Analyses of Antioxidant Properties, Mineral Composition, and Fatty Acid Profiles of Soy-Based Beverages Before and After an In Vitro Digestion Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Samples
2.3. Nutrient Composition Analysis
2.4. In Vitro Gastrointestinal Digestion
2.5. Antioxidant Activity and Total Phenolic Content
2.6. Reactive Oxygen Species (ROS) Generation in Caco-2 Cells
2.7. Fatty Acid (FA) Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of the Selected Soy Beverages
3.2. Calcium, Magnesium, and Potassium Bioaccessibility
3.3. The Lipid Fraction
3.4. Total Phenolic Compounds and Antioxidant Properties: Effects of In Vitro Digestion
3.5. ROS Generation in Caco-2 Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olías, R.; Delgado-Andrade, C.; Padial, M.; Marín-Manzano, M.C.; Clemente, A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods 2023, 12, 2665. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.C.; Guldan, G.S.; Woo, J.; Yu, R.; Tse, M.M.; Sham, A.; Cheng, J. A prospective study of the effects of 1-year calcium-fortified soy milk supplementation on dietary calcium intake and bone health in Chinese adolescent girls aged 14 to 16. Osteoporos. Int. 2005, 16, 1907–1916. [Google Scholar]
- Apprey, C.; Larbie, C.; Arthur, F.K.N.; Appiah-Opong, R.; Annan, R.A.; Tuffour, I. Anti-Proliferative Effect of Isoflavones Isolated from Soybean and Soymilk Powder on Lymphoma (DG 75) and Leukemia (CEM) Cell Lines. Brit. J. Pharm. Res. 2015, 7, 206–216. [Google Scholar]
- Lydeking-Olsen, E.; Beck-Jensen, J.E.; Setchell, K.D.; Holm-Jensen, T. Soymilk or progesterone for prevention of bone loss—A 2 year randomized, placebo-controlled trial. Eur. J. Nutr. 2004, 43, 246–257. [Google Scholar]
- Onuegbu, A.J.; Olisekodiaka, J.M.; Onibon, M.O.; Adesiyan, A.A.; Igbeneghu, C.A. Consumption of soymilk lowers atherogenic lipid fraction in healthy individuals. J. Med. Food 2011, 14, 257–260. [Google Scholar]
- Sohouli, M.H.; Lari, A.; Fatahi, S.; Shidfar, F.; Găman, M.A.; Sernizon Guimarães, N.; Sindi, G.A.; Mandili, R.A.; Alzahrani, G.R.; Abdulwahab, R.A.; et al. Impact of soy milk consumption on cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled trials. J. Func. Foods 2021, 83, 104499. [Google Scholar]
- Azadbakht, L.; Kimiagar, M.; Mehrabi, Y.; Esmaillzadeh, A.; Hu, F.B.; Willett, W.C. Soy consumption, markers of inflammation, and endothelial function: A cross-over study in postmenopausal women with the metabolic syndrome. Diabetes Care 2007, 30, 967–973. [Google Scholar]
- Macedo, G.A.; Caria, C.R.E.P.; Barbosa, P.P.M.; Mazine, M.R.; Gambero, A. Bioaccessibility Evaluation of Soymilk Isoflavones with Biotransformation Processing. Foods 2023, 12, 3401. [Google Scholar] [CrossRef]
- Martínez-Padilla, E.; Li, K.; Blok Frandsen, H.; Skejovic Joehnke, M.; Vargas-Bello-Pérez, E.; Lykke Petersen, I. In Vitro Protein Digestibility and Fatty Acid Profile of Commercial Plant-Based Milk Alternatives. Foods 2020, 9, 1784. [Google Scholar] [CrossRef]
- Aly, E.; Sanchez-Moya, T.; Darwish, A.A.; Ros-Berruezo, G.; Lopez-Nicolas, R. In Vitro Digestion Effect on CCK and GLP-1 Release and Antioxidant Capacity of Some Plant-Based Milk Substitutes. J. Food Sci. 2022, 87, 1999–2008. [Google Scholar]
- Haro, A.; Trescastro, A.; Lara, L.; Fernández-Fígares, I.; Nieto, R.; Seiquer, I. Mineral Elements Content of Wild Growing Edible Mushrooms from the Southeast of Spain. J. Food Compos. Anal. 2020, 91, 103504. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Balance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Recio, I.; Heimo, D.; Dubois, S.; Moughan, P.J.; Hodgkinson, S.M.; Portmann, R.; Egger, L. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chem. 2023, 404, 134720. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; Delgado-Andrade, C. Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res. Int. 2009, 42, 394–400. [Google Scholar] [CrossRef]
- Seiquer, I.; Rueda, A.; Olalla, M.; Cabrera-Vique, C. Assessing the Bioavailability of Polyphenols and Antioxidant Properties of Extra Virgin Argan Oil by Simulated Digestion and Caco-2 Cell Assays. Comparative Study with Extra Virgin Olive Oil. Food Chem. 2015, 188, 496–503. [Google Scholar] [CrossRef]
- Borges, T.H.; Serna, A.; López, L.C.; Lara, L.; Nieto, R.; Seiquer, I. Composition and Antioxidant Properties of Spanish Extra Virgin Olive Oil Regarding Cultivar, Harvest Year and Crop Stage. Antioxidants 2019, 8, 217. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.A. Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Zhou, J.Q. Conjugated Linoleic Acid and Octadecenoic Acids: Extraction and Isolation of Lipids. Eur. J. Lipid Sci. Technol. 2001, 103, 594–600. [Google Scholar] [CrossRef]
- Ratajczak, A.E.; Zawada, A.; Rychter, A.M.; Dobrowolska, A.; Krela-Kaźmierczak, I. Milk and Dairy Products: Good or Bad for Human Bone? Practical Dietary Recommendations for the Prevention and Management of Osteoporosis. Nutrients 2021, 13, 1329. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Peroni, G. An update on magnesium and bone health. Biometals 2021, 34, 715–736. [Google Scholar] [PubMed]
- Singh, W.; Kushwaha, P. Potassium: A Frontier in Osteoporosis. Horm. Metab. Res. 2024, 56, 329–340. [Google Scholar]
- Muleya, M.; Bailey, E.F.; Bailey, E.H. A comparison of the bioaccessible calcium supplies of various plant-based products relative to bovine milk. Food Res. Int. 2024, 175, 113795. [Google Scholar]
- Siqueira Silva, J.G.; Rebellaro, A.P.; Silvestre de Abreu, J.; Greiner, R.; Lima Pallone, J.A. Impact of the fortification of a rice beverage with different calcium and iron sources on calcium and iron bioaccessibility. Food Res. Int. 2022, 161, 111830. [Google Scholar] [CrossRef]
- Theodoropoulos, V.C.T.; Turatti, M.A.; Greiner, R.; Macedo, G.A.; Pallone, J.A.L. Effect of enzymatic treatment on phytate content and mineral bioacessability in soy drink. Food Res. Int. 2018, 108, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Martin, B.R.; Weaver, C.M. Calcium bioavailability of calcium carbonate fortified soymilk Is equivalent to cow’s milk in young women. J. Nutr. 2005, 135, 2379–2382. [Google Scholar]
- Corte-Real, J.; Bohn, T. Interaction of divalent minerals with liposoluble nutrients and phytochemicals during digestion and influences on their bioavailability—A review. Food Chem. 2018, 252, 285–293. [Google Scholar]
- Joy, E.J.M.; Broadley, M.R.; Young, S.D.; Black, C.R.; Chilimba, A.D.C.; Ander, E.L.; Watts, M.J. Soil type influences crop mineral composition in Malawi. Sci. Total Environ. 2015, 505, 587–595. [Google Scholar]
- Lacerda Sanches, V.; Alves Peixoto, R.R.; Cadore, S. Phosphorus and zinc are less bioaccessible in soy-based beverages in comparison to bovine milk. J. Func. Foods 2020, 65, 103728. [Google Scholar]
- Peñalvo, J.L.; Castilho, M.C.; Silveira, M.I.N.; Matallana, M.C.; Torija, M.E. Fatty Acid Profile of Traditional Soymilk. Eur. Food Res. Technol. 2004, 219, 251–253. [Google Scholar]
- Aresta, A.; De Santis, S.; Carocci, A.; Barbarossa, A.; Ragusa, A.; Corbo, F.; Zambonin, C. Determination of Commercial Animal and Vegetable Milks’ Lipid Profile and Its Correlation with Cell Viability and Antioxidant Activity on Human Intestinal Caco-2 Cells. Molecules 2021, 26, 5645. [Google Scholar] [CrossRef] [PubMed]
- García-Casas, V.E.; Seiquer, I.; Pardo, Z.; Haro, A.; Recio, I.; Olías, R. Antioxidant Potential of the Sweet Whey-Based Beverage Colada after the Digestive Process and Relationships with the Lipid and Protein Fractions. Antioxidants 2022, 11, 1827. [Google Scholar] [CrossRef]
- Ayala-Bribiesca, E.; Turgeon, S.L.; Britten, M. Effect of Calcium on Fatty Acid Bioaccessibility during in Vitro Digestion of Cheddar-Type Cheeses Prepared with Different Milk Fat Fractions. J. Dairy Sci. 2017, 100, 2454–2470. [Google Scholar]
- Maestre, R.; Douglass, J.D.; Kodukula, S.; Medina, I.; Storch, J. Alterations in the Intestinal Assimilation of Oxidized PUFAs Are Ameliorated by a Polyphenol-Rich Grape Seed Extract in an In Vitro Model and Caco-2 Cells. J. Nutr. 2013, 143, 295–301. [Google Scholar] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Ramasy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar]
- Floros, S.; Toskas, A.; Pasidi, E.; Vareltzis, P. Bioaccessibility and Oxidative Stability of Omega-3 Fatty Acids in Supplements, Sardines and Enriched Eggs Studied Using a Static In Vitro Gastrointestinal Model. Molecules 2022, 27, 415. [Google Scholar] [CrossRef]
- Rodriguez-Roque, M.J.; Rojas-Grau, M.A.; Elez-Martinez, P.; Martin-Belloso, O. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 2013, 136, 206–212. [Google Scholar]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2019, 60, 3005–3023. [Google Scholar]
- Ma, Y.; Zhou, M.; Huang, H. Changes of heat-treated soymilks in bioactive compounds and their antioxidant activities under in vitro gastrointestinal digestion. Eur Food Res Technol. 2014, 239, 637–652. [Google Scholar]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar]
- Xu, B.; Chang, S.K.C. Comparative study onantiproliferation properties and cellular antioxidantactivities of commonly consumed food legumesagainst nine human cancer cell lines. Food Chem. 2012, 134, 1287–1296. [Google Scholar]
- Durazzo, A.; Gabrielli, P.; Manzi, P. Qualitative Study of Functional Groups and Antioxidant Properties of Soy-Based Beverages Compared to Cow Milk. Antioxidants 2015, 4, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Subrota, H.; Shilpa, V.; Brij, S.; Vandna, K.; Surajit, M. Antioxidative activity and polyphenol content in fermented soy milk supplemented with WPC-70 by probiotic Lactobacilli. Int. Food Res. J. 2013, 20, 2125–2131. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar]
- Borges, T.; Pereira, J.A.; Cabrera-Vique, C.; Seiquer, I. Study of the antioxidant potential of Arbequina extra virgin olive oils from Brazil and Spain applying combined models of simulated digestion and cell culture markers. J. Func. Foods 2017, 37, 209–2018. [Google Scholar]
- Ding, J.; Wen, J.; Wang, J.; Tian, R.; Yu, L.; Jiang, L.; Zhang, Y.; Sui, X. The Physicochemical Properties and Gastrointestinal Fate of Oleosomes from Non-Heated and Heated Soymilk. Food Hydrocoll. 2020, 100, 105418. [Google Scholar]
- Sun, Y.; Xu, J.; Zhao, H.; Li, Y.; Zhang, H.; Yang, B.; Guo, S. Antioxidant properties of fermented soymilk and its anti-inflammatory effect on DSS-induced colitis in mice. Front. Nutr. 2023, 9, 1088949. [Google Scholar]
- Hiramatsu, E.Y.; Alves de Ávila, A.R.; Gênova, V.M.; de Queirós, L.D.; Alves Macedo, G.; Alves Macedo, J. Biotransformation processes in soymilk isoflavones to enhance anti-inflammatory potential in intestinal cellular model. J. Food Biochem. 2020, 44, e13149. [Google Scholar]
- Amigo-Benavent, M.; Clemente, A.; Caira, S.; Stiuso, P.; Ferranti, P.; Del Castillo, M.D. Use of phytochemomics to evaluate the bioavailability and bioactivity of antioxidant peptides of soybean-conglycinin. Electrophoresis 2014, 35, 1582–1589. [Google Scholar]
SB1 | SB2 | SB3 | SB4 | SB5 | |
---|---|---|---|---|---|
Soybeans (g) | 8.7 | 14.0 | 14.5 | 13.1 | 5.6 |
Energy * (kcal) | 38.1 ± 0.1 c | 35.5 ± 0.1 b | 44.2 ± 0.1 d | 62.8 ± 0.1 e | 30.5 ± 0.1 a |
Fats (g) | 1.8 | 1.7 | 1.9 | 2.8 | 1.2 |
Saturated | 0.3 | 0.3 | 0.3 | 0.5 | 0.2 |
Monosaturated | 0.4 | - | - | - | - |
Polysaturated | 1.1 | - | - | - | - |
Carbohydrates (g) | 0 | 1.3 | 1.6 | 2.5 | 1.7 |
Sugars | 0 | 0.5 | 0.8 | 2.5 | 1.5 |
Fiber (g) | 0.6 | - | <0.5 | 0.9 | 0.9 |
Protein * (g) | 3.3 ± 0.1 c | 2.9 ± 0.1 b | 3.7 ± 0.1 d | 5.0 ± 0.1 e | 2.1 ± 0.1 a |
Minerals * (mg) | |||||
Ca | 129.0 ± 0.6 b | 12.2 ± 0.1 a | 16.7 ± 0.1 a | 134.0 ± 2.2 b | 122.0 ± 5.4 b |
P | 112.0 ± 0.4 b | 45.9 ± 0.8 a | 50.6 ± 0.1 a | 136.0 ± 2.4 c | 50.7 ± 0.8 a |
Mg | 15.5 ± 0.1 b | 17.7 ± 0.2 c | 20.4 ± 0.1 d | 23.1 ± 0.1 e | 10.6 ± 0.1 a |
Na | 23.2 ± 1.0 a | 50.9 ± 0.5 c | 24.2 ± 0.8 a | 36.1 ± 0.5 b | 34.1 ± 0.2 b |
K | 252.0 ± 1.5 d | 149.0 ± 0.5 b | 161.0 ± 1.6 c | 255.0 ± 3.1 d | 112.0 ± 1.2 a |
Fe | 0.41 ± 0.01 b | 0.50 ± 0.04 d | 0.51 ± 0.01 e | 0.52 ± 0.01 b | 0.18 ± 0.01 a |
Cu | 0.12 ± 0.01 c | 0.13 ± 0.01 d | 0.10 ± 0.01 b | 0.15 ± 0.01 e | 0.08 ± 0.01 a |
Zn | 0.29 ± 0.01 b | 0.49 ± 0.01 d | 0.39 ± 0.01 c | 0.62 ± 0.01 e | 0.21 ± 0.01 a |
Vitamins | |||||
Vitamin D (µg) | 0.75 | - | - | 0.75 | 0.75 |
Vitamin B2 (mg) | 0.21 | - | - | 0.21 | 0.21 |
Vitamin B12 (µg) | 0.38 | - | - | 0.38 | 0.38 |
SB1 | SB2 | SB3 | SB4 | SB5 | |
---|---|---|---|---|---|
Calcium | |||||
BF (µg/mL) | 608 ± 33 bc | 27.5 ± 8.75 a | 44.9 ± 7.91 a | 687 ± 5 c | 535 ± 52 b |
(%) | 47.1 ± 2.59 bc | 22.6 ± 7.20 a | 26.9 ± 4.74 ab | 51.3 ± 0.37 c | 43.8 ± 4.28 bc |
RF (µg/mL) | 718 ± 27 b | 92.4 ± 10.0 a | 113 ± 7 a | 716 ± 7 b | 679 ± 51 b |
(%) | 55.6 ± 2.08 ab | 75.8 ± 8.25 b | 67.7 ± 4.30 ab | 53.5 ± 0.55 a | 55.6 ± 4.25 ab |
Recovery (%) | 103 ± 2.90 | 98.3 ± 1.20 | 94.6 ± 5.68 | 105 ± 0.27 | 99.4 ± 6.93 |
Magnesium | |||||
BF (µg/mL) | 134 ± 5 b | 170 ± 11 c | 201 ± 7.21 c | 193 ± 3.21 c | 101 ± 5.57 a |
(%) | 86.2 ± 3.42 | 96.2 ± 6.34 | 98.7 ± 3.57 | 83.5 ± 1.38 | 95.2 ± 5.29 |
RF (µg/mL) | 40.0 ± 0.48 b | 4.78 ± 0.10 a | 5.91 ± 0.98 a | 55.1 ± 1.44 b | 24.1 ± 0.87 b |
(%) | 25.8 ± 0.31 c | 2.70 ± 0.06 a | 2.91 ± 0.48 a | 23.9 ± 0.63 b | 22.8 ± 0.82 b |
Recovery (%) | 112 ± 3.74 | 98.9 ± 6.31 | 102 ± 3.33 | 107 ± 0.75 | 117 ± 5.60 |
Potassium | |||||
BF (µg/mL) | 2609 ± 113 d | 1291 ± 23 b | 1633 ± 134 c | 2659 ± 110 d | 868 ± 64 a |
(%) | 103 ± 5 bc | 86.6 ± 1.58 ab | 102 ± 8 bc | 104 ± 4 c | 77.6 ± 5.76 a |
RF (µg/mL) | 103 ± 2 | 27.5 ± 1.71 | 32.2 ± 0.62 | 151 ± 6 | 67.0 ± 2.14 |
(%) | 4.06 ± 0.10 b | 1.85 ± 0.12 a | 2.01 ± 0.04 a | 5.92 ± 0.25 c | 5.99 ± 0.19 c |
Recovery (%) | 107 ± 5 | 88.5 ± 1.46 | 104 ± 8 | 110 ± 4 | 83.6 ± 5.86 |
Fatty Acid | SB1 | SB2 | SB3 | SB4 | SB5 |
---|---|---|---|---|---|
C10:0 | 0.06 ± 0.02 ab | 0.03 ± 0.001 a | 0.03 ± 0.001 a | 0.03 ± 0.003 a | 0.10 ± 0.007 b |
C12:0 | 0.006 ± 0.001 | 0.010 ± 0.002 | 0.008 ± 0.001 | 0.006 ± 0.001 | 0.011 ± 0.002 |
C14:0 | 0.08 ± 0.005 | 0.08 ± 0.02 | 0.09 ± 0.001 | 0.07 ± 0.001 | 0.08 ± 0.008 |
C16:0 | 11.8 ± 0.21 b | 9.98 ± 0.28 a | 11.4 ± 0.02 b | 11.04 ± 0.02 b | 9.81 ± 0.07 a |
C16:1 | 0.07 ± 0.003 | 0.07 ± 0.005 | 0.06 ± 0.001 | 0.07 ± 0.001 | 0.07 ± 0.005 |
C18:0 | 4.27 ± 0.01 ab | 5.32 ± 0.27 c | 6.16 ± 0.03 d | 3.77 ± 0.01 a | 4.72 ± 0.02 b |
C18:1 n9 | 19.8 ± 0.07 a | 20.8 ± 0.17 b | 21.0 ± 0.15 bc | 21.5 ± 0.04 c | 21.4 ± 0.07 c |
C18:1 n7 | 1.14 ± 0.04 | 0.98 ± 0.09 | 0.98 ± 0.03 | 1.17 ± 0.05 | 1.10 ± 0.01 |
C18:2 n6 | 54.0 ± 0.18 b | 54.3 ± 0.35 b | 52.8 ± 0.07 a | 54.0 ± 0.02 b | 53.8 ± 0.17 b |
C18:3 n6 | 0.02 ± 0.003 | 0.03 ± 0.005 | 0.02 ± 0.001 | 0.02 ± 0.003 | 0.03 ± 0.001 |
C18:3 n3 | 7.21 ± 0.06 c | 6.89 ± 0.08 b | 6.00 ± 0.02 a | 6.86 ± 0.01 b | 7.36 ± 0.10 c |
C20:0 | 0.39 ± 0.02 | 0.39 ± 0.02 | 0.32 ± 0.03 | 0.34 ± 0.01 | 0.33 ± 0.01 |
C20:3 n3 | 0.01 ± 0.001 a | 0.01 ± 0.001 a | 0.01 ± 0.001 a | 0.01 ± 0.001 a | 0.03 ± 0.005 b |
C20:4 n6 | 0.05 ± 0.001 | 0.05 ± 0.003 | 0.05 ± 0.001 | 0.06 ± 0.001 | 0.05 ± 0.001 |
C20:5 n3 | 0.09 ± 0.01 c | 0.07 ± 0.001 b | 0.09 ± 0.006 c | 0.06 ± 0.001 b | 0.04 ± 0.001 a |
C22:0 | 0.42 ± 0.005 b | 0.37 ± 0.02 a | 0.35 ± 0.003 a | 0.38 ± 0.002 ab | 0.35 ± 0.007 a |
C22:6 n3 | 0.006 ± 0.001 a | 0.007 ± 0.002 a | 0.008 ± 0.004 a | 0.003 ± 0.001 a | 0.03 ± 0.003 b |
C24:0 | 0.12 ± 0.003 ab | 0.13 ± 0.006 bc | 0.13 ± 0.002 bc | 0.14 ± 0.002 c | 0.12 ± 0.001 a |
Fatty Acid | SB1 | SB2 | SB3 | SB4 | SB5 |
---|---|---|---|---|---|
Bioaccessible Fraction | |||||
C10:0 | 0.25 ± 0.04 b | 0.21 ± 0.02 ab | 0.15 ± 0.03 ab | 0.25 ± 0.04 b | 0.09 ± 0.02 a |
C12:0 | 0.018 ± 0.003 a | 0.013 ± 0.001 a | 0.015 ± 0.001 a | 0.037 ± 0.005 b | 0.013 ± 0.001 a |
C14:0 | 0.09 ± 0.009 ab | 0.11 ± 0.002 b | 0.10 ± 0.012 b | 0.11 ± 0.013 b | 0.05 ± 0.007 a |
C16:0 | 4.16 ± 0.06 a | 6.67 ± 0.53 b | 7.43 ± 0.67 b | 4.30 ± 0.20 a | 3.16 ± 0.49 a |
C16:1 | 0.16 ± 0.004 c | 0.14 ± 0.003 bc | 0.11 ± 0.004 a | 0.22 ± 0.10 d | 0.12 ± 0.005 ab |
C18:0 | 2.01 ± 0.06 a | 4.06 ± 0.45 b | 4.85 ± 0.31 b | 2.40 ± 0.19 a | 1.63 ± 0.17 a |
C18:1 n9 | 21.3 ± 0.06 ab | 23.1 ± 0.19 c | 23.1 ± 0.27 c | 19.9 ± 0.29 a | 21.9 ± 0.62 bc |
C18:1 n7 | 1.15 ± 0.03 | 1.07 ± 0.04 | 0.99 ± 0.05 | 1.08 ± 0.03 | 1.10 ± 0.06 |
C18:2 n6 | 61.8 ± 0.15 b | 56.4 ± 0.72 a | 54.8 ± 0.76 a | 61.9 ± 0.17 b | 63.0 ± 1.15 b |
C18:3 n6 | 0.02 ± 0.001 | 0.02 ± 0.001 | 0.02 ± 0.001 | 0.03 ± 0.003 | 0.03 ± 0.001 |
C18:3 n3 | 8.28 ± 0.03 cd | 7.09 ± 0.10 a | 7.19 ± 0.10 ab | 8.89 ± 0.27 d | 8.03 ± 0.26 bc |
C20:0 | 0.09 ± 0.004 a | 0.21 ± 0.02 b | 0.22 ± 0.01 b | 0.07 ± 0.005 a | 0.11 ± 0.02 a |
C20:3 n3 | 0.008 ± 0.001 | 0.013 ± 0.001 | 0.015 ± 0.001 | 0.010 ± 0.001 | 0.016 ± 0.003 |
C20:4 n6 | 0.03 ± 0.003 | 0.04 ± 0.002 | 0.05 ± 0.007 | 0.05 ± 0.02 | 0.04 ± 0.004 |
C20:5 n3 | 0.03 ± 0.004 | 0.03 ± 0.001 | 0.04 ± 0.003 | 0.04 ± 0.007 | 0.03 ± 0.009 |
C22:0 | 0.12 ± 0.009 a | 0.22 ± 0.02 b | 0.24 ± 0.009 b | 0.08 ± 0.007 a | 0.13 ± 0.02 a |
C22:6 n3 | 0.009 ± 0.003 | 0.02 ± 0.004 | 0.03 ± 0.009 | 0.04 ± 0.02 | 0.02 ± 0.005 |
C24:0 | 0.04 ± 0.003 a | 0.08 ± 0.006 bc | 0.09 ± 0.006 c | 0.04 ± 0.005 a | 0.06 ± 0.006 ab |
Residual Fraction | |||||
C10:0 | 0.08 ± 0.02 | 0.05 ± 0.02 | 0.05 ± 0.02 | 0.04 ± 0.007 | 0.07 ± 0.006 |
C12:0 | 0.02 ± 0.001 ab | 0.03 ± 0.005 b | 0.03 ± 0.001 b | 0.01 ± 0.001 a | 0.03 ± 0.003 b |
C14:0 | 0.20 ± 0.04 ab | 0.37 ± 0.03 c | 0.32 ± 0.03 bc | 0.12 ± 0.003 a | 0.21 ± 0.02 ab |
C16:0 | 13.1 ± 1.02 a | 24.9 ± 1.06 b | 21.4 ± 1.34 b | 10.0 ± 0.48 a | 12.2 ± 1.03 a |
C16:1 | 0.15 ± 0.005 c | 0.11 ± 0.004 ab | 0.10 ± 0.001 a | 0.12 ± 0.003 b | 0.18 ± 0.003 d |
C18:0 | 5.73 ± 0.44 a | 13.9 ± 0.88 b | 12.4 ± 1.48 b | 3.73 ± 0.25 a | 5.60 ± 0.51 a |
C18:1 n9 | 22.4 ± 0.59 b | 18.1 ± 0.53 a | 19.2 ± 1.16 a | 26.4 ± 0.42 c | 22.8 ± 0.33 b |
C18:1 n7 | 1.42 ± 0.02 | 1.09 ± 0.05 | 1.09 ± 0.09 | 1.32 ± 0.13 | 1.42 ± 0.03 |
C18:2 n6 | 48.7 ± 0.83 b | 34.8 ± 1.37 a | 38.3 ± 1.56 a | 50.1 ± 0.66 b | 48.9 ± 0.98 b |
C18:3 n6 | 0.02 ± 0.001 | 0.02 ± 0.001 | 0.02 ± 0.001 | 0.02 ± 0.001 | 0.03 ± 0.002 |
C18:3 n3 | 6.74 ± 0.15 b | 4.35 ± 0.19 a | 5.19 ± 0.27 a | 6.82 ± 0.11 b | 7.09 ± 0.47 b |
C20:0 | 0.30 ± 0.02 ab | 0.54 ± 0.02 bc | 0.43 ± 0.06 c | 0.21 ± 0.02 a | 0.23 ± 0.01 a |
C20:3 n3 | 0.01 ± 0.002 | 0.01 ± 0.005 | 0.03 ± 0.01 | 0.01 ± 0.002 | 0.01 ± 0.001 |
C20:4 n6 | 0.06 ± 0.006 ab | 0.07 ± 0.004 b | 0.07 ± 0.007 b | 0.037 ± 0.001 a | 0.04 ± 0.005 a |
C20:5 n3 | 0.01 ± 0.00 ab | 0.05 ± 0.002 b | 0.04 ± 0.001 b | 0.01 ± 0.001 a | 0.04 ± 0.010 b |
C22:0 | 0.30 ± 0.02 ab | 0.47 ± 0.02 c | 0.39 ± 0.05 bc | 0.22 ± 0.02 a | 0.23 ± 0.01 a |
C22:6 n3 | 0.04 ± 0.02 | 0.13 ± 0.04 | 0.05 ± 0.03 | 0.02 ± 0.007 | 0.13 ± 0.06 |
C24:0 | 0.10 ± 0.005 ab | 0.19 ± 0.01 c | 0.16 ± 0.02 bc | 0.08 ± 0.007 a | 0.08 ± 0.006 a |
Beverage | TPC (µmol GAE/mL) | ABTS (µmol TE/mL) | FRAP (µmol TE/mL) | |||
---|---|---|---|---|---|---|
Undigested | BF | Undigested | BF | Undigested | BF | |
SB1 | 0.91 ± 0.01 a | 19.00 ± 0.42 b | 1.87 ± 0.04 b | 5.22 ± 0.45 a | 0.51 ± 0.04 ab | 2.91± 0.11 bc |
SB2 | 0.94 ± 0.03 ab | 17.70 ± 0.41 b | 1.85 ± 0.01 b | 5.37 ± 0.21 a | 0.39 ± 0.01 a | 2.71 ± 0.03 b |
SB3 | 1.10 ± 0.04 b | 18.06 ± 0.68 b | 2.13 ± 0.07 c | 5.37 ± 0.20 a | 0.52 ± 0.01 ab | 2.86 ± 0.12 bc |
SB4 | 1.29 ± 0.09 c | 18.96 ± 0.88 b | 2.53 ± 0.01 d | 4.97 ± 0.21 a | 0.65 ± 0.08 b | 3.01 ± 0.08 c |
SB5 | 0.95 ± 0.01 ab | 13.77 ± 1.09 a | 0.74 ± 0.02 a | 5.47 ± 0.32 a | 0.37 ± 0.02 a | 2.17 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Andrade, C.; Olías, R.; Haro, A.; Marín-Manzano, M.C.; Benavides, L.; Clemente, A.; Seiquer, I. Analyses of Antioxidant Properties, Mineral Composition, and Fatty Acid Profiles of Soy-Based Beverages Before and After an In Vitro Digestion Process. Antioxidants 2025, 14, 411. https://doi.org/10.3390/antiox14040411
Delgado-Andrade C, Olías R, Haro A, Marín-Manzano MC, Benavides L, Clemente A, Seiquer I. Analyses of Antioxidant Properties, Mineral Composition, and Fatty Acid Profiles of Soy-Based Beverages Before and After an In Vitro Digestion Process. Antioxidants. 2025; 14(4):411. https://doi.org/10.3390/antiox14040411
Chicago/Turabian StyleDelgado-Andrade, Cristina, Raquel Olías, Ana Haro, M. Carmen Marín-Manzano, Leticia Benavides, Alfonso Clemente, and Isabel Seiquer. 2025. "Analyses of Antioxidant Properties, Mineral Composition, and Fatty Acid Profiles of Soy-Based Beverages Before and After an In Vitro Digestion Process" Antioxidants 14, no. 4: 411. https://doi.org/10.3390/antiox14040411
APA StyleDelgado-Andrade, C., Olías, R., Haro, A., Marín-Manzano, M. C., Benavides, L., Clemente, A., & Seiquer, I. (2025). Analyses of Antioxidant Properties, Mineral Composition, and Fatty Acid Profiles of Soy-Based Beverages Before and After an In Vitro Digestion Process. Antioxidants, 14(4), 411. https://doi.org/10.3390/antiox14040411