 ± 0.007 bcd | c 1.623 ± 0.029 |
14 | Resource K | 0.028 ± 0.001 b | 0.060 ± 0.002 ab | 0.170 ± 0.003 b | 0.466 ± 0.004 ab | b 1.133 ± 0.011 | |
15 | Resource N | Rubus phoenicolasius | 0.022 ± 0.001 a | 0.042 ± 0.001 a | 0.110 ± 0.001 a | 0.294 ± 0.001 a | a 0.858 ± 0.008 |
No. | Resources | Botanical Name (Scientific Name) | Order in Terms of Various Antioxidant Activity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
TPC | TFC | DPPH Radical IC50 | ABTS+ Radical IC50 | Superoxide Radical IC50 | Fe2+ Chelating IC50 | FRAP | Score | |||
1 | V7 | Rubus ursinus | 5 | 2 | 2 | 2 | 4 ea | |||
2 | Maple | 3 | 4 | 2 | 5 | 4 ea | ||||
3 | Blackpearl | - | ||||||||
4 | Resource A | Rubus ursinus × Rubus idaeus | 5 | 4 | 2 ea | |||||
5 | Resource B | 2 | 1 ea | |||||||
6 | Resource C | 5 | 4 | 5 | 4 | 4 ea | ||||
7 | Resource D | Rubus crataegifolius | 4 | 3 | 3 | 3 ea | ||||
8 | Resource E | 3 | 1 ea | |||||||
9 | Resource F | 1 | 3 | 1 | 1 | 3 | 1 | 6 ea | ||
10 | Resource G | Rubus coreanus | 4 | 2 | 5 | 3 ea | ||||
11 | Resource H | 5 | 3 | 2 ea | ||||||
12 | Resource I | 2 | 1 | 4 | 3 ea | |||||
13 | Resource J | Rubus parvifolius | 1 | 1 ea | ||||||
14 | Resource K | 1 | 1 ea | |||||||
15 | Resource N | Rubus phoenicolasius | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Ryu, J.; Lee, S.H.; Kim, J.H.; Kim, D.-G.; Ha, T.H.; Kim, S.H. Evaluation of Anthocyanin Profiling, Total Phenolic and Flavonoid Content, and Antioxidant Activity of Korean Rubus Accessions for Functional Food Applications and Breeding. Antioxidants 2025, 14, 1012. https://doi.org/10.3390/antiox14081012
Kim J, Ryu J, Lee SH, Kim JH, Kim D-G, Ha TH, Kim SH. Evaluation of Anthocyanin Profiling, Total Phenolic and Flavonoid Content, and Antioxidant Activity of Korean Rubus Accessions for Functional Food Applications and Breeding. Antioxidants. 2025; 14(8):1012. https://doi.org/10.3390/antiox14081012
Chicago/Turabian StyleKim, Juyoung, Jaihyunk Ryu, Seung Hyeon Lee, Jae Hoon Kim, Dong-Gun Kim, Tae Hyun Ha, and Sang Hoon Kim. 2025. "Evaluation of Anthocyanin Profiling, Total Phenolic and Flavonoid Content, and Antioxidant Activity of Korean Rubus Accessions for Functional Food Applications and Breeding" Antioxidants 14, no. 8: 1012. https://doi.org/10.3390/antiox14081012
APA StyleKim, J., Ryu, J., Lee, S. H., Kim, J. H., Kim, D.-G., Ha, T. H., & Kim, S. H. (2025). Evaluation of Anthocyanin Profiling, Total Phenolic and Flavonoid Content, and Antioxidant Activity of Korean Rubus Accessions for Functional Food Applications and Breeding. Antioxidants, 14(8), 1012. https://doi.org/10.3390/antiox14081012