From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Nutritional Composition
2.4. Preparation of Food-Grade Extract
2.5. 1H-NMR Profiling
2.6. Phytochemical Screening
2.6.1. Total Phenolic Content
2.6.2. Total Flavonoids
2.6.3. Vanillin Index
2.6.4. Proanthocyanidins
2.7. Polyphenol Profile by LC-DAD-ESI-MS/MS Analysis
2.8. Antioxidant and Anti-Inflammatory Assays
2.8.1. DPPH Assay
2.8.2. TEAC Assay
2.8.3. FRAP Assay
2.8.4. ORAC Assay
2.8.5. Iron-Chelating Activity
2.8.6. β-Carotene Bleaching (BCB) Assay
2.8.7. Heat-Induced Bovine Serum Albumin (BSA) Denaturation Assay
2.8.8. Protease-Inhibitory Activity (PIA)
2.9. Statistical Analysis
3. Results
3.1. Nutritional Characterization
3.2. 1H NMR Profiling
3.3. Characterization of Secondary Metabolites
3.3.1. Preliminary Phytochemical Analyses
3.3.2. LC-DAD-ESI-MS/MS Analysis
3.4. Antioxidant and Anti-Inflammatory Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) |
ADA | Albumin Denaturation Assay |
AAPH | 2,2′-Azobis(2-amidinopropane) dihydrochloride |
BHT | Butylated Hydroxytoluene |
BPE | Bean Pod Extract |
BSA | Bovine Serum Albumin |
BCB | β-Carotene Bleaching |
CD3OD | Deuterated Methanol |
C.L. | Confidence Limits |
D2O | Deuterium Oxide |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
DW | Dry Weight |
EDTA | Ethylenediaminetetraacetic Acid |
ESI | Electrospray Ionization |
FAME | Fatty Acid Methyl Esters |
FID | Flame Ionization Detector |
FRAP | Ferric-Reducing Antioxidant Power |
GAE | Gallic Acid Equivalents |
GC | Gas Chromatography |
HMBC | Heteronuclear Multiple Bond Correlation |
HSQC | Heteronuclear Single Quantum Coherence |
ICA | Iron-Chelating Activity |
IC50 | Half Maximal Inhibitory Concentration |
ICP-MS | Inductively Coupled Plasma–Mass Spectrometry |
LC-DAD-ESI-MS | Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry |
MES | 2-(N-Morpholino)ethanesulfonic Acid |
MUFA | Monounsaturated Fatty Acids |
NMR | Nuclear Magnetic Resonance |
ORAC | Oxygen Radical Absorbance Capacity |
PBS | Phosphate Buffered Saline |
PIA | Protease-Inhibitory Activity |
PUFA | Polyunsaturated Fatty Acids |
QE | Quercetin Equivalents |
RE | Rutin Equivalents |
RT | Room Temperature |
SFA | Saturated Fatty Acids |
TEAC | Trolox Equivalent Antioxidant Capacity |
TMSP | 3-(Trimethylsilyl)-propionic Acid-2,2,3,3-d4 |
TRIS | Tris(hydroxymethyl)aminomethane |
TPTZ | 2,4,6-Tris(2-pyridyl)-s-triazine |
UV-vis | Ultraviolet-visible |
References
- Nartea, A.; Kuhalskaya, A.; Fanesi, B.; Orhotohwo, O.L.; Susek, K.; Rocchetti, L.; Di Vittori, V.; Bitocchi, E.; Pacetti, D.; Papa, R. Legume Byproducts as Ingredients for Food Applications: Preparation, Nutrition, Bioactivity, and Techno-Functional Properties. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1953–1985. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/ (accessed on 30 December 2024).
- Tassoni, A.; Tedeschi, T.; Zurlini, C.; Cigognini, I.M.; Petrusan, J.I.; Rodríguez, Ó.; Neri, S.; Celli, A.; Sisti, L.; Cinelli, P.; et al. State-of-the-Art Production Chains for Peas, Beans and Chickpeas: Valorization of Agro-Industrial Residues and Applications of Derived Extracts. Molecules 2020, 25, 1383. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega, R.; Oomah, B.D.; Vergara-Castaneda, H.A. (Eds.) Food Wastes and By-Products: Nutraceutical and Health Potential; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Alfaro-Diaz, A.; Escobedo, A.; Luna-Vital, D.A.; Castillo-Herrera, G.; Mojica, L. Common Beans as a Source of Food Ingredients: Techno-Functional and Biological Potential. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2910–2944. [Google Scholar] [CrossRef]
- Farrell, E.L.; Doma, K.M.; Leith-Bailey, E.R.; Soucier, V.D.; Duncan, A.M. Health Claims and Information Sources in Relation to Bean Consumption in Older Adults. Appetite 2019, 140, 318–327. [Google Scholar] [CrossRef]
- Nchanji, E.B.; Ageyo, O.C. Do Common Beans (Phaseolus vulgaris L.) Promote Good Health in Humans? A Systematic Review and Meta-Analysis of Clinical and Randomized Controlled Trials. Nutrients 2021, 13, 3701. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 30 December 2024).
- Los, F.G.B.; Zielinski, A.A.F.; Wojeicchowski, J.P.; Nogueira, A.; Demiate, I.M. Beans (Phaseolus vulgaris L.): Whole Seeds with Complex Chemical Composition. Curr. Opin. Food Sci. 2018, 19, 63–71. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Gan, R.Y.; Ge, Y.Y.; Zhang, D.; Corke, H. Polyphenols in Common Beans (Phaseolus vulgaris L.): Chemistry, Analysis, and Factors Affecting Composition. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1518–1539. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Madrera, R.; Campa Negrillo, A.; Suárez Valles, B.; Ferreira Fernández, J.J. Phenolic Content and Antioxidant Activity in Seeds of Common Bean (Phaseolus vulgaris L.). Foods 2021, 10, 864. [Google Scholar] [CrossRef]
- Fonseca-Hernández, D.; Lugo-Cervantes, E.D.C.; Escobedo-Reyes, A.; Mojica, L. Black Bean (Phaseolus vulgaris L.) Polyphenolic Extract Exerts Antioxidant and Antiaging Potential. Molecules 2021, 26, 6716. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition and Antioxidant Potential of Grain Legume Seeds: A Review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K.C. Comparative Analyses of Phenolic Composition, Antioxidant Capacity, and Color of Cool Season Legumes and Other Selected Food Legumes. J. Food Sci. 2007, 72, S167–S177. [Google Scholar] [CrossRef] [PubMed]
- ISTISAN. Rapporto ISTISAN 1996/34. Available online: https://www.iss.it/documents/20126/45616/Rapp_ISTISAN_96_34_def.pdf (accessed on 30 December 2024).
- Ingegneri, M.; Smeriglio, A.; Rando, R.; Gervasi, T.; Tamburello, M.P.; Ginestra, G.; La Camera, E.; Pennisi, R.; Sciortino, M.T.; Mandalari, G.; et al. Composition and Biological Properties of Blanched Skin and Blanch Water Belonging to Three Sicilian Almond Cultivars. Nutrients 2023, 15, 1545. [Google Scholar] [CrossRef]
- Ingegneri, M.; Braghini, M.R.; Piccione, M.; De Stefanis, C.; Mandrone, M.; Chiocchio, I.; Poli, F.; Imbesi, M.; Alisi, A.; Smeriglio, A.; et al. Citrus Pomace as a Source of Plant Complexes to Be Used in the Nutraceutical Field of Intestinal Inflammation. Antioxidants 2024, 13, 869. [Google Scholar] [CrossRef]
- Danna, C.; Bazzicalupo, M.; Ingegneri, M.; Smeriglio, A.; Trombetta, D.; Burlando, B.; Cornara, L. Anti-Inflammatory and Wound Healing Properties of Leaf and Rhizome Extracts from the Medicinal Plant Peucedanum ostruthium (L.) W. D. J. Koch. Molecules 2022, 27, 4271. [Google Scholar] [CrossRef] [PubMed]
- Barclay, T.; Ginic-Markovic, M.; Johnston, M.R.; Cooper, P.; Petrovsky, N. Observation of the keto tautomer of D-fructose in D₂O using ¹H NMR spectroscopy. Carbohydr. Res. 2012, 347, 136–141. [Google Scholar] [CrossRef]
- Estrada-López, H.H.; Restrepo-Fiórez, C.E.; Iglesias-Navas, M.A. Aceptabilidad Sensorial de Productos de Panadería y Repostería con Incorporación de Frutas y Hortalizas Deshidratadas como Ingredientes Funcionales. Inf. Tecnol. 2018, 29, 13–20. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Yakovleva, N.; Camacho-Ferre, F. Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management. Int. J. Environ. Res. Public Health 2020, 17, 9549. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; Meyer, A.; Berhow, M.A.; de Mejía, E.G. Bean Cultivars (Phaseolus vulgaris L.) Have Similar High Antioxidant Capacity, In Vitro Inhibition of α-Amylase and α-Glucosidase, While Diverse Phenolic Composition and Concentration. Food Res. Int. 2015, 69, 38–48. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Data; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Aigbodion, V.S. Bean Pod Ash Nanoparticles: A Promising Reinforcement for Aluminum Matrix Biocomposites. J. Mater. Res. Technol. 2019, 8, 6011–6020. [Google Scholar] [CrossRef]
- Martinez-Castaño, M.; Mejía Díaz, D.P.; Contreras-Calderón, J.; Gallardo Cabrera, C. Physicochemical properties of bean pod (Phaseolus vulgaris) flour and its potential as a raw material for the food industry. Rev. Fac. Nac. Agron. Medellín 2020, 73, 9179–9187. [Google Scholar] [CrossRef]
- Fáver Gómez-Narváez, Y.; Medina-Pineda, Y.; Contreras-Calderón, J. Evaluation of the heat damage of whey and whey proteins using multivariate analysis. Food Res. Int. 2017, 102, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Fongaro, L.; Brandolini, A. Colour Screening of Whole Meal Flours and Discrimination of Seven Triticum Subspecies. J. Cereal Sci. 2017, 77, 9–16. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, A.; Wang, C. Novel Development and Characterisation of Dietary Fibre from Yellow Soybean Hulls. Food Chem. 2014, 161, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Belghith-Fendri, L.; Chaari, F.; Kallel, F.; Zouari-Ellouzi, S.; Ghorbel, R.; Besbes, S.; Ellouz-Chaabouni, S.; Ghribi-Aydi, D. Pea and Broad Bean Pods as a Natural Source of Dietary Fiber: The Impact on Texture and Sensory Properties of Cake. J. Food Sci. 2016, 81, C2360–C2366. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M.J. Isolation and Characterization of Cell Wall Polysaccharides from Legume By-Products: Okara (Soymilk Residue): Pea Pod and Broad Bean Pod. Food Chem. 2010, 122, 339–345. [Google Scholar] [CrossRef]
- Figuerola, F.; Hurtado, M.L.; Estévez, A.M.; Chiffelle, I.; Asenjo, F. Fiber Concentrates from Apple Pomace and Citrus Peel as Potential Fibre Sources for Food Enrichment. Food Chem. 2005, 91, 395–401. [Google Scholar] [CrossRef]
- Masli, M.D.P.; Rasco, B.A.; Ganjyal, G.M. Composition and Physicochemical Characterization of Fiber-Rich Food Processing Byproducts. J. Food Sci. 2018, 83, 956–965. [Google Scholar] [CrossRef]
- Fernández-López, J.; Sendra-Nadal, E.; Navarro, C.; Sayas, E.; Viuda-Martos, M.; Alvarez, J.A.P. Storage stability of a high dietary fibre powder from orange by-products. Int. J. Food Sci. Technol. 2009, 44, 748–756. [Google Scholar] [CrossRef]
- Femenia, A.; Lefebvre, A.C.; Thebaudin, J.Y.; Robertson, J.A.; Bourgeois, C.M. Physical and Sensory Properties of Model Foods Supplemented with Cauliflower Fiber. J. Food Sci. 1997, 62, 635–639. [Google Scholar] [CrossRef]
- He, S.; Li, J.; He, Q.; Jian, H.; Zhang, Y.; Wang, J.; Sun, H. Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivum L.) bran superfine powder produced by eccentric vibratory milling. Powder Technol. 2018, 325, 126–133. [Google Scholar] [CrossRef]
- Sangnark, A.; Noomhorm, A. Chemical, Physical and Baking Properties of Dietary Fiber Prepared from Rice Straw. Food Res. Int. 2004, 37, 66–74. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fiber and Fiber-Rich By-Products of Food Processing: Characterization, Technological Functionality, and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, Physicochemical, Technological, Antibacterial and Antioxidant Properties of Dietary Fiber Powder Obtained from Yellow Passion Fruit (Passiflora edulis var. flavicarpa) Co-Products. Food Res. Int. 2013, 51, 756–763. [Google Scholar] [CrossRef]
- Cárcel, J.A.; Castillo, D.; Simal, S.; Mulet, A. Influence of Temperature and Ultrasound on Drying Kinetics and Antioxidant Properties of Red Pepper. Drying Technol. 2019, 37, 486–493. [Google Scholar] [CrossRef]
- Contreras-Calderón, J.; Mejía-Díaz, D.; Martínez-Castaño, M.; Bedoya-Ramírez, D.; López-Rojas, N.; Gómez-Narváez, F.; Medina-Pineda, Y.; Vega-Castro, O. Evaluation of Antioxidant Capacity in Coffees Marketed in Colombia: Relationship with the Extent of Non-Enzymatic Browning. Food Chem. 2016, 209, 162–170. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant, and Essential Oil Volatile Composition of Herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Gharbi, S.; Renda, G.; La Barbera, L.; Amri, M.; Messina, C.M.; Santulli, A. Tunisian Tomato By-Products as a Potential Source of Natural Bioactive Compounds. Nat. Prod. Res. 2017, 31, 626–631. [Google Scholar] [CrossRef]
Nutritional Value | g/100 g |
---|---|
Calories | 69 Kcal–287 KJ |
Moisture | 77.43 |
Fats | 0.46 |
Proteins | 0.59 |
Sugars | 10.90 |
Total fiber | 9.30 |
Ash | 1.20 |
Sodium (mg) | 9.10 |
Fatty Acids | g/100 g (%) |
---|---|
C12:0-Lauric | 0.64 ± 0.08 |
C14:0-Myristic | 1.07 ± 0.17 |
C15:0-Pentadecanoic | 0.34 ± 0.07 |
C16:0-Palmitic | 23.47 ± 1.30 |
C17:0-Margaric | 0.75 ± 0.08 |
C18:0-Stearic | 7.59 ± 0.44 |
C20:0-Arachidonic | 0.85 ± 0.09 |
C22:0-Behenic | 0.25 ± 0.06 |
C24:0-Lignoceric | 0.16 ± 0.06 |
Saturated fatty acids (SFA) | 35.13 ± 1.13 |
C14:1-Myristoleic | 0.36 ± 0.08 |
C16:1n-9-Trans-palmitoleic | 0.66 ± 0.09 |
C16:1n-7-Cis-palmitoleic | 1.16 ± 0.08 |
C17:1-Heptadecanoic | 0.53 ± 0.07 |
C18:1n-9-Oleic | 47.56 ± 2.07 |
C18:1n-7-Cis-Vaccenic | 0.85 ± 0.09 |
C20:1 n-9-Eicosenoic | 0.46 ± 0.09 |
C24:1 n-9-Nervonic | 0.11 ± 0.04 |
Monounsaturated fatty acids (MUFA) | 51.69 ± 2.02 |
C18:2n-6-Linoleic | 10.45 ± 1.02 |
C18:3n-6-γ-Linolenic | 0.57 ± 0.09 |
C18:3n-3-α-Linolenic | 1.29 ± 0.14 |
C18:4n-3-Stearidonic | 0.53 ± 0.10 |
C18:4n-1-9,12,15,17-octadecatetraenoic | 0.34 ± 0.08 |
Polyunsaturated fatty acids (PUFA) | 13.18 ± 1.10 |
1H-NMR Diagnostic Signal (δ, Multiplicity) | µg/mg DW | % | |
---|---|---|---|
Leucine | 0.98, d | 10.5 | 1.1 |
Isoleucine | 1.02, d | 7.5 | 0.7 |
Valine | 1.05, d | 7.4 | 0.7 |
Threonine | 1.33, d | 8.6 | 0.9 |
Alanine | 1.49, d | 8.1 | 0.8 |
Citric Acid | 2.68, d | 101.4 | 10.1 |
Asparagine | 2.94, dd | 16.4 | 1.6 |
GABA | 3.00, t | 13.7 | 1.4 |
β-Fructopyranose | 3.94, m | 247.3 | 24.7 |
β-Glucose | 4.6, d | 77.3 | 7.7 |
α-Glucose | 5.2, d | 72.8 | 7.3 |
Sucrose | 5.4, d | 113.5 | 11.3 |
Fumaric Acid | 6.54, s | 3.6 | 0.4 |
Tyrosine | 7.18, d | 8.1 | 0.8 |
Phenylalanine | 7.37, m | 11.3 | 1.1 |
Formic Acid | 8.46, s | 2 | 0.2 |
Trigonelline | 8.9, m | 7.2 | 0.7 |
Assay | BPE |
---|---|
Total phenols (mg GAE a/100 g DE b) | 556.89 ± 47.91 |
Flavonoids (mg RE c/100 g ES) | 113.96 ± 8.55 |
Flavan-3-ols (mg CE d/100 g DE) | 102.82 ± 2.35 |
Proanthocyanidins (mg CyE e/100 g DE) | 5.38 ± 0.27 |
Polymerization index f | 19.11 |
Compound | n. | RT a (min) | λmax (nm) | MW b | Peak Intensity (×106) | [M+H]+ (m/z) | MS/MS | [M+H] (m/z) | MS/MS |
---|---|---|---|---|---|---|---|---|---|
Phenylalanyl-leucine | 1 | 2.9 | 260 | 278 | 0.17 | - | - | 277 | 233; 130; 146; 120 |
Raffinose or isomer | 2 | 3.3 | 205 | 504 | 0.13 | - | - | 503 | 341; 179; 161; 119 |
Delphinidin 3-O-glucoside (Mirtillin) c | 3 | 3.8 | 275, 535 | 465 | 9.11 | 465 | 303; 285; 153 | - | - |
Quercetin 3-O-glucoside (Isoquercitrin) c | 4 | 4.1 | 260, 365 | 463 | 12.13 | 465 | 303; 285; 273 | - | - |
Quercetin 7-O-glucuronide | 5 | 5.2 | 260, 360 | 478 | 19.20 | 479 | 303; 285; 273 | - | - |
Pelargonidin 3,5-O-diglucoside | 6 | 5.7 | 270, 515 | 631 | 4.21 | 632 | 469; 307; 289 | - | - |
Pseudouridine | 7 | 5.8 | 260 | 244 | 0.21 | - | - | 243 | 113; 95; 132; 211 |
Punicalin A or B | 8 | 7.1 | 270 | 782 | 1.46 | 783 | 613; 481; 301; 171 | - | - |
(epi)gallocatechin-(epi)catechin II | 9 | 10.3 | 278 | 594 | 0.09 | - | - | 593 | 425; 289; 305; 407 |
Kaempferol-3,7-diglucoside | 10 | 14.3 | 270, 360 | 610 | 0.17 | - | - | 609 | 447; 285; 151; 133 |
(epi)gallocatechin-(epi)catechin I | 11 | 14.5 | 278 | 594 | 0.17 | - | - | 593 | 425; 305; 289 |
Petunidin c | 12 | 14.9 | 275, 530 | 317 | 2.58 | 318 | 302; 287; 273; 153 | - | - |
(epi)gallocatechin-dihexoside | 13 | 20.5 | 278 | 630 | 0.16 | - | - | 629 | 467; 305; 287; 179; 151 |
Quercetin 3-O-rutinoside (Rutin) c | 14 | 20.6 | 260, 358 | 610 | 2.70 | 611 | 465; 303; 285; 229 | - | - |
(epi)catechin hexoside | 15 | 26.9 | 278 | 452 | 0.11 | - | - | 451 | 289; 271; 245; 151; 125 |
Quercetin 3-O-(6″-O-malonyl)glucoside | 16 | 27.9 | 260, 368 | 550 | 1.35 | 551 | 465; 303; 285; 229 | 549 | 463; 301; 179; 151 |
(epi)gallocatechin-O-hexoside | 17 | 30.2 | 273 | 468 | 0.09 | - | - | 467 | 287; 179; 151 |
Malvidin 3-O-glucoside c | 18 | 30.9 | 270, 530 | 493 | 1.01 | 494 | 331; 316; 301; 153 | - | - |
Ciceritol | 19 | 31.1 | 205 | 518 | 0.10 | - | - | 517 | 355; 193; 179; 161; 149 |
Kaempferol 3-O-glucoside (Astragalin)c | 20 | 31.8 | 265, 350 | 448 | 1.12 | 449 | 287; 269; 153; 121 | - | - |
Cyanidin 3-O-(6″-malonyl)glucoside | 21 | 31.9 | 270, 530 | 535 | 1.16 | 535 | 449; 287 | - | - |
Uralenneoside | 22 | 33.0 | 260 | 286 | 0.11 | - | - | 285 | 153; 267; 249; 231 |
(epi)catechin-O-dihexoside | 23 | 34.1 | 278 | 614 | 0.11 | - | - | 613 | 451; 289; 245; 203 |
Pelargonidin 3-O-glucoside c | 24 | 34.5 | 270, 510 | 433 | 6.44 | 433 | 271; 253; 153; 137 | - | - |
Quercetin 3,4′-diglucoside | 25 | 35.0 | 260, 350 | 626 | 0.13 | - | - | 625 | 463; 301; 271; 255 |
Eucomic acid | 26 | 35.9 | 275 | 240 | 1.52 | - | - | 239 | 179; 149 |
Myricetin 3-O-glucoside c | 27 | 37.3 | 260, 365 | 480 | 8.30 | 481 | 319; 301; 179; 151 | 479 | 317; 299; 271; 179; 151 |
Pelargonidin 3-O-(6″-malonyl)glucoside | 28 | 38.2 | 270, 515 | 519 | 7.23 | 519 | 433; 357; 255 | - | - |
Catechin c | 29 | 39.3 | 278 | 290 | 0.11 | - | - | 289 | 245; 205; 179; 151 |
Kaempferol 3-O-(6″-O-malonyl)glucoside | 30 | 41.7 | 260, 360 | 534 | 3.38 | 535 | 449; 271; 153; 121 | - | - |
Prodelphinidin B | 31 | 43.5 | 280 | 610 | 1.05 | - | - | 609 | 483; 441; 305 |
Kaempferol 3-O-(malonyl)glucoside | 32 | 43.9 | 260, 360 | 534 | 2.47 | 535 | 449; 271; 153; 121 | - | - |
