In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Reagents and Instrumentation
2.2. Extraction
2.3. Total Phenolic Content (TPC)
2.4. Total Antioxidant Activity (TAA)
2.5. Total Carotenoid Content (TCC)
2.6. Evaluation of Fatty Acid Composition and Structural Elucidation of Polar Lipids in TAC Extracts by LC-MS
2.7. Evaluation of the Antiplatelet and Anti-Inflammatory Properties of Extracts by Cumulative Light Transmission Measurements
2.8. ATR-FTIR Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Yield of Extraction
3.2. Evaluation of Phenolic and Carotenoid Contents
3.2.1. Evaluation of Carotenoid Content
3.2.2. Evaluation of Phenolic Content
3.3. Total Antioxidant Activity (TAA) of Avocado TAC, TLC and TL Extracts
3.3.1. ABTS Values of Antioxidant Capacity
3.3.2. Antioxidant Capacity Measured by the DPPH Assay
3.3.3. Antioxidant Capacity Based on the FRAP Assay
3.4. ATR-FTIR Analysis of Avocado TAC Extracts
3.5. Anti-Inflammatory and Anti-Platelet Properties of Avocado Extracts
3.6. Fatty Acid Composition of the Bioactive TAC Extracts from Avocado Juice and Its By-Products
3.7. Structural Elucidation of the Main PL Bioactives Present in the TAC Extracts of Avocado Pulp and By-Products Assessed
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, P.; Chittiboyina, A.G.; Chen, D.; Zhao, J.; Avula, B.; Wang, Y.-H.; Khan, I.A. Characterization, Quantification and Quality Assessment of Avocado (Persea americana Mill.) Oils. Molecules 2020, 25, 1453. [Google Scholar] [CrossRef] [PubMed]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L.; Cheng, F.W.; Ford, N.A. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients 2021, 13, 4376. [Google Scholar] [CrossRef]
- Wang, L.; Tao, L.; Hao, L.; Stanley, T.H.; Huang, K.-H.; Lambert, J.D.; Kris-Etherton, P.M. A Moderate-Fat Diet with One Avocado per Day Increases Plasma Antioxidants and Decreases the Oxidation of Small, Dense LDL in Adults with Overweight and Obesity: A Randomized Controlled Trial. J. Nutr. 2020, 150, 276–284. [Google Scholar] [CrossRef]
- Non Communicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 4 December 2024).
- EPIC: Home. Available online: https://epic.iarc.fr/ (accessed on 4 December 2024).
- Kouvari, M.; Panagiotakos, D.B.; Yannakoulia, M.; Georgousopoulou, E.; Critselis, E.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C. Transition from Metabolically Benign to Metabolically Unhealthy Obesity and 10-Year Cardiovascular Disease Incidence: The ATTICA Cohort Study. Metab.—Clin. Exp. 2019, 93, 18–24. [Google Scholar] [CrossRef]
- Bergman, P.; Brighenti, S. Targeted Nutrition in Chronic Disease. Nutrients 2020, 12, 1682. [Google Scholar] [CrossRef]
- Unni, E. Medicine Use in Chronic Diseases. Pharmacy 2023, 11, 100. [Google Scholar] [CrossRef]
- Tsoupras, A. The Anti-Inflammatory and Antithrombotic Properties of Bioactives from Orange, Sanguine and Clementine Juices and from Their Remaining By-Products. Beverages 2022, 8, 39. [Google Scholar] [CrossRef]
- Corsello, A.; Pugliese, D.; Gasbarrini, A.; Armuzzi, A. Diet and Nutrients in Gastrointestinal Chronic Diseases. Nutrients 2020, 12, 2693. [Google Scholar] [CrossRef]
- Galali, Y.; Omar, Z.A.; Sajadi, S.M. Biologically Active Components in By-Products of Food Processing. Food Sci. Nutr. 2020, 8, 3004–3022. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, C.; Markou, G.; Langousi, I.; Arapoglou, D. Reintegration of Food Industry By-Products: Potential Applications. Foods 2022, 11, 3743. [Google Scholar] [CrossRef] [PubMed]
- Hadj Saadoun, J.; Bertani, G.; Levante, A.; Vezzosi, F.; Ricci, A.; Bernini, V.; Lazzi, C. Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Ehikioya, C.O.; Osagie, A.M.; Omage, S.O.; Omage, K.; Azeke, M.A. Carbohydrate Digestive Enzyme Inhibition, Hepatoprotective, Antioxidant and Antidiabetic Benefits of Persea americana. Sci. Rep. 2023, 13, 284. [Google Scholar] [CrossRef]
- Marra, A.; Manousakis, V.; Zervas, G.P.; Koutis, N.; Finos, M.A.; Adamantidi, T.; Panoutsopoulou, E.; Ofrydopoulou, A.; Tsoupras, A. Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5978. [Google Scholar] [CrossRef]
- Segovia, F.J.; Hidalgo, G.I.; Villasante, J.; Ramis, X.; Almajano, M.P. Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation. Molecules 2018, 23, 2421. [Google Scholar] [CrossRef]
- Mora-Sandí, A.; Ramírez-González, A.; Castillo-Henríquez, L.; Lopretti-Correa, M.; Vega-Baudrit, J.R. Persea americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers 2021, 13, 1727. [Google Scholar] [CrossRef]
- Páramos, P.R.S.; Granjo, J.F.O.; Corazza, M.L.; Matos, H.A. Extraction of High Value Products from Avocado Waste Biomass. J. Supercrit. Fluids 2020, 165, 104988. [Google Scholar] [CrossRef]
- Redondo-Gómez, C.; Rodríguez Quesada, M.; Vallejo Astúa, S.; Murillo Zamora, J.P.; Lopretti, M.; Vega-Baudrit, J.R. Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules 2020, 25, 3829. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef]
- Kato, K.; Nagane, M.; Aihara, N.; Kamiie, J.; Miyanabe, M.; Hiraki, S.; Luo, X.; Nakanishi, I.; Shoji, Y.; Matsumoto, K.; et al. Lipid-Soluble Polyphenols from Sweet Potato Exert Antitumor Activity and Enhance Chemosensitivity in Breast Cancer. J. Clin. Biochem. Nutr. 2021, 68, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Galanos, D.S.; Kapoulas, V.M. Isolation of Polar Lipids from Triglyceride Mixtures. J. Lipid Res. 1962, 3, 134–136. [Google Scholar] [CrossRef]
- Tsoupras, A.; Cholidis, P.; Kranas, D.; Galouni, E.A.; Ofrydopoulou, A.; Efthymiopoulos, P.; Shiels, K.; Saha, S.K.; Kyzas, G.Z.; Anastasiadou, C. Anti-Inflammatory, Antithrombotic, and Antioxidant Properties of Amphiphilic Lipid Bioactives from Shrimp. Pharmaceuticals 2025, 18, 25. [Google Scholar] [CrossRef]
- Vordos, N.; Giannakopoulos, S.; Vansant, E.F.; Kalaitzis, C.; Nolan, J.W.; Bandekas, D.V.; Karavasilis, I.; Mitropoulos, A.C.; Touloupidis, S. Small-Angle X-Ray Scattering (SAXS) and Nitrogen Porosimetry (NP): Two Novel Techniques for the Evaluation of Urinary Stone Hardness. Int. Urol. Nephrol. 2018, 50, 1779–1785. [Google Scholar] [CrossRef]
- Takenaga, F.; Matsuyama, K.; Abe, S.; Torii, Y.; Itoh, S. Lipid and Fatty Acid Composition of Mesocarp and Seed of Avocado Fruits Harvested at Northern Range in Japan. J. Oleo Sci. 2008, 57, 591–597. [Google Scholar] [CrossRef]
- Neves, B.B.; Pinto, S.; Pais, R.; Batista, J.; Domingues, M.R.; Melo, T. Looking into the Lipid Profile of Avocado and Byproducts: Using Lipidomics to Explore Value-Added Compounds. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13351. [Google Scholar] [CrossRef]
- Abaide, E.R.; Zabot, G.L.; Tres, M.V.; Martins, R.F.; Fagundez, J.L.; Nunes, L.F.; Druzian, S.; Soares, J.F.; Dal Prá, V.; Silva, J.R.F.; et al. Yield, Composition, and Antioxidant Activity of Avocado Pulp Oil Extracted by Pressurized Fluids. Food Bioprod. Process. 2017, 102, 289–298. [Google Scholar] [CrossRef]
- Bullo, T. Extraction and Characterization of Oil from Avocado Peels. Int. J. Chem. Mol. Eng. 2021, 15, 54–58. [Google Scholar]
- Edwards, C.G.; Walk, A.M.; Thompson, S.V.; Reeser, G.E.; Erdman, J.W.; Burd, N.A.; Holscher, H.D.; Khan, N.A. Effects of 12-Week Avocado Consumption on Cognitive Function among Adults with Overweight and Obesity. Int. J. Psychophysiol. 2020, 148, 13–24. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Adamantidi, T.; Finos, M.A.; Philippopoulos, A.; Detopoulou, P.; Tsopoki, I.; Kynatidou, M.; Demopoulos, C.A. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. Front. Biosci. 2024, 29, 345. [Google Scholar] [CrossRef] [PubMed]
- Vandorou, M.; Plakidis, C.; Tsompanidou, I.M.; Adamantidi, T.; Panagopoulou, E.A.; Tsoupras, A. A Review on Apple Pomace Bioactives for Natural Functional Food and Cosmetic Products with Therapeutic Health-Promoting Properties. Int. J. Mol. Sci. 2024, 25, 10856. [Google Scholar] [CrossRef]
- Tsoupras, A.; Panagopoulou, E.; Kyzas, G.Z. Olive Pomace Bioactives for Functional Foods and Cosmetics. AIMSAGRI 2024, 9, 743–766. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.d.l.L.; Rodriguez, L.; Villegas-Aguilar, M.d.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, D.G.; Flores-García, M.; Silva-Platas, C.; Rizzo, S.; Torre-Amione, G.; la Peña-Diaz, A.D.; Hernández-Brenes, C.; García-Rivas, G. Isolation and Chemical Identification of Lipid Derivatives from Avocado (Persea americana) Pulp with Antiplatelet and Antithrombotic Activities. Food Funct. 2015, 6, 192–202. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- de Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.L.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean Alpha-Linolenic Acid-Rich Diet in Secondary Prevention of Coronary Heart Disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef]
- Holy, E.W.; Forestier, M.; Richter, E.K.; Akhmedov, A.; Leiber, F.; Camici, G.G.; Mocharla, P.; Lüscher, T.F.; Beer, J.H.; Tanner, F.C. Dietary α-Linolenic Acid Inhibits Arterial Thrombus Formation, Tissue Factor Expression, and Platelet Activation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1772–1780. [Google Scholar] [CrossRef]
- Bazán-Salinas, I.L.; Matías-Pérez, D.; Pérez-Campos, E.; Pérez-Campos Mayoral, L.; García-Montalvo, I.A. Reduction of Platelet Aggregation From Ingestion of Oleic and Linoleic Acids Found in Vitis Vinifera and Arachis Hypogaea Oils. Am. J. Ther. 2016, 23, e1315. [Google Scholar] [CrossRef] [PubMed]
- Beermann, C.; Möbius, M.; Winterling, N.; Schmitt, J.J.; Boehm, G. Sn-Position Determination of Phospholipid-Linked Fatty Acids Derived from Erythrocytes by Liquid Chromatography Electrospray Ionization Ion-Trap Mass Spectrometry. Lipids 2005, 40, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Jardim, T.; Domingues, M.R.M.; Alves, E. An Overview on Lipids in Nuts and Oily Fruits: Oil Content, Lipid Composition, Health Effects, Lipidomic Fingerprinting and New Biotechnological Applications of Their by-Products. Crit. Rev. Food Sci. Nutr. 2024, 64, 9132–9160. [Google Scholar] [CrossRef] [PubMed]
- Velissaridou, A.; Panoutsopoulou, E.; Prokopiou, V.; Tsoupras, A. Cardio-Protective-Promoting Properties of Functional Foods Inducing HDL-Cholesterol Levels and Functionality. Nutraceuticals 2024, 4, 469–502. [Google Scholar] [CrossRef]
- Saito, K.; Tanaka, N.; Ikari, J.; Suzuki, M.; Anazawa, R.; Abe, M.; Saito, Y.; Tatsumi, K. Comprehensive Lipid Profiling of Bleomycin-Induced Lung Injury. J. Appl. Toxicol. 2019, 39, 658–671. [Google Scholar] [CrossRef]
- Bruno, A.; Rossi, C.; Marcolongo, G.; Di Lena, A.; Venzo, A.; Berrie, C.P.; Corda, D. Selective in Vivo Anti-Inflammatory Action of the Galactolipid Monogalactosyldiacylglycerol. Eur. J. Pharmacol. 2005, 524, 159–168. [Google Scholar] [CrossRef]
- Tabarzad, M.; Atabaki, V.; Hosseinabadi, T. Anti-Inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action. Mol. Biol. Rep. 2020, 47, 6193–6205. [Google Scholar] [CrossRef]
- Phulara, N.R.; Rege, A.; Bieberich, C.J.; Seneviratne, H.K. Mass Spectrometry Imaging Reveals Region-Specific Lipid Alterations in the Mouse Brain in Response to Efavirenz Treatment. ACS Pharmacol. Transl. Sci. 2024, 7, 2379–2390. [Google Scholar] [CrossRef]
- Foster, D.A. Regulation of mTOR by Phosphatidic Acid? Cancer Res. 2007, 67, 1–4. [Google Scholar] [CrossRef]
Samples | TAC | TLC | TL | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Max | Min | Median | Max | Min | Median | Max | Min | |
Avocado juice | 0.498 | 1.658 | 0.450 | 0.074 | 0.086 | 0.059 | 0.584 | 1.732 | 0.509 |
Avocado by-products | 0.017 | 0.021 | 0.012 | 0.003 | 0.005 | 0.002 | 0.019 | 0.024 | 0.016 |
Samples | TAC | TLC | TL | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Max | Min | Median | Max | Min | Median | Max | Min | |
Avocado juice | 57.90 | 58.01 | 25.83 | 3.14 | 4.19 | 1.46 | 59.47 | 4.19 | 30.02 |
Avocado by-products | 27.26 | 89.07 | 12.11 | 1.47 | 3.90 | 1.21 | 28.46 | 92.97 | 13.58 |
Samples | TAC | TLC | TL | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Max | Min | Median | Max | Min | Median | Max | Min | |
Avocado juice | 243.43 | 367.22 | 241.46 | 137.78 | 728.22 | 11.01 | 505.00 | 971.65 | 252.47 |
Avocado by-products | 381.43 | 703.48 | 285.96 | 66.79 | 89.74 | 58.77 | 440.20 | 770.28 | 375.70 |
Samples | TAC | TLC | TL | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Max | Min | Median | Max | Min | Median | Max | Min | |
Avocado juice | 19.95 * | 86.32 | 8.23 | 4.49 | 7.16 | 0.87 | 20.82 | 93.48 | 12.72 |
Avocado by-products | 12.79 * | 25.08 | 6.96 | 1.57 | 1.76 | 1.32 | 14.11 | 26.84 | 8.53 |
Samples | TAC | TLC | TL | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Max | Min | Median | Max | Min | Median | Max | Min | |
Avocado juice | 0.0610 * | 0.0720 | 0.0154 | 0.0044 | 0.0010 | 0.0063 | 0.0547 | 0.0110 | 0.0710 |
Avocado by-products | 0.0669 * | 0.1088 | 0.0247 | 0.0002 | 0.0002 | 0.0002 | 0.0670 | 0.1089 | 0.0249 |
Samples | TAC | TLC | TL | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Max | Min | Median | Max | Min | Median | Max | Min | |
Avocado juice | 179.88 * | 402.39 | 35.65 | 16.92 | 44.19 | 4.92 | 224.07 | 419.31 | 40.57 |
Avocado by-products | 494.46 * | 904.34 | 265.36 | 25.34 | 49.36 | 12.02 | 482.44 | 929.68 | 314.72 |
Peak (cm−1) | TAC of Avocado Juice | TAC of Avocado By-Products | Bond/Functional-Group Correlation |
---|---|---|---|
3400–3300 | + * | + | O-H (hydroxyl) bonds, characteristic of this functional group in phenolic compounds |
3000–2900 | + | + | C-H (alkyl), typically from fatty acids and aliphatic compounds like those present in polar lipids (PLs) |
1750–1700 | + | + | C=O (carbonyl), characteristic of esters in polar lipids, but also in phenolic C=O (similar to quercetin) and COOH (similar to gallic acid) |
1650–1600 | + | + | C=C (double bonds in aromatic compounds, unsaturated fatty acids and carotenoids) |
1450–1400 | + | + | C-H (alkyl), often from aliphatic hydrocarbons such as those observed in saturated fatty acids in PL |
1250–1200 | + | + | C-O (ether and alcohol groups), indicative of ester groups in PL and ether and ester groups in phenolic compounds like gallic acid and flavan-3-ols like catechin |
1050–1000 | + | + | C-O-C (ether group) like those present in alkyl PL and in flavan-3-ols like catechin |
Fatty Acids (Empirical Name) | Type of Fatty Acid (Carbon Atoms, Double Bonds, and Their Positions) | Avocado Juice | Avocado by-Products |
---|---|---|---|
Caprylic | C8:0 | 0.08 ± 0.02 | 0.12 ± 0.02 |
Pelargonic | C9:0 | 0.10 ± 0.02 | 0.2 ± 0.04 |
Lauric | C12:0 | 0.09 ± 0.00 | 0.33 ± 0.01 |
Tridecylic | C13:0 | 0.19 ± 0.03 | 0.35 ± 0.03 |
Myristic | C14:0 | 0.53 ± 0.03 | 0.85 ± 0.04 |
Pentadecylic | C15:0 | 0.21 ± 0.03 | ND |
Palmitic | C16:0 | 22.80 ± 1.23 | 30.61 ± 0.78 |
Palmitoleic | C16:1 c9 (n7 MUFA) | 1.58 ± 0.08 | 1.39 ± 0.19 |
Margaric | C17:0 | 0.41 ± 0.02 | ND |
Stearic | C18:0 | 18.05 ± 2.11 | 29.42 ± 1.68 |
Oleic (OA) | C18:1 c9 (n9 MUFA) | 41.34 ± 0.99 | 26.13 ± 0.54 |
Linoleic (LA) | C18:2 c9,12 (n6 PUFA) | 11.10 ± 0.08 | 8.12 ± 0.09 |
Alpha linolenic (ALA) | C18:3 c9,12,15 (n3 PUFA) | 3.43 ± 0.10 | 2.49 ± 0.11 |
Ardenic | C22:4 c7,10,13,16 (n6 PUFA) | 0.08 ± 0.03 | ND |
SFA | 42.47 ± 0.98 | 61.88 ± 0.9 | |
UFA | 57.53 ± 0.98 * | 38.12 ± 0.9 * | |
MUFA | 42.91 ± 0.99 ** | 27.52 ± 0.7 ** | |
PUFA | 14.61 ± 0.05 | 10.60 ± 0.2 | |
n3 PUFA | 3.43 ± 0.10 | 2.49 ± 0.1 | |
n6 PUFA | 11.18 ± 0.06 | 8.12 ± 0.0 | |
n6/n3 | 3.26 ± 0.11 | 3.27 ± 0.1 |
TAC Extracts from Avocado Juice | TAC Extracts from Avocado by-Products | |||||||
---|---|---|---|---|---|---|---|---|
Main Classes of PL | Elution Time (min) | Mr | Representative Molecular Species | Proposed Structures | Elution Time (min) | Mr | Representative Molecular Species | Proposed Structures |
PC | 6.5–7.5 | 770.8636 | PC 36:2 | [i.e., PC 18:1/18:1 or PC 18:0/18:2] | 2.5–3 | 786.8408 | PC 36:2;O | [i.e., PC 18:1/18:1;O or PC 18:0/18:2;O] |
