Stable and Functional Cosmetic Creams Enriched with Grape Stem Extract: A Sustainable Skincare Strategy
Abstract
1. Introduction
Regulatory and Safety Considerations
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Incorporation of Phenolic Compounds in Cosmetic Formulation
2.2.1. Preparation of Stem Extracts
2.2.2. Preparation of Cosmetic Formulations
2.3. Cosmetic Formulation Characterization and Accelerated Stability Evaluation
2.3.1. Organoleptic Characteristics and pH Measurement
2.3.2. Evaluation of Texture and Rheological Properties
2.3.3. Biological Contamination Monitoring
2.3.4. Extract Preparation from Creams
2.3.5. Quantification of Phenolic Compounds
Determination of Total Phenolic Content
Determination of Flavonoid Contents
2.3.6. Antioxidant, Antiaging, and Depigmenting Activities
ABTS Assay
FRAP Assay
Tyrosinase Inhibition Assay
Elastase Inhibition Assay
2.4. Accelerated Stability Study
2.5. Microbiological Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical–Chemical Characterization and Accelerated Stability Evaluation of the New Cosmetic Formulation
3.1.1. Evaluation of Organoleptic Features and Their Stability
3.1.2. Texture and Rheological Properties
3.1.3. pH Measurement and Microbiological Monitorization During Stability Evaluation
3.1.4. Rheological Stability and Thixotropy Evaluation
Rheological Stability
Thixotropy
Viscosity
Firmness and Adhesiveness
Adhesiveness
3.1.5. Quantification of Phenolic Compounds and Long-Term Assessment
3.1.6. Antioxidant, Antiaging, and Depigmenting Activities Evaluation
Antioxidant Activity
Antiaging and Depigmenting Activities
4. Conclusions
5. Future Perspectives and Translational Relevance
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alnuqaydan, A. The dark side of beauty: An in-depth analysis of the health hazards and toxicological impact of synthetic cosmetics and personal care products. Front. Public Health 2024, 12, 1439027. [Google Scholar] [CrossRef] [PubMed]
- Contribution of the European Cosmetics Industry. Cosmetics Europe the Personal Care Association Socio-Economic; Contribution of the European Cosmetics Industry: Brussels, Belgium, 2019. [Google Scholar]
- Cosmetic Product Information Requirements in the European Union. Cosmetics Europe the Personal Care Association Cosmetics Europe; Contribution of the European Cosmetics Industry: Brussels, Belgium, 2006. [Google Scholar]
- Schiano, A.N.; Gerard, P.D.; Drake, M.A. Consumer perception of dried dairy ingredients: Healthy, natural, and sustainable? J. Dairy Sci. 2021, 104, 12427–12442. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, K.; Rao, A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Magalhães, M.; Oliveira, R.; Sousa-Lobo, J.; Almeida, I. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef]
- Bharadvaja, N.; Gautam, S.; Singh, H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol. Biol. Rep. 2023, 50, 1817–1828. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef]
- Martins, A.M.; Marto, J.M. A sustainable life cycle for cosmetics: From design and development to post-use phase. Sustain. Chem. Pharm. 2023, 35, 101178. [Google Scholar] [CrossRef]
- Krzyżostan, M.; Wawrzyńczak, A.; Nowak, I. Use of Waste from the Food Industry and Applications of the Fermentation Process to Create Sustainable Cosmetic Products: A Review. Sustainability 2024, 16, 2757. [Google Scholar] [CrossRef]
- Bouzroud, S.; El Maaiden, E.; Sobeh, M.; Merghoub, N.; Boukcim, H.; Kouisni, L.; Kharrassi, Y. Biotechnological Approaches to Producing Natural Antioxidants: Anti-Ageing and Skin Longevity Prospects. Int. J. Mol. Sci. 2023, 24, 1397. [Google Scholar] [CrossRef]
- Murthy, H.N.; Joseph, K.S.; Paek, K.Y.; Park, S.Y. Production of biomass and bioactive compounds from cell and organ cultures of ginseng, He-shou-wu, purple coneflower, and St. John’s wort for the use in cosmetic industry. S. Afr. J. Bot. 2024, 164, 334–344. [Google Scholar] [CrossRef]
- Akkus, M.; Kirici, M.; Poustforoosh, A.; Erdogan, M.K.; Gundogdu, R.; Tüzün, B.; Taslimi, P. Phenolic Compounds: Investigating Their Anti-Carbonic Anhydrase, Anti-Cholinesterase, Anticancer, Anticholinergic, and Antiepileptic Properties Through Molecular Docking, MM-GBSA, and Dynamics Analyses. Korean J. Chem. Eng. 2025, 42, 1149–1168. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Barbulova, A.; Colucci, G.; Apone, F. New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics 2015, 2, 82–92. [Google Scholar] [CrossRef]
- Leal, C.; Santos, R.A.; Pinto, R.; Queiroz, M.; Rodrigues, M.; José Saavedra, M.; Barros, A.; Gouvinhas, I. Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi J. Biol. Sci. 2020, 27, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.; Falqué, E.; Domínguez, H. Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef]
- Hoss, I.; Rajha, H.N.; El Khoury, R.; Youssef, S.; Manca, M.L.; Manconi, M.; Louka, N.; Maroun, R.G. Valorization of Wine-Making By-Products’ Extracts in Cosmetics. Cosmetics 2021, 8, 109. [Google Scholar] [CrossRef]
- Ratz-Łyko, A.; Arct, J.; Majewski, S.; Pytkowska, K. Influence of Polyphenols on the Physiological Processes in the Skin. Phytother. Res. 2015, 29, 509–517. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2009, 302, 71–83. [Google Scholar] [CrossRef]
- Serra, M.; Botelho, C.; Sousa, D.; Almeida, H.; Casas, A.; Teixeira, J.A.; Barros, A. Bioactive Potential of a Grape Stem Blend: A Sustainable Approach to Skin Regeneration. Antioxidants 2025, 14, 338. [Google Scholar] [CrossRef]
- Serra, M.; Casas, A.; Teixeira, J.A.; Barros, A.N. Revealing the Beauty Potential of Grape Stems: Harnessing Phenolic Compounds for Cosmetics. Int. J. Mol. Sci. 2023, 24, 11751. [Google Scholar] [CrossRef]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A. Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Galanakis, C.M. Sustainable Applications for the Valorization of Cereal Processing By-Products. Foods 2022, 11, 241. [Google Scholar] [CrossRef]
- Park, S.; Sharma, H.; Safdar, M.; Lee, J.; Kim, W.; Park, S.; Jeong, H.; Kim, J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. Environ. Res. 2024, 250, 118490. [Google Scholar] [CrossRef]
- Parlamento Europeu. Conselho da União Europeia Regulamento (CE) No 1223/2009 Do Parlamento Europeu e Do Conselho de 30 de Novembro de 2009 Relativo Aos Produtos Cosméticos. Available online: https://eur-lex.europa.eu/legal-content/PT/LSU/?uri=oj:JOL_2009_342_R_0059_01 (accessed on 14 May 2025).
- ISO 22716:2007; Guidelines on Good Manufacturing Practices. Technical Committee ISO/TC 217: Geneva, Switzerland, 2008.
- ISO/TR 18811:2018; Cosmetics—Guidelines on the Stability Testing of Cosmetic Products. Technical Committee ISO/TC 217: Geneva, Switzerland, 2018.
- CTFA. Guidelines on Stability Testing of Cosmetics Products. COLIPA Cosmetics Europe 2004. Available online: https://www.researchgate.net/profile/Federico-Svarc-2/post/Which-stability-test-guideline-is-suitable-for-cosmetic-formulation-particularly-for-Asian-region/attachment/59d64303c49f478072eabbcc/AS%3A273806147424260%401442291881188/download/Guidelines+on+Stability+Testing+of+Cosmetics+Colipa-CTFA%2C+2004.pdf (accessed on 24 April 2025).
- Costa, R.D.; Domínguez-Perles, R.; Abraão, A.; Gomes, V.; Gouvinhas, I.; Barros, A.N. Exploring the Antioxidant Potential of Phenolic Compounds from Winery By-Products by Hydroethanolic Extraction. Molecules 2023, 28, 6660. [Google Scholar] [CrossRef] [PubMed]
- Mapoung, S.; Semmarath, W.; Arjsri, P.; Umsumarng, S.; Srisawad, K.; Thippraphan, P.; Yodkeeree, S.; Limtrakul (Dejkriengkraikul), P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. Plants 2021, 10, 1383. [Google Scholar] [CrossRef] [PubMed]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Félix, L.M.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Thymus pulegioides L. as a rich source of antioxidant, anti-proliferative and neuroprotective phenolic compounds. Food Funct. 2018, 9, 3617–3629. [Google Scholar] [CrossRef]
- Postles, A. Factors Affecting the Measurement of Stability and Safety of Cosmetic Products; Bournemouth University: Poole, UK, 2018. [Google Scholar]
- ISO 11930:2019; Cosmetics—Microbiology—Evaluation of the Antimicrobial Protection of a Cosmetic Product. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/75058.html (accessed on 19 June 2025).
- Fiume, Z. Final report on the safety assessment of Lecithin and Hydrogenated Lecithin. Int. J. Toxicol. 2001, 20 (Suppl. S1), 21–45. [Google Scholar] [CrossRef]
- Hübner, A.A.; Sarruf, F.D.; Oliveira, C.A.; Neto, A.V.; Fischer, D.C.H.; Kato, E.T.M.; Lourenço, F.R.; Baby, A.R.; Bacchi, E.M. Safety and Photoprotective Efficacy of a Sunscreen System Based on Grape Pomace (Vitis vinifera L.) Phenolics from Winemaking. Pharmaceutics 2020, 12, 1148. [Google Scholar] [CrossRef]
- Kawarkhe, P.R.; Deshmane, S.V.; Biyani, K.R. Formulation and evaluation of antioxidant face cream containing raspberry fruit and grape seeds extract. Res. J. Top. Cosmet. Sci. 2016, 73, 73–78. [Google Scholar] [CrossRef]
- Supriadi, Y.; Khoirin, N. Formulation and Evaluation of Grape Seed Oil (Vitis vinifera, L) Facial Cream with Variations in The Concentration of Stearic Acid as an Emulsifier. J. Health Sci. Med. Dev. 2022, 1, 20–30. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.J.; Raposo, R.; Cayuela, J.M.; Zafrilla, P.; Piñeiro, Z.; Moreno-Rojas, J.M.; Mulero, J.; Puertas, B.; Giron, F.; Guerrero, R.F.; et al. Valorization of grape stems. Ind. Crops Prod. 2015, 63, 152–157. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Sousa, I.M.d.O.; Figueiredo, M.C.; Ruiz, A.L.T.G.; Foglio, M.A.; Mazzola, P.G. In vitro solar protection factor, antioxidant activity, and stability of a topical formulation containing Benitaka grape (Vitis vinifera L.) peel extract. Nat. Prod. Res. 2020, 34, 2677–2682. [Google Scholar] [CrossRef]
- Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Chemical and mechanical accelerated and long-term stability evaluation of sunscreen formulation containing grape seed extract. J. Cosmet. Dermatol. 2022, 21, 6400–6413. [Google Scholar] [CrossRef] [PubMed]
- Hernani; Halimatussa’diyah; Supiati, S. The Quality of Cream Formulated from Gambier Leaf Extract. IOP Conf. Ser. Earth Environ. Sci. 2022, 1024, 012010. [Google Scholar] [CrossRef]
- Ho, T.M.; Razzaghi, A.; Ramachandran, A.; Mikkonen, K.S. Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence. Adv. Colloid Interface Sci. 2022, 299, 102541. [Google Scholar] [CrossRef]
- Rodrigues, F.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Exploring the antioxidant potentiality of two food by-products into a topical cream: Stability, in vitro and in vivo evaluation. DrugDev. Ind. Pharm. 2016, 42, 880–889. [Google Scholar] [CrossRef]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Barel, A.O.; Paye, M.; Maibach, H.I. Handbook of Cosmetic Science and Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Salem, Y.; Rajha, H.N.; Franjieh, D.; Hoss, I.; Manca, M.L.; Manconi, M.; Castangia, I.; Perra, M.; Maroun, R.G.; Louka, N. Stability and Antioxidant Activity of Hydro-Glyceric Extracts Obtained from Different Grape Seed Varieties Incorporated in Cosmetic Creams. Antioxidants 2022, 11, 1348. [Google Scholar] [CrossRef]
- Rodrigues, R.; Lobo, J.C.; Ferreira, D.M.; Senderowicz, E.; Nunes, M.A.; Amaral, M.H.; Alves, R.C.; Oliveira, M.B.P.P. Chemical and Rheological Characterization of a Facial Mask Containing an Olive Pomace Fraction. Cosmetics 2023, 10, 64. [Google Scholar] [CrossRef]
- Gomes, S.M.; Miranda, R.; Santos, L. Sustainable Cosmetics: Valorisation of Kiwi (Actinidia deliciosa) By-Products by Their Incorporation into a Moisturising Cream. Sustainability 2023, 15, 14059. [Google Scholar] [CrossRef]
- Nešić, I.; Stojiljković, D.; Savić, S.; Tasić-Kostov, M.; Tadić, V. Stability, antioxidant activity, in vivo safety and efficacy of creams with standardized wild apple fruit extract: A comparison of conventional and biodegradable emulsifiers. Int. J. Cosmet. Sci. 2019, 41, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Hussain Shah, S.N. Anti-Ageing Potential of a Cream (W/O Emulsion) Containing Grape Seed Extract (GSE): Formulation and in vivo Evaluation of Effectiveness Using Non-Invasive Biophysical Technique. J. Clin. Exp. Dermatol. Res. 2019, 10, 2155–9554. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. A Potential Valorization Strategy of Wine Industry By-Products and Their Application in Cosmetics—Case Study: Grape Pomace and Grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef]
- ISO 17516:2014; Cosmetics: Microbiology—Microbiological Limits. International Organization for Standardization: Geneva, Switzerland, 2014.
- Chhabra, R.P. Non-Newtonian fluids: An introduction. In Rheology of Complex Fluids; Springer: New York, NY, USA, 2010; pp. 3–34. [Google Scholar]
- Danila, E.; Albu Kaya, M.G.; Ghica, M.V.; Bunea, A.-M.; Popa, L.; Kaya, D.A.; Ozturk, S.; Marin, M.-M.; Dinu-Pirvu, C.-E.; Anuta, V. Formulation and Characterization of Anti-aging Cosmetic Emulsions Based on Collagen Hydrolysate and Caffeine. In Proceedings of the 8th International Conference on Advanced Materials and Systems; INCDTP—Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 1–3 October 2020; pp. 139–144. [Google Scholar]
- Petkova-Parlapanska, K.; Nancheva, V.; Diankov, S.; Hinkov, I.; Karsheva, M. Rheological properties of cosmetic compositions containing rosemary and grapefruit pulp and seeds extracts. J. Chem. Technol. Metall. 2014, 49, 487–493. [Google Scholar]
- Sinko, P.J.; Singh, Y. Martin’s Physical Pharmacy and Pharmaceutical Sciences: Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences, 6th ed.; Troy, D.B., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Nguyen, Q.-H.; Nguye, N.-D. Incompressible Non-Newtonian Fluid Flows. In Continuum Mechanics—Progress in Fundamentals and Engineering Applications; InTech: Houston, TX, USA, 2012. [Google Scholar]
- Mewis, J.; Wagner, N.J. Thixotropy. Adv. Colloid Interface Sci. 2009, 147–148, 214–227. [Google Scholar] [CrossRef]
- Gaspar, L.R.; Maia Campos, P.M.B.G. Rheological behavior and the SPF of sunscreens. Int. J. Pharm. 2003, 250, 35–44. [Google Scholar] [CrossRef]
- Moraes, C.; Arêas, E.; Velasco, M. Assessment of Functional Stability of Photoprotective Formulations Containing Rutin Succinate. Cosmetics 2017, 4, 27. [Google Scholar] [CrossRef]
- Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Correlation between sensory and instrumental characterization of developed sunscreens containing grape seed extract and a commercial product. Int. J. Cosmet. Sci. 2022, 44, 569–587. [Google Scholar] [CrossRef]
- Pinto, D.; Lameirão, F.; Delerue-Matos, C.; Rodrigues, F.; Costa, P. Characterization and Stability of a Formulation Containing Antioxidants-Enriched Castanea sativa Shells Extract. Cosmetics 2021, 8, 49. [Google Scholar] [CrossRef]
- Jaganath, N. The Application of Rheological Techniques in the Characterization of Semisolids in the Pharmaceutical Industry. Ph.D. Thesis, University of Port Elizabeth, Gqeberha, South Africa, 2004. [Google Scholar]
- Nunes, A.; Gonçalves, L.; Marto, J.; Martins, A.M.; Silva, A.N.; Pinto, P.; Martins, M.; Fraga, C.; Ribeiro, H.M. Investigations of Olive Oil Industry By-Products Extracts with Potential Skin Benefits in Topical Formulations. Pharmaceutics 2021, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- García-Villegas, A.; Fernández-Ochoa, Á.; Rojas-García, A.; Alañón, M.E.; Arráez-Román, D.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A. The Potential of Mangifera indica L. Peel Extract to Be Revalued in Cosmetic Applications. Antioxidants 2023, 12, 1892. [Google Scholar] [CrossRef] [PubMed]
- Anggraini, N.B.; Elya, B.; Iskandarsyah, I. Antielastase Activity of Macassar Kernels (Rhus javanica) Stem Extract and Skin Elasticity Evaluation of Its Topical Gel Formulation. Adv. Pharmacol. Pharm. Sci. 2021, 2021, 6690029. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Akhtar, N.; Khan, B.A.; Rasul, A.; Khan, H.M.S. Fabrication, physicochemical characterization and preliminary efficacy evaluation of a W/O/W multiple emulsion loaded with 5% green tea extract. Braz. J. Pharm. Sci. 2013, 49, 341–349. [Google Scholar] [CrossRef]
- Tai, A.; Bianchini, R.; Jachowicz, J. Texture analysis of cosmetic/pharmaceutical raw materials and formulations. Int. J. Cosmet. Sci. 2014, 36, 291–304. [Google Scholar] [CrossRef]
- Huynh, A.; Garcia, A.G.; Young, L.K.; Szoboszlai, M.; Liberatore, M.W.; Baki, G. Measurements meet perceptions: Rheology–texture–sensory relations when using green, bio-derived emollients in cosmetic emulsions. Int. J. Cosmet. Sci. 2021, 43, 11–19. [Google Scholar] [CrossRef]
- Pinto, D.; Braga, N.; Rodrigues, F.; Oliveira, M. Castanea sativa Bur: An Undervalued By-Product but a Promising Cosmetic Ingredient. Cosmetics 2017, 4, 50. [Google Scholar] [CrossRef]
- Jimtaisong, A.; Krisdaphong, P. Antioxidant Activity of Pandanus amaryllifolius Leaf and Root Extract and Its Application in Topical Emulsion. Trop. J. Pharmaceutical. Res. 2016, 12, 425–431. [Google Scholar] [CrossRef]
- Censi, R.; Vargas Peregrina, D.; Lacava, G.; Agas, D.; Lupidi, G.; Sabbieti, M.; Di Martino, P. Cosmetic Formulation Based on an Açai Extract. Cosmetics 2018, 5, 48. [Google Scholar] [CrossRef]
- Namngam, C.; Pinsirodom, P. Antioxidant properties, selected enzyme inhibition capacities, and a cosmetic cream formulation of Thai mango seed kernel extracts. Tropical J. Pharm. Res. 2017, 16, 9. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Goulas, V.; Tsakona, S.; Manganaris, G.A.; Gekas, V. A Knowledge Base for The Recovery of Natural Phenols with Different Solvents. Int. J. Food Prop. 2013, 16, 382–396. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Harnsilawat, T. Characterization and Stabilization of the Extract from Mango Seed Kernel in a Cosmetic Emulsion Authors. Agric. Nat. Resour. 2011, 45, 521–529. [Google Scholar]
- Esparza, I.; Cimminelli, M.J.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Stability of Phenolic Compounds in Grape Stem Extracts. Antioxidants 2020, 9, 720. [Google Scholar] [CrossRef] [PubMed]
- Vo, G.T.; Liu, Z.; Chou, O.; Zhong, B.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Screening of phenolic compounds in australian grown grapes and their potential antioxidant activities. Food Biosci. 2022, 47, 101644. [Google Scholar] [CrossRef]
- Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The Study of Antioxidant Components in Grape Seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant Activity of Phenolic Compounds: From In Vitro Results to In Vivo Evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L). J. Agric. Food Chem. 2005, 53, 1750–1756. [Google Scholar] [CrossRef]
- Bernatoniene, J.; Masteikova, R.; Davalgiene, J.; Peciura, R.; Gauryliene, R.; Bernatoniene, R.; Majiene, D.; Lazauskas, R.; Civinskiene, G.; Velziene, S.; et al. Topical Application of Calendula officinalis (L.): Formulation and Evaluation of Hydrophilic Cream with Antioxidant Activity. Med. Plants Res. 2011, 5, 868–877. [Google Scholar]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Papaccio, F.; D′Arino, A.; Caputo, S.; Bellei, B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef] [PubMed]
- Heinz, A. Elastases and elastokines: Elastin degradation and its significance in health and disease. Crit. Rev. Biochem. Mol. Biol. 2020, 55, 252–273. [Google Scholar] [CrossRef] [PubMed]
- Güven, Z.B.; Saracoglu, I.; Nagatsu, A.; Yilmaz, M.A.; Basaran, A.A. Anti-tyrosinase and antimelanogenic effect of cinnamic acid derivatives from Prunus mahaleb L.: Phenolic composition, isolation, identification and inhibitory activity. J. Ethnopharmacol. 2023, 310, 116378. [Google Scholar] [CrossRef]
- Skoczyńska, A.; Budzisz, E.; Trznadel-Grodzka, E.; Rotsztejn, H. Melanin and lipofuscin as hallmarks of skin aging. Adv. Dermatol. Allergol. 2017, 2, 97–103. [Google Scholar] [CrossRef]
- Schmitt, M.; Alabdul Magid, A.; Hubert, J.; Etique, N.; Duca, L.; Voutquenne-Nazabadioko, L. Bio-guided isolation of new phenolic compounds from Hippocrepis emerus flowers and investigation of their antioxidant, tyrosinase and elastase inhibitory activities. Phytochem. Lett. 2020, 35, 28–36. [Google Scholar] [CrossRef]
- Hong, Y.-H.; Jung, E.Y.; Noh, D.O.; Suh, H.J. Physiological effects of formulation containing tannase-converted green tea extract on skin care: Physical stability, collagenase, elastase, and tyrosinase activities. Integr. Med. Res. 2014, 3, 25–33. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.; Calhelha, R.; Alves, M.; Barros, L.; Barreiro, M.; González-Paramás, A.; Ferreira, I. Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules 2016, 21, 1372. [Google Scholar] [CrossRef]
Sample | g GS Powder/30 g Cream Base | % GS |
---|---|---|
CRT | 0.000 | 0 |
I | 0.100 | 0.33 |
II | 0.250 | 0.83 |
III | 0.300 | 0.99 |
IV | 0.500 | 1.64 |
V | 1.000 | 3.23 |
VI | 1.200 | 3.85 |
VII | 2.000 | 6.25 |
Function | Ingredient | % |
---|---|---|
Thickening, stabilizer, texturizing agent | Polyacrylamide, C13-14 Isoparaffin, Laureth-7 | 91.5 |
Preservative | Methylchloroisothiazolinone, methylisothiazolinone | 3.4 |
Fragrance | Parfum | 3.5 |
Solvent | Water | 1.6 |
Storage Time (Months)—Accelerated Conditions | Storage Time (Months)—Normal Conditions |
---|---|
1 | 4 |
2 | 8 |
3 | 12 |
Sample (% Extract) | Colour | Appearance | Odor |
---|---|---|---|
CRT (0%) | Glossy and shiny Creamy and soft texture | Parfum | |
I (0.33%) | Glossy and shiny Creamy and soft texture | Parfum | |
II (0.83%) | Glossy and shiny Creamy and soft texture | Parfum Woody | |
III (0.99%) | Glossy and shiny Creamy and soft texture | Parfum Woody | |
IV (1.64%) | Glossy and shiny Creamy and soft texture | Parfum Woody | |
V (3.23%) | Glossy and shiny Thinner texture | Parfum Woody | |
VI (3.85%) | Glossy and shiny Thinner texture | Woody | |
VII (6.25%) | Glossy and shiny Thinner texture | Woody |
Months in a Stability Chamber | ||||
---|---|---|---|---|
Sample (% Extract) | 0 | 1 | 2 | 3 |
CRT (0%) | ||||
I (0.33%) | ||||
II (0.83%) | ||||
III (0.99%) | ||||
IV (1.64%) | ||||
V (3.23%) | ||||
VI (3.85%) | ||||
VII (6.25%) |
Months in a Stability Chamber | |||||
---|---|---|---|---|---|
Sample (% GS Extract) | 0 | 1 | 2 | 3 | Variance |
CRT (0%) | 6.34 | 6.08 | 6.05 | 5.99 | 0.018 |
I (0.33%) | 4.50 | 4.49 | 4.69 | 4.69 | 0.010 |
II (0.83%) | 4.21 | 4.20 | 4.32 | 4.24 | 0.002 |
III (0.99%) | 4.18 | 4.16 | 4.32 | 4.18 | 0.004 |
IV (1.64%) | 4.01 | 4.08 | 4.21 | 4.05 | 0.006 |
V (3.23%) | 4.02 | 3.99 | 4.05 | 3.92 | 0.002 |
VI (3.85%) | 3.97 | 3.95 | 4.11 | 3.88 | 0.007 |
VII (6.25%) | 3.93 | 3.94 | 3.96 | 3.84 | 0.002 |
n Flow-Behaviour Index | K Consistency Index | |||
---|---|---|---|---|
Sample (% GS Extract) | Time 0 | Time 3 | Time 0 | Time 3 |
CRT (0%) | 0.1878 | 0.2362 | 46.697 | 97.904 |
I (0.33%) | 0.2225 | 0.2851 | 137.170 | 122.020 |
II (0.83%) | 0.2603 | 0.3030 | 150.410 | 78.248 |
III (0.99%) | 0.2240 | 0.2760 | 161.190 | 146.220 |
IV (1.64%) | 0.2237 | 0.3276 | 139.810 | 49.434 |
V (3.23%) | 0.2365 | 0.2873 | 94.043 | 78.453 |
VI (3.85%) | 0.2208 | 0.2665 | 90.967 | 106.270 |
VII (6.25%) | 0.1858 | 0.2826 | 129.480 | 88.792 |
Total Phenolics (mg GAE/100 g Cream) * | Flavonoids (mg CAT/100 g Cream) ** | |||||
---|---|---|---|---|---|---|
Months in a Stability Chamber | Months in a Stability Chamber | |||||
Sample (% GS Extract) | 0 | 1 | 3 | 0 | 1 | 3 |
CRT (0%) | 9.44 ± 0.79 aE | 5.72 ± 0.40 b | 5.39 ± 0.52 bF | 44.04 ± 4.07 aD | 50.06 ± 3.22 a | 24.65 ± 1.41 bD |
I (0.33%) | 16.35 ± 1.91 aE | 11.04 ± 1.22 b | 11.58 ± 0.18 bEF | 45.10 ± 3.71 aD | 53.58 ± 5.20 a | 47.36 ± 2.41 aC |
II (0.83%) | 34.30 ± 2.99 aD | 15.96 ± 1.01 b | 18.17 ± 0.12 bE | 62.88 ± 0.71 aD | 56.91 ± 2.82 b | 46.58 ± 0.98 cC |
III (0.99%) | 37.50 ± 3.39 aD | 29.51 ± 1.15 b | 31.65 ± 0.33 bD | 66.38 ± 3.32 aD | 63.37 ± 4.34 a | 61.08 ± 1.17 aC |
IV (1.64%) | 44.40 ± 0.97 aD | 43.54 ± 2.71 ab | 37.42 ± 3.80 bD | 64.94 ± 3.89 aD | 67.76 ± 2.50 a | 53.34 ± 1.97 bC |
V (3.23%) | 102.38 ± 3.92 aC | 64.85 ± 1.88 b | 65.45 ± 4.84 bC | 130.93 ± 14.06 aC | 117.05 ± 4.21 a | 107.78 ± 12.89 aB |
VI (3.85%) | 127.70 ± 6.29 aB | 97.95 ± 1.21 b | 101.70 ± 3.22 bB | 162.48 ± 17.32 aB | 102.87 ± 2.70 b | 117.36 ± 13.91 bAB |
VII (6.25%) | 232.65 ± 14.11 aA | 175.75 ± 3.1 b | 129.37 ± 2.56 cA | 274.60 ± 6.68 aA | 211.09 ± 13.45 b | 128.91 ± 5.08 cA |
ABTS * | FRAP * | |||||
---|---|---|---|---|---|---|
Months in a Stability Chamber | Months in a Stability Chamber | |||||
Sample (% GS Extract) | 0 | 1 | 3 | 0 | 1 | 3 |
CRT (0%) | 0.01 ± 0 bE | 0.03 ± 0 a | 0 ± 0 cE | 0.02 ± 0 bF | 0.05 ± 0.01 a | 0.02 ± 0 bF |
I (0.33%) | 0.17 ± 0.02 aDE | 0.13 ± 0.01 b | 0.03 ± 0 cDE | 0.22 ± 0.02 aE | 0.24 ± 0.02 a | 0.06 ± 0 bF |
II (0.83%) | 0.49 ± 0.01 aCD | 0.41 ± 0.03 b | 0.10 ± 0 cD | 0.55 ± 0.05 aD | 0.46 ± 0.01 b | 0.20 ± 0 cE |
III (0.99%) | 0.50 ± 0.05 aCD | 0.51 ± 0.05 a | 0.21 ± 0.01 bC | 0.52 ± 0.03 aD | 0.43 ± 0.02 b | 0.36 ± 0.01 cD |
IV (1.64%) | 0.66 ± 0.05 aC | 0.79 ± 0.07 a | 0.26 ± 0.02 bC | 0.71 ± 0.03 aC | 0.62 ± 0.02 b | 0.48 ± 0.02 cC |
V (3.23%) | 1.83 ± 0.15 aB | 1.46 ± 0.02 b | 0.72 ± 0.02 cB | 1.57 ± 0.09 aB | 1.32 ± 0.05 b | 0.96 ± 0.04 cB |
VII (6.25%) | 4.14 ± 0.33 aA | 3.51 ± 0.11 b | 1.50 ± 0.05 cA | 3.10 ± 0.02 aA | 2.56 ± 0.04 b | 1.86 ± 0.02 cA |
Elastase Inhibition Assay | Tyrosinase Inhibition Assay | |||||
---|---|---|---|---|---|---|
Months in a Stability Chamber | Months in a Stability Chamber | |||||
Sample (% GS Extract) | 0 | 1 | 3 | 0 | 1 | 3 |
CRT (0%) | 22.98 ± 9.13 aC | 31.45 ± 3.41 a | 19.40 ± 4.24 aC | 0 * CD | - | - |
I (0.33%) | 53.22 ± 0.89 bA | 56.96 ± 0.51 a | 50.22 ± 0.45 cA | 0 * E | - | - |
II (0.83%) | 52.19 ± 3.57 aA | 53.62 ± 1.33 a | 52.47 ± 1.62 aA | 0 * DE | - | - |
III (0.99%) | 47.61 ± 5.40 aAB | 44.33 ± 2.54 a | 29.62 ± 2.11 bB | 0 * C | - | - |
IV (1.64%) | 40.05 ± 1.67 bB | 48.06 ± 2.67 a | 32.06 ± 1.56 cB | 0 * CD | - | - |
V (3.23%) | 5.40 ± 1.01 aD | 4.72 ± 5.53 a | 9.39 ± 1.19 aD | 11.64 ± 6.50 aB | 10.68 ± 1.90 a | 10.04 ± 3.10 aA |
VI (3.85%) | 44.15 ± 1.31 aAB | 0 * c | 7.00 ± 7.11 bD | 22.69 ± 9.25 aAB | 13.99 ± 2.62 a | 0 * bB |
VII (6.25%) | 52.83 ± 2.50 aA | 43.90 ± 2.94 b | 12.74 ± 2.74 cCD | 29.44 ± 4.02 aA | 21.36 ± 1.74 a | 0 * bB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, M.; Botelho, C.; Almeida, H.; Casas, A.; Teixeira, J.A.; Barros, A.N. Stable and Functional Cosmetic Creams Enriched with Grape Stem Extract: A Sustainable Skincare Strategy. Antioxidants 2025, 14, 784. https://doi.org/10.3390/antiox14070784
Serra M, Botelho C, Almeida H, Casas A, Teixeira JA, Barros AN. Stable and Functional Cosmetic Creams Enriched with Grape Stem Extract: A Sustainable Skincare Strategy. Antioxidants. 2025; 14(7):784. https://doi.org/10.3390/antiox14070784
Chicago/Turabian StyleSerra, Mónica, Cláudia Botelho, Hugo Almeida, Ana Casas, José António Teixeira, and Ana Novo Barros. 2025. "Stable and Functional Cosmetic Creams Enriched with Grape Stem Extract: A Sustainable Skincare Strategy" Antioxidants 14, no. 7: 784. https://doi.org/10.3390/antiox14070784
APA StyleSerra, M., Botelho, C., Almeida, H., Casas, A., Teixeira, J. A., & Barros, A. N. (2025). Stable and Functional Cosmetic Creams Enriched with Grape Stem Extract: A Sustainable Skincare Strategy. Antioxidants, 14(7), 784. https://doi.org/10.3390/antiox14070784