Exploratory Evaluation of Circulating Microbiota-Derived Corisin Levels in Women with Adverse Pregnancy Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethics Approval and Consent to Participate
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Comparative Analysis of Clinical Data in Full-Term and Preterm Births
3.3. Comparative Analysis of Clinical Data in Patients Delivering Neonates Weighing More or Less than 2.5 kg
3.4. Elevated Circulating Corisin Levels in Patients with Adverse Pregnancy Outcomes
3.5. Correlation Between Serum Myeloperoxidase and Corisin Levels
3.6. Significant Correlation of Serum Corisin Levels with Pregnancy Outcomes
3.7. Serum Levels of FABP2, a Marker of Gut Epithelial Permeability, and Corisin
3.8. Coagulation Abnormalities and Their Association with Adverse Pregnancy Outcomes
3.9. Exploratory Multiple Linear Regression Analysis of Factors Associated with Birth Weight
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jamaluddine, Z.; Sharara, E.; Helou, V.; El Rashidi, N.; Safadi, G.; El-Helou, N.; Ghattas, H.; Sato, M.; Blencowe, H.; Campbell, O.M.R. Effects of size at birth on health, growth and developmental outcomes in children up to age 18: An umbrella review. Arch. Dis. Child. 2023, 108, 956–969. [Google Scholar] [PubMed]
- Ashorn, P.; Ashorn, U.; Muthiani, Y.; Aboubaker, S.; Askari, S.; Bahl, R.; Black, R.E.; Dalmiya, N.; Duggan, C.P.; Hofmeyr, G.J.; et al. Small vulnerable newborns-big potential for impact. Lancet 2023, 401, 1692–1706. [Google Scholar] [PubMed]
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; Black, R.E.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000–2019: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child. Adolesc. Health 2022, 6, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Belbasis, L.; Savvidou, M.D.; Kanu, C.; Evangelou, E.; Tzoulaki, I. Birth weight in relation to health and disease in later life: An umbrella review of systematic reviews and meta-analyses. BMC Med. 2016, 14, 147. [Google Scholar] [CrossRef]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar]
- den Dekker, H.T.; Sonnenschein-van der Voort, A.M.M.; de Jongste, J.C.; Anessi-Maesano, I.; Arshad, S.H.; Barros, H.; Beardsmore, C.S.; Bisgaard, H.; Phar, S.C.; Craig, L.; et al. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 2016, 137, 1026–1035. [Google Scholar] [CrossRef]
- Low, E.X.S.; Mandhari, M.; Herndon, C.C.; Loo, E.X.L.; Tham, E.H.; Siah, K.T.H. Parental, Perinatal, and Childhood Risk Factors for Development of Irritable Bowel Syndrome: A Systematic Review. J. Neurogastroenterol. Motil. 2020, 26, 437–446. [Google Scholar] [CrossRef]
- Raslau, D.; Herrick, L.M.; Locke, G.R.; Schleck, C.D.; Zinsmeister, A.R.; Almazar, A.; Talley, N.J.; Saito, Y.A. Irritable bowel syndrome and the perinatal period: Lower birth weight increases the risk. Neurogastroenterol. Motil. 2016, 28, 1518–1524. [Google Scholar] [CrossRef]
- Blencowe, H.; Krasevec, J.; de Onis, M.; Black, R.E.; An, X.; Stevens, G.A.; Borghi, E.; Hayashi, C.; Estevez, D.; Cegolon, L.; et al. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: A systematic analysis. Lancet Glob. Health 2019, 7, e849–e860. [Google Scholar] [CrossRef]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef]
- Lawn, J.E.; Ohuma, E.O.; Bradley, E.; Idueta, L.S.; Hazel, E.; Okwaraji, Y.B.; Erchick, D.J.; Yargawa, J.; Katz, J.; Lee, A.C.C.; et al. Small babies, big risks: Global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. Lancet 2023, 401, 1707–1719. [Google Scholar] [CrossRef]
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Okwaraji, Y.B.; Krasevec, J.; Bradley, E.; Conkle, J.; Stevens, G.A.; Gatica-Dominguez, G.; Ohuma, E.O.; Coffey, C.; Estevez Fernandez, D.G.; Blencowe, H.; et al. National, regional, and global estimates of low birthweight in 2020, with trends from 2000: A systematic analysis. Lancet 2024, 403, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Englerova, K.; Takacs, L. The effects of prenatal, perinatal and neonatal factors on academic performance in primary school age children. Ceska Gynekol. 2020, 85, 71–79. [Google Scholar] [PubMed]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status with Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [CrossRef]
- Delnord, M.; Zeitlin, J. Epidemiology of late preterm and early term births—An international perspective. Semin. Fetal Neonatal Med. 2019, 24, 3–10. [Google Scholar] [CrossRef]
- Deng, K.; Liang, J.; Mu, Y.; Liu, Z.; Wang, Y.; Li, M.; Li, X.; Dai, L.; Li, Q.; Chen, P.; et al. Preterm births in China between 2012 and 2018: An observational study of more than 9 million women. Lancet Glob. Health 2021, 9, e1226–e1241. [Google Scholar] [CrossRef]
- Arabzadeh, H.; Doosti-Irani, A.; Kamkari, S.; Farhadian, M.; Elyasi, E.; Mohammadi, Y. The maternal factors associated with infant low birth weight: An umbrella review. BMC Pregnancy Childbirth 2024, 24, 316. [Google Scholar] [CrossRef]
- Dola, S.S.; Valderrama, C.E. Exploring parental factors influencing low birth weight on the 2022 CDC natality dataset. BMC Med. Inform. Decis. Mak. 2024, 24, 367. [Google Scholar] [CrossRef]
- Finken, M.J.J.; van der Steen, M.; Smeets, C.C.J.; Walenkamp, M.J.E.; de Bruin, C.; Hokken-Koelega, A.C.S.; Wit, J.M. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr. Rev. 2018, 39, 851–894. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Lanocha-Arendarczyk, N.; Malinowski, W.; Zietek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef] [PubMed]
- Jantape, T.; Kongwattanakul, K.; Arribas, S.M.; Rodriguez-Rodriguez, P.; Iampanichakul, M.; Settheetham-Ishida, W.; Phuthong, S. Maternal Obesity Alters Placental and Umbilical Cord Plasma Oxidative Stress, a Cross-Sectional Study. Int. J. Mol. Sci. 2024, 25, 10866. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Cortijo, D.; Herrera, T.; Rodriguez-Rodriguez, P.; Lopez De Pablo, A.L.; De La Calle, M.; Lopez-Gimenez, M.R.; Mora-Urda, A.I.; Gutierrez-Arzapalo, P.Y.; Gomez-Rioja, R.; Aguilera, Y.; et al. Maternal plasma antioxidant status in the first trimester of pregnancy and development of obstetric complications. Placenta 2016, 47, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Selvaratnam, R.J.; Sovio, U.; Cook, E.; Gaccioli, F.; Charnock-Jones, D.S.; Smith, G.C.S. Objective measures of smoking and caffeine intake and the risk of adverse pregnancy outcomes. Int. J. Epidemiol. 2023, 52, 1756–1765. [Google Scholar] [CrossRef] [PubMed]
- Di Simone, N.; Santamaria Ortiz, A.; Specchia, M.; Tersigni, C.; Villa, P.; Gasbarrini, A.; Scambia, G.; D’Ippolito, S. Recent Insights on the Maternal Microbiota: Impact on Pregnancy Outcomes. Front. Immunol. 2020, 11, 528202. [Google Scholar] [CrossRef]
- Stupak, A.; Kwasniewski, W. Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy. Biomolecules 2023, 13, 911. [Google Scholar] [CrossRef]
- Tu, X.; Duan, C.; Lin, B.; Li, K.; Gao, J.; Yan, H.; Wang, K.; Zhao, Z. Characteristics of the gut microbiota in pregnant women with fetal growth restriction. BMC Pregnancy Childbirth 2022, 22, 297. [Google Scholar] [CrossRef]
- Wang, S.F.; Shu, L.; Sheng, J.; Mu, M.; Wang, S.; Tao, X.Y.; Xu, S.J.; Tao, F.B. Birth weight and risk of coronary heart disease in adults: A meta-analysis of prospective cohort studies. J. Dev. Orig. Health Dis. 2014, 5, 408–419. [Google Scholar] [CrossRef]
- Ye, C.; You, M.; Huang, P.; Xia, Z.; Radaic, A.; Tang, J.; Wu, W.; Wu, Y.; Kapila, Y. Clinical study showing a lower abundance of Neisseria in the oral microbiome aligns with low birth weight pregnancy outcomes. Clin. Oral Investig. 2022, 26, 2465–2478. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Li, S.; Chang, Z.; Liu, H.; Zhang, D.; Wang, S.; Zhang, X.; Wang, J. Maternal Malic Acid May Ameliorate Oxidative Stress and Inflammation in Sows through Modulating Gut Microbiota and Host Metabolic Profiles during Late Pregnancy. Antioxidants 2024, 13, 253. [Google Scholar] [CrossRef]
- de Mendonca, E.; Fragoso, M.B.T.; de Oliveira, J.M.; Xavier, J.A.; Goulart, M.O.F.; de Oliveira, A.C.M. Gestational Diabetes Mellitus: The Crosslink among Inflammation, Nitroxidative Stress, Intestinal Microbiota and Alternative Therapies. Antioxidants 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yan, Y.; Ji, F.; Zhou, H. Maternal Obesity Increases Oxidative Stress in Placenta and It Is Associated with Intestinal Microbiota. Front. Cell Infect. Microbiol. 2021, 11, 671347. [Google Scholar] [CrossRef] [PubMed]
- Semenova, N.; Garashchenko, N.; Kolesnikov, S.; Darenskaya, M.; Kolesnikova, L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. Pathophysiology 2024, 31, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, C.; Cheng, C.; Cui, J.; Ji, Y.; Hao, X.; Li, Q.; Ren, W.; Deng, B.; Yin, Y.; et al. Unraveling the association of fecal microbiota and oxidative stress with stillbirth rate of sows. Theriogenology 2019, 136, 131–137. [Google Scholar] [CrossRef]
- Zhang, H.; Zha, X.; Zhang, B.; Zheng, Y.; Elsabagh, M.; Wang, H.; Wang, M. Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis. Microbiome 2024, 12, 28. [Google Scholar] [CrossRef]
- D’Alessandro-Gabazza, C.N.; Yasuma, T.; Kobayashi, T.; Toda, M.; Abdel-Hamid, A.M.; Fujimoto, H.; Hataji, O.; Nakahara, H.; Takeshita, A.; Nishihama, K.; et al. Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis. Nat. Commun. 2022, 13, 1558. [Google Scholar] [CrossRef]
- Saiki, H.; Okano, Y.; Yasuma, T.; Toda, M.; Takeshita, A.; Abdel-Hamid, A.M.; Fridman D’Alessandro, V.; Tsuruga, T.; D’Alessandro-Gabazza, C.N.; Katayama, K.; et al. A Microbiome-Derived Peptide Induces Apoptosis of Cells from Different Tissues. Cells 2021, 10, 2885. [Google Scholar] [CrossRef]
- D’Alessandro-Gabazza, C.N.; Kobayashi, T.; Yasuma, T.; Toda, M.; Kim, H.; Fujimoto, H.; Hataji, O.; Takeshita, A.; Nishihama, K.; Okano, T.; et al. A Staphylococcus pro-apoptotic peptide induces acute exacerbation of pulmonary fibrosis. Nat. Commun. 2020, 11, 1539. [Google Scholar] [CrossRef]
- Tsuruga, T.; Fujimoto, H.; Yasuma, T.; D’Alessandro-Gabazza, C.N.; Toda, M.; Ito, T.; Tomaru, A.; Saiki, H.; Okano, T.; Alhawsawi, M.A.B.; et al. Role of microbiota-derived corisin in coagulation activation during SARS-CoV-2 infection. J. Thromb. Haemost. 2024, 27, 1919–1935. [Google Scholar] [CrossRef]
- Nishiwaki, R.; Imoto, I.; Oka, S.; Yasuma, T.; Fujimoto, H.; D’Alessandro-Gabazza, C.N.; Toda, M.; Kobayashi, T.; Osamu, H.; Fujibe, K.; et al. Elevated plasma and bile levels of corisin, a microbiota-derived proapoptotic peptide, in patients with severe acute cholangitis. Gut Pathog. 2023, 15, 59. [Google Scholar] [CrossRef]
- Fridman D’Alessandro, V.; D’Alessandro-Gabazza, C.N.; Yasuma, T.; Toda, M.; Takeshita, A.; Tomaru, A.; Tharavecharak, S.; Lasisi, I.O.; Hess, R.Y.; Nishihama, K.; et al. Inhibition of a Microbiota-Derived Peptide Ameliorates Established Acute Lung Injury. Am. J. Pathol. 2023, 193, 740–754. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.M.; Cunningham, S.A.; Dunlop, A.L.; Corwin, E.J. The Maternal Gut Microbiome During Pregnancy. MCN Am. J. Matern. Child. Nurs. 2017, 42, 310–317. [Google Scholar] [PubMed]
- Tersigni, C.; D’Ippolito, S.; Di Nicuolo, F.; Marana, R.; Valenza, V.; Masciullo, V.; Scaldaferri, F.; Malatacca, F.; de Waure, C.; Gasbarrini, A.; et al. Recurrent pregnancy loss is associated to leaky gut: A novel pathogenic model of endometrium inflammation? J. Transl. Med. 2018, 16, 102. [Google Scholar] [CrossRef]
- World-Heath-Organization. Low Birth Weight. Available online: https://www.who.int/data/nutrition/nlis/info/low-birth-weight (accessed on 12 December 2024).
- World-Heath-Organization. Preterm Birth. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 12 December 2024).
- Tamura, N.; Hanaoka, T.; Ito, K.; Araki, A.; Miyashita, C.; Ito, S.; Minakami, H.; Cho, K.; Endo, T.; Sengoku, K.; et al. Different Risk Factors for Very Low Birth Weight, Term-Small-for-Gestational-Age, or Preterm Birth in Japan. Int. J. Environ. Res. Public Health 2018, 15, 369. [Google Scholar] [CrossRef]
- Gajda, A.M.; Storch, J. Enterocyte fatty acid-binding proteins (FABPs): Different functions of liver and intestinal FABPs in the intestine. Prostaglandins Leukot. Essent. Fatty Acids 2015, 93, 9–16. [Google Scholar]
- Ebina, Y.; Ieko, M.; Naito, S.; Kobashi, G.; Deguchi, M.; Minakami, H.; Atsumi, T.; Yamada, H. Low levels of plasma protein S, protein C and coagulation factor XII during early pregnancy and adverse pregnancy outcome. Thromb. Haemost. 2015, 114, 65–69. [Google Scholar]
- Li, M.; Huang, S.J. Innate immunity, coagulation and placenta-related adverse pregnancy outcomes. Thromb. Res. 2009, 124, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Bayar, E.; Bennett, P.R.; Chan, D.; Sykes, L.; MacIntyre, D.A. The pregnancy microbiome and preterm birth. Semin. Immunopathol. 2020, 42, 487–499. [Google Scholar] [CrossRef]
- Vinturache, A.E.; Gyamfi-Bannerman, C.; Hwang, J.; Mysorekar, I.U.; Jacobsson, B.; Preterm Birth International, C. Maternal microbiome—A pathway to preterm birth. Semin. Fetal Neonatal Med. 2016, 21, 94–99. [Google Scholar]
- Anton, L.; Sierra, L.J.; DeVine, A.; Barila, G.; Heiser, L.; Brown, A.G.; Elovitz, M.A. Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Lactobacillus crispatus Contributes to Cervical Health. Front. Microbiol. 2018, 9, 2181. [Google Scholar] [CrossRef]
- Gorczyca, K.; Obuchowska, A.; Kimber-Trojnar, Z.; Wierzchowska-Opoka, M.; Leszczynska-Gorzelak, B. Changes in the Gut Microbiome and Pathologies in Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 9961. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Backhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cai, X.; Ye, Y.; Wang, F.; Chen, F.; Zheng, C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front. Immunol. 2021, 12, 708472. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Aldo, P.; Alvero, A.B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef]
- Salminen, A.; Paananen, R.; Vuolteenaho, R.; Metsola, J.; Ojaniemi, M.; Autio-Harmainen, H.; Hallman, M. Maternal endotoxin-induced preterm birth in mice: Fetal responses in toll-like receptors, collectins, and cytokines. Pediatr. Res. 2008, 63, 280–286. [Google Scholar] [CrossRef]
- Thaxton, J.E.; Nevers, T.A.; Sharma, S. TLR-mediated preterm birth in response to pathogenic agents. Infect. Dis. Obstet. Gynecol. 2010, 2010, 378472. [Google Scholar] [CrossRef]