Quercetin 3-O-xylosylglucoside | 33 | 44.4 | 260, 355 | 596 | 3.02 | 597 | 465; 303; 285; 229; 153 | 595 | 463; 301; 271; 255; 179 |
Taxifolin hexoside | 34 | 45.1 | 287 | 466 | 1.26 | - | - | 465 | 303; 285; 275; 151; 125 |
Kaempferol-glucoside-rhamnoside | 35 | 46.1 | 260, 350 | 594 | 0.20 | - | - | 593 | 447; 431; 285; 257; 151 |
Kaempferol 3-O-rhamnoside | 36 | 46.7 | 260, 350 | 432 | 0.64 | - | - | 431 | 285; 151 |
Myricetin c | 37 | 47.2 | 265, 365 | 318 | 10.58 | 319 | 301; 291; 275; 179; 153 | - | - |
Kaempferol c | 38 | 47.7 | 260, 360 | 286 | 18.40 | 287 | 269; 259; 153; 121 | - | - |
(epi)catechin-phloroglucinol | 39 | 48.2 | 270, 325 | 414 | 0.14 | - | - | 413 | 289; 125; 245; 151 |
Tellimagrandin I | 40 | 49.3 | 275 | 786 | 5.91 | 787 | 617; 465; 301; 169 | - | - |
trans-Resveratrol-disulfate | 41 | 49.8 | 307, 321 | 388 | 4.75 | 389 | 309; 229; 211 | - | - |
Benzoic acid-3-glucuronide-4-sulfate | 42 | 50.2 | 215, 240 | 410 | 4.16 | 411 | 231; 193; 113 | - | - |
Luteolin c | 43 | 60.4 | 265, 345 | 286 | 0.80 | - | - | 285 | 257; 241; 217; 175; 151 |
Kaempferol 3-O-xylosylglucoside | 44 | 60.8 | 260, 350 | 580 | 5.96 | 581 | 449; 287; 269; 153 | - | - |
Ellagic acid c | 45 | 65.0 | 254, 362 | 302 | 22.70 | 303 | 285; 257; 229; 185 | - | - |
Malvidin c | 46 | 69.9 | 270, 530 | 331 | 23.21 | 331 | 316; 313; 299; 271 | - | - |
Assay | BPE | Standard a |
---|---|---|
IC50 µg/mL (C.L. b 95%) | ||
DPPH | 1878.78 (1384.50–2549.51) | 15.99 (12.92–19.81) |
FRAP | 702.890 (297.48–1660.78) | 3.64 (1.76–7.52) |
TEAC | 248.5 (235.32–343.97) | 4.34 (2.27–8.33) |
ORAC | 4.06 (1.85–8.93) | 0.72 (0.02–1.84) *** |
ICA | 83.90 (69.74–100.95) | 5.78 (3.03–11.03) *** |
BCB | 31.15 (22.17–43.74) | 0.37 (0.15–0.76) *** |
ADA | 1035.88 (854.34–1256.71) | 60.81 (38.93–94.99) *** |
PIA | 370.560 (296.34–463.38) | 23.23 (13.93–38.73) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smeriglio, A.; Imbesi, M.; Ingegneri, M.; Rando, R.; Mandrone, M.; Chiocchio, I.; Poli, F.; Trombetta, D. From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.). Antioxidants 2025, 14, 625. https://doi.org/10.3390/antiox14060625
Smeriglio A, Imbesi M, Ingegneri M, Rando R, Mandrone M, Chiocchio I, Poli F, Trombetta D. From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.). Antioxidants. 2025; 14(6):625. https://doi.org/10.3390/antiox14060625
Chicago/Turabian StyleSmeriglio, Antonella, Martina Imbesi, Mariarosaria Ingegneri, Rossana Rando, Manuela Mandrone, Ilaria Chiocchio, Ferruccio Poli, and Domenico Trombetta. 2025. "From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.)" Antioxidants 14, no. 6: 625. https://doi.org/10.3390/antiox14060625
APA StyleSmeriglio, A., Imbesi, M., Ingegneri, M., Rando, R., Mandrone, M., Chiocchio, I., Poli, F., & Trombetta, D. (2025). From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.). Antioxidants, 14(6), 625. https://doi.org/10.3390/antiox14060625