6.5–7.5 | 770.8636 | PC O-36:3;O | [i.e., PC O-18:1/18:2;O or PC O-18:0/18:3;O] | 7.5–10 | 770.8638 | PC 36:2 | [i.e., PC 18:1/18:1 or PC 18:0/18:2] | |
6.5–7.5 | 786.8542 | PC 36:2;O | [i.e., PC 18:1/18:1;O or PC 18:0/18:2;O] | 7.5–10 | 770.8638 | PC O-36:3;O | [i.e., PC O-18:0/18:3;O or PC O-18:1/18:2;O] | |
PE | 10–10.5 | 714.4146 | PE 34:2 | [i.e., PE 16:1/18:1 or PE 16:0/18:2] | 10–10.5 | 734.3890 | PE 36:6 | [i.e., PE 18:3/18:3] |
10–10.5 | 714.4146 | PE O-34:3;O | [i.e., PE O-16:0/18:3;O or PE O-16:1/18:2;O] | 10–10.5 | 714.4065 | PE 34:2 | [i.e., PE 16:0/18:2 or PE 16:1/18:1] | |
10–10.5 | 744.4252 | PE 36:1 | [i.e., PE 18:0/18:1] | 10–10.5 | 714.4065 | PE O-34:3;O | [i.e., PE O-16:0/18:3;O or PE O-16:1/18:2;O] | |
10–10.5 | 698.4195 | PE O-34:3 | [i.e., PE O-16:0/18:3 or PE O-16:1/18:2] | 10–10.5 | 744.4155 | PE 36:1 | [i.e., PE 18:0/18:1] | |
10–10.5 | 698.4123 | PE O-34:3 | [i.e., PE O-16:0/18:3 or PE O-16:1/18:2] | |||||
PG | 12–12.5 | 745.5059 | PG 34:2 | [i.e., PG 16:1/18:1 or PG 16:0/18:2 ] | 12–13 | 745.5015 | PG 34:2 | [i.e., PG 16:0/18:2 or PG16:1/18:1] |
12–12.5 | 745.5059 | PG O-34:3;O | [i.e., PG O-16:0/18:3;O or PG O-16:1/18:2;O] | 12–13 | 745.5015 | PG O-34:3;O | [i.e., PG O-16:0/18:3;O or PG O-16:1/18:2;O] | |
PI | 12–12.5 | 837.5688 | PI 34:0 | [i.e., PI 16:0/18:0] | 12–13 | 821.4921 | PI 32:2;O | [i.e., PI 16:1/16:1;O] |
12–12.5 | 837.5688 | PI O-34:1;O | [i.e., PI O-18:0/16:1;O or PI O-16:0/18:1;O] | 12–13 | 843.5332 | PI O-36:4 | [i.e., PI O-18:1/18:3 or PI O-18:2/18:2] | |
12–12.5 | 843.5303 | PI O-36:4 | [i.e., PI O-18:1/18:3 or PI O-18:2/18:2] | |||||
PA | 13.917 | 677.5396 | PA O-34:0;O | [i.e., PA O-16:0/18:0;O] | ||||
13.917 | 677.5396 | PA O-36:6 | [i.e., PA O-18:3/18:3] | |||||
HexCer | 6.5–10 | 792.8578 | HexCer 36:0;O6 | [i.e., HexCer 18:0/18:0;O6] | 6.5–10 | 792.9 | HexCer 36:0;O6 | [i.e., HexCer 18:0/18:0;O6] |
10–10.5 | 744.4252 | HexCer 34:2;O5 | [i.e., HexCer 16:1/18:1;O5 or HexCer 16:0/18:2;O5] | 10–10.5 | 744.4155 | HexCer 34:2;O5 | [i.e., HexCer 16:0/18:2;O5 or HexCer 16:1/18:1;O5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, A.; Manousakis, V.; Koutis, N.; Zervas, G.P.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products. Antioxidants 2025, 14, 146. https://doi.org/10.3390/antiox14020146
Marra A, Manousakis V, Koutis N, Zervas GP, Ofrydopoulou A, Shiels K, Saha SK, Tsoupras A. In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products. Antioxidants. 2025; 14(2):146. https://doi.org/10.3390/antiox14020146
Chicago/Turabian StyleMarra, Anita, Vasileios Manousakis, Nikolaos Koutis, Georgios Panagiotis Zervas, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha, and Alexandros Tsoupras. 2025. "In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products" Antioxidants 14, no. 2: 146. https://doi.org/10.3390/antiox14020146
APA StyleMarra, A., Manousakis, V., Koutis, N., Zervas, G. P., Ofrydopoulou, A., Shiels, K., Saha, S. K., & Tsoupras, A. (2025). In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products. Antioxidants, 14(2), 146. https://doi.org/10.3390/antiox14020146