- Wahid, H.H.; Dorian, C.L.; Chin, P.Y.; Hutchinson, M.R.; Rice, K.C.; Olson, D.M.; Moldenhauer, L.M.; Robertson, S.A. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice. Endocrinology 2015, 156, 3828–3841. [Google Scholar] [CrossRef]
- Hsu, C.N.; Yang, H.W.; Hou, C.Y.; Chang-Chien, G.P.; Lin, S.; Tain, Y.L. Maternal Adenine-Induced Chronic Kidney Disease Programs Hypertension in Adult Male Rat Offspring: Implications of Nitric Oxide and Gut Microbiome Derived Metabolites. Int. J. Mol. Sci. 2020, 21, 7237. [Google Scholar] [CrossRef]
- Fettweis, J.M.; Serrano, M.G.; Brooks, J.P.; Edwards, D.J.; Girerd, P.H.; Parikh, H.I.; Huang, B.; Arodz, T.J.; Edupuganti, L.; Glascock, A.L.; et al. he vaginal microbiome and preterm birth. Nat. Med. 2019, 25, 1012–1021. [Google Scholar] [CrossRef]
- Gudnadottir, U.; Debelius, J.W.; Du, J.; Hugerth, L.W.; Danielsson, H.; Schuppe-Koistinen, I.; Fransson, E.; Brusselaers, N. The vaginal microbiome and the risk of preterm birth: A systematic review and network meta-analysis. Sci. Rep. 2022, 12, 7926. [Google Scholar] [CrossRef]
- Juliana, N.C.A.; Suiters, M.J.M.; Al-Nasiry, S.; Morre, S.A.; Peters, R.P.H.; Ambrosino, E. The Association Between Vaginal Microbiota Dysbiosis, Bacterial Vaginosis, and Aerobic Vaginitis, and Adverse Pregnancy Outcomes of Women Living in Sub-Saharan Africa: A Systematic Review. Front. Public Health 2020, 8, 567885. [Google Scholar] [CrossRef] [PubMed]
- Andraweera, P.H.; Condon, B.; Collett, G.; Gentilcore, S.; Lassi, Z.S. Cardiovascular risk factors in those born preterm—systematic review and meta-analysis. J. Dev. Orig. Health Dis. 2021, 12, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Cleary-Goldman, J.; Malone, F.D.; Vidaver, J.; Ball, R.H.; Nyberg, D.A.; Comstock, C.H.; Saade, G.R.; Eddleman, K.A.; Klugman, S.; Dugoff, L.; et al. Impact of maternal age on obstetric outcome. Obstet. Gynecol. 2005, 105 Pt 1, 983–990. [Google Scholar] [CrossRef]
- Laopaiboon, M.; Lumbiganon, P.; Intarut, N.; Mori, R.; Ganchimeg, T.; Vogel, J.P.; Souza, J.P.; Gulmezoglu, A.M.; WHO Multicountry Survey on Maternal Newborn Health Research Network. Advanced maternal age and pregnancy outcomes: A multicountry assessment. BJOG 2014, 121 (Suppl. S1), 49–56. [Google Scholar] [CrossRef] [PubMed]
- Schummers, L.; Hutcheon, J.A.; Hacker, M.R.; VanderWeele, T.J.; Williams, P.L.; McElrath, T.F.; Hernandez-Diaz, S. Absolute risks of obstetric outcomes by maternal age at first birth: A population-based cohort. Epidemiology 2018, 29, 379–387. [Google Scholar] [CrossRef]
- Hur, Y.M.; Kwon, E.J.; You, Y.A.; Park, S.; Kim, S.M.; Lee, G.; Go, Y.Y.; Kim, Y.J. Identification of Short-Chain Fatty Acids for Predicting Preterm Birth in Cervicovaginal Fluid Using Mass Spectrometry. Int. J. Mol. Sci. 2024, 25, 3396. [Google Scholar] [CrossRef]
- Kirby, M.A.; Lauer, J.M.; Muhihi, A.; Ulenga, N.; Aboud, S.; Liu, E.; Choy, R.K.M.; Arndt, M.B.; Kou, J.; Gewirtz, A.; et al. Biomarkers of environmental enteric dysfunction and adverse birth outcomes: An observational study among pregnant women living with HIV in Tanzania. EBioMedicine 2022, 84, 104257. [Google Scholar] [CrossRef]
- Lee, J.Y.; Seo, S.; Shin, B.; Hong, S.H.; Kwon, E.; Park, S.; Hur, Y.M.; Lee, D.K.; Kim, Y.J.; Han, S.B. Development of a New Biomarker Model for Predicting Preterm Birth in Cervicovaginal Fluid. Metabolites 2022, 12, 734. [Google Scholar] [CrossRef]
- Pinto, Y.; Frishman, S.; Turjeman, S.; Eshel, A.; Nuriel-Ohayon, M.; Shrossel, O.; Ziv, O.; Walters, W.; Parsonnet, J.; Ley, C.; et al. Gestational diabetes is driven by microbiota-induced inflammation months before diagnosis. Gut 2023, 72, 918–928. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergstrom, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Backhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Thomas, K.L.; Wahlquist, A.E.; James, D.; Clark, W.A.; Wagner, C.L. Effects of Maternal Pre-Pregnancy BMI on Preterm Infant Microbiome and Fecal Fermentation Profile-A Preliminary Cohort Study. Nutrients 2025, 17, 987. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Tsukada, A.; Katagiri, D.; Izumi, S.; Terada-Hirashima, J.; Shimizu, Y.; Uemura, Y.; Toda, M.; Yasuma, T.; Gabazza, C.N.D.; Fujimoto, H.; et al. Inflammatory and Coagulation Marker Changes in PMX-DHP-Treated COVID-19 Patients. Cureus 2025, 17, e78836. [Google Scholar] [CrossRef]
- Bose, P.; Black, S.; Kadyrov, M.; Weissenborn, U.; Neulen, J.; Regan, L.; Huppertz, B. Heparin and aspirin attenuate placental apoptosis in vitro: Implications for early pregnancy failure. Am. J. Obstet. Gynecol. 2005, 192, 23–30. [Google Scholar] [CrossRef]
- Negara, K.S.; Suwiyoga, K.; Sudewi, R.; Astawa, N.M.; Arijana, G.N.K.; Tunas, K.; Pemayun, T.G.A. The role of caspase-dependent and caspase-independent pathways of apoptosis in the premature rupture of the membranes: A case-control study. Int. J. Reprod. Biomed. 2020, 18, 439–448. [Google Scholar] [PubMed]
- Schatz, F.; Guzeloglu-Kayisli, O.; Arlier, S.; Kayisli, U.A.; Lockwood, C.J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum. Reprod. Update 2016, 22, 497–515. [Google Scholar] [CrossRef]
- Straszewski-Chavez, S.L.; Abrahams, V.M.; Mor, G. The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy. Endocr. Rev. 2005, 26, 877–897. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- MacIntyre, D.A.; Chandiramani, M.; Lee, Y.S.; Kindinger, L.; Smith, A.; Angelopoulos, N.; Lehne, B.; Arulkumaran, S.; Brown, R.; Teoh, T.G.; et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 2015, 5, 8988. [Google Scholar] [CrossRef]
Variable | Term Birth | Preterm Birth | p Values | All Subjects |
---|---|---|---|---|
No of subjects | 74 | 10 | 84 | |
* Underlying diseases | 0.153 | |||
‡ None | 47 (63.5%) | 9 (90.0%) | 56 (66.7%) | |
With underlying diseases | 27 (37.8%) | 1 (10.0%) | 28 (33.3%) | |
Type 2 diabetes mellitus | 2 (2.7%) | 0 | 2 (2.4%) | |
Arterial hypertension | 5 (6.8%) | 0 | 5 (5.9%) | |
Hypothyroidism | 2 (2.7%) | 0 | 2 (2.4%) | |
Pulmonary sarcoidosis | 1 (1.4%) | 0 | 1 (1.2%) | |
Hereditary Spherocytosis | 1 (1.4%) | 0 | 1 (1.2%) | |
Congenital antithrombin deficiency | 1 (1.4%) | 0 | 1 (1.2%) | |
Bronchial asthma | 1 (1.4%) | 0 | 1 (1.2%) | |
Familial hypercholesterolemia | 1 (1.4%) | 0 | 1 (1.2%) | |
Hashimoto’s disease | 1 (1.4%) | 0 | 1 (1.2%) | |
Graves’ disease | 0 | 1 (10%) | 1 (1.2%) | |
IgA nephropathy | 1 (1.2%) | 0 | 1 (1.1%) | |
Antiphospholipid syndrome | 2 (2.7%) | 0 | 2 (2.4%) | |
SS-A antibody positive | 1 (1.4%) | 0 | 1 (1.2%) | |
Psychiatric disorder | ||||
Panic disorder | 2 (2.7%) | 1 (10%) | 3 (3.6%) | |
Depression | 2 (2.7%) | 0 | 2 (2.4%) | |
Bipolar disorder | 1 (1.4%) | 0 | 1 (1.2%) | |
Anxiety disorder | 1 (1.4%) | 0 | 1 (1.2%) | |
Tumor | ||||
Tongue cancer | 1 (1.4%) | 0 | 1 (1.2%) | |
Uterine fibroids/adenomyosis | 1 (1.4%) | 0 | 1 (1.2%) | |
§ Complications | 0.091 | |||
None | 46 (62.2%) | 3 (30%) | 49 (58.3%) | |
With complications | 28 (37.8%) | 7 (70%) | 35 (41.7%) | |
Preeclampsia | 3 (4.1%) | 1 (10%) | 4 (4.8%) | |
Gestational diabetes mellitus | 7 (9.5%) | 0 | 7 (8.3%) | |
Hypertensive disorder of pregnancy | 2 (2.7%) | 1 (10%) | 3 (3.6%) | |
Preterm labor | - | 3 (30%) | 3 (3.6%) | |
Chorioamnionitis/chorangiosis | 14 (18.9%) | 4 (40%) | 18 (21.4%) | |
Fetal growth restriction | 4 (5.4%) | 0 (0%) | 4 (4.8%) | |
Non-reassuring fetal status | 7 (9.5%) | 2 (20%) | 9 (10.7%) | |
Small-for-gestational-age infants | 7 (9.5) | 1 (10%) | 0.999 | 8 (9.5%) |
Methods of childbirth | 0.374 | |||
Cesarean section | 62 (83.8%) | 7 (70%) | 69 (82.1%) | |
Natural delivery | 12 (16.2%) | 3 (30%) | 15 (17.9%) | |
Methods of conceptions | 0.273 | |||
Natural | 47 (63.5%) | 9 (90%) | 56 (66.7%) | |
Hormone replacement cycle frozen- thawed embryo transfer. | 24 (32.4%) | 1 (10%) | 25 (29.8%) | |
Natural cycle frozen transfer | 3 (4.1%) | 0 | 3 (3.6%) |
Variable | Newborn Body Weight > 2.5 kg | Newborn Body Weight < 2.5 kg | p Values | All Subjects |
---|---|---|---|---|
No of subjects | 62 | 22 | 84 | |
* Underlying diseases | 0.114 | |||
‡ None | 38 (61.3%) | 18 (81.8%) | 56 (66.7%) | |
With underlying diseases | 24 (38.7%) | 4 (18.2%) | 28 (33.3%) | |
Type 2 diabetes mellitus | 2 (3.2%) | 0 | 2 (2.4%) | |
Arterial hypertension | 5 (8.1%) | 0 | 5 (5.9%) | |
Hypothyroidism | 2 (3.2%) | 1 (5.0%) | 3 (3.6%) | |
Pulmonary sarcoidosis | 1 (1.6%) | 0 | 1 (1.2%) | |
Hereditary Spherocytosis | 1 (1.6%) | 0 | 1 (1.2%) | |
Congenital antithrombin deficiency | 1 (1.6%) | 0 | 1 (1.2%) | |
Bronchial asthma | 1 (1.6%) | 1 (5.0%) | 2 (2.4%) | |
Familial hypercholesterolemia | 1 (1.6%) | 0 | 1 (1.2%) | |
Hashimoto’s disease | 1 (1.6%) | 0 | 1 (1.2%) | |
Graves’ disease | 0 | 1 (5.0%) | 1 (1.2%) | |
IgA nephropathy | 1 (1.6%) | 0 | 1 (1.2%) | |
Antiphospholipid syndrome | 2 (3.2%) | 0 | 2 (2.4%) | |
SS-A antibody positive | 1 (1.6%) | 0 | 1 (1.2%) | |
Others | 2 (3.2%) | 0 | 2 (2.4%) | |
Psychiatric disorder | ||||
Panic disorder | 1 (1.6%) | 2 (9.1%) | 3 (3.6%) | |
Depression | 2 (3.2%) | 0 | 2 (2.4%) | |
Bipolar disorder | 0 | 1 (5.0%) | 1 (1.2%) | |
Anxiety disorder | 1 (1.6%) | 0 | 1 (1.2%) | |
Tumor | ||||
Tongue cancer | 1 (1.6%) | 0 | 1 (1.2%) | |
Uterine fibroids/adenomyosis | 1 (1.6%) | 0 | 1 (1.2%) | |
§ Complications | ||||
None | 44 (71.0.%) | 5 (22.7%) | 0.0001 | 49 (58.3%) |
With complications | 18 (29.0%) | 17 (77.3%) | 35 (41.7%) | |
Preeclampsia | 0 | 4 (18.2%) | 4 (4.8%) | |
Gestational diabetes mellitus | 7 (11.3%) | 0 | 7 (8.3%) | |
Hypertensive disorder of pregnancy | 2 (3.2%) | 1 (4.5%) | 3 (3.6%) | |
Preterm labor | 0 (0%) | 3 (13.6%) | 3 (3.6%) | |
Chorioamnionitis/chorangiosis | 10 (16.1%) | 8 (36.4%) | 18 (21.4%) | |
Fetal growth restriction | 0 (%) | 4 (18.2%) | 4 (4.8%) | |
Non-reassuring fetal status | 3 (4.8%) | 6 (27.3%) | 9 (10.7%) | |
Small-for-gestational-age infants | 1 (1.6%) | 7 (31.8%) | 0.0002 | 8 (9.5%) |
Methods of childbirth | 0.749 | |||
Cesarean section | 50 (80.7%) | 19 (86.4%) | 69 (82.1%) | |
Natural delivery | 12 (19.4%) | 3 (13.6%) | 15 (17.9%) | |
Methods of conceptions | 0.281 | |||
Natural | 38 (61.3%) | 18 (81.8%) | 56 (66.7%) | |
Hormone replacement cycle frozen- thawed embryo transfer. | 20 (32.3%) | 4 (18.2%) | 24 (28.6%) | |
Natural cycle frozen transfer | 3 (4.8%) | 0 | 3 (3.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, M.; Nii, M.; Toriyabe, K.; Tamaishi, Y.; Takakura, S.; Magawa, S.; Yasuma, T.; D’Alessandro-Gabazza, C.N.; Fujimoto, H.; Toda, M.; et al. Exploratory Evaluation of Circulating Microbiota-Derived Corisin Levels in Women with Adverse Pregnancy Outcomes. Antioxidants 2025, 14, 670. https://doi.org/10.3390/antiox14060670
Kato M, Nii M, Toriyabe K, Tamaishi Y, Takakura S, Magawa S, Yasuma T, D’Alessandro-Gabazza CN, Fujimoto H, Toda M, et al. Exploratory Evaluation of Circulating Microbiota-Derived Corisin Levels in Women with Adverse Pregnancy Outcomes. Antioxidants. 2025; 14(6):670. https://doi.org/10.3390/antiox14060670
Chicago/Turabian StyleKato, Maya, Masafumi Nii, Kuniaki Toriyabe, Yuya Tamaishi, Sho Takakura, Shoichi Magawa, Taro Yasuma, Corina N. D’Alessandro-Gabazza, Hajime Fujimoto, Masaaki Toda, and et al. 2025. "Exploratory Evaluation of Circulating Microbiota-Derived Corisin Levels in Women with Adverse Pregnancy Outcomes" Antioxidants 14, no. 6: 670. https://doi.org/10.3390/antiox14060670
APA StyleKato, M., Nii, M., Toriyabe, K., Tamaishi, Y., Takakura, S., Magawa, S., Yasuma, T., D’Alessandro-Gabazza, C. N., Fujimoto, H., Toda, M., Cann, I., Kobayashi, T., Gabazza, E. C., Kondo, E., & Ikeda, T. (2025). Exploratory Evaluation of Circulating Microbiota-Derived Corisin Levels in Women with Adverse Pregnancy Outcomes. Antioxidants, 14(6), 670. https://doi.org/10.3390/antiox14060670