Bioactive Compounds and Antioxidant Potential of Truffles: A Comprehensive Review
Abstract
1. Introduction
Literature Search Strategy
2. Chemical Composition of Truffles
2.1. Polysaccharides and Bioactive Fibers
2.2. Lipids: Fatty Acids and Ergosterols
2.3. Phenolic Compounds
2.4. Vitamins
2.5. Mineral Content
2.6. Endocannabinoid Compounds (e.g., Anandamide)
3. Nutritional Value and Organoleptic Properties
3.1. Protein and Amino Acid Profile
3.2. Aromatic Characteristics and Impact on Gastronomic Value
4. Biological Properties of Truffles
4.1. Antiviral, Antibacterial and Antimicrobial Effects
4.2. Antioxidant and Anti-Inflammatory Activities
4.3. Hepatoprotective Properties
4.4. Antitumor and Anticarcinogenic Potential
4.5. Future Translational Perspectives
5. Extraction and Preservation Techniques for Bioactive Compounds
5.1. Extraction Methods
5.1.1. Polysaccharides
5.1.2. Phenolic Compounds
5.1.3. Volatile and Aroma Compounds
5.1.4. Sterols and Lipids
| Compound Class | Conventional Methods | Advanced Methods | Benefits of Advanced Methods |
|---|---|---|---|
| Polysaccharides | Hot water or ethanol [36] | UAE [93] PLE [94] Enzymatic (Cellulase, Pectinase) [95] MAE + UAE [96] Enzymatic + UAE [96] NADES + UAE [91] | UAE and PLE reduce processing time, increase yield and bioactivity. PLE produces β-glucans and chitosans. Enzymes release bound polysaccharides. NADES + UAE increase yield up to 11.5 times. |
| Phenolic Compounds | Hydroalcoholic solvents or pure methanol [8] | PLE [97] UAE [98] Enzymatic + UAE or MAE [99] | Increased yield and reduced processing times Can reduce total phenolic content but improve specific bioactivities. |
| Volatile and Aroma Compounds | Steam distillation [4,100] Soxhlet extraction [100] | HS-SPME [46,101,102] SBSE [103] SFE [4,92,100] | HS-SPME does not alter the aroma profile. SBSE has a higher adsorption capacity for trace compounds. SFE produces a more diversified aroma profile. |
| Sterols and Lipids | Folch [106] Bligh & Dyer [107] | PLE [36,94] Supercritical CO2 [92] | PLE produces beta-glucan and ergosterol. Supercritical CO2: extracts sterols and fatty acids efficiently and without organic solvents |
5.2. Preservation Techniques to Maintain Bioactivity
6. Truffles as a Functional Food
6.1. Perspectives in the Prevention of Chronic Diseases
6.2. Applications in Functional Foods and Supplements
6.3. Other Applications and Future Perspectives
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 2-AG | 2-Arachidonoylglycerol |
| 12-HETE | 12-Hydroxyeicosatetraenoic acid |
| 12-HHT | 12-Hydroxyheptadecatrienoic acid |
| BMTM | bis(methylthio)methane |
| CLs | Cardiolipins |
| COX-1 | Cyclooxygenase-1 |
| DAGL | Diacylglycerol Lipase |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl (antioxidant radical-scavenging assay) |
| DW | Dry weight |
| EC50 | Effective Concentration 50% |
| FAAH | Fatty Acid Amide Hydrolase |
| FRAP | Ferric Reducing Antioxidant Power (antioxidant assay) |
| GAE | Gallic Acid Equivalents (reference for phenolic content) |
| GC–MS | Gas Chromatography–Mass Spectrometry |
| GC–O | Gas Chromatography–Olfactometry |
| HPP | High-Pressure Processing |
| HS-SPME | Headspace Solid-Phase Microextraction |
| HWE | Hot Water Extraction |
| ICP–MS | Inductively Coupled Plasma–Mass Spectrometry |
| IC50 | Inhibitory Concentration 50% |
| IMP | Inosine-5′-monophosphate |
| LC–MS | Liquid Chromatography–Mass Spectrometry |
| LOX (12-LOX) | 12-Lipoxygenase |
| LPCs | Lysophosphatidylcholines |
| MAE | Microwave-Assisted Extraction |
| MAGL | Monoacylglycerol Lipase |
| MAP | Modified Atmosphere Packaging |
| MPa | Megapascal |
| MUFA | Monounsaturated Fatty Acids |
| NAPE–PLD | N-Acyl-Phosphatidylethanolamine-Phospholipase D |
| NO | Nitric Oxide |
| OAV | Odor Activity Value |
| ORAC | Oxygen Radical Absorbance Capacity (antioxidant assay) |
| P&T–GC–MS | Purge-and-Trap Gas Chromatography–Mass Spectrometry |
| PAs | Phosphatidic Acids |
| PLE | Pressurized Liquid Extraction |
| PUFA | Polyunsaturated Fatty Acids |
| ROS | Reactive Oxygen Species |
| SBSE | Stir-Bar Sorptive Extraction |
| SFA | Saturated Fatty Acids |
| SFE | Supercritical Fluid Extraction |
| TGs | Triacylglycerols |
| TPC | Total Phenolic Content |
| TXB2 | Thromboxane B2 |
| UAE | Ultrasound-Assisted Extraction |
| UHPLC–QE | Ultra-High-Performance Liquid Chromatography coupled with Q Exactive |
| Orbitrap–MS | Orbitrap Mass Spectrometry |
| UV | Ultraviolet |
| VOCs | Volatile Organic Compounds |
References
- Rondolini, M.; Zotti, M.; Bragato, G.; Baciarelli Falini, L.; Reale, L.; Donnini, D. The Expanding Truffle Environment: A Study of the Microbial Dynamics in the Old Productive Site and the New Tuber Magnatum Picco Habitat. J. Fungi 2024, 10, 800. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Amara, K.; Reis, F.S.; Barros, L.; Martins, A.; Calhelha, R.C.; Venturini, M.E.; Blanco, D.; Redondo, D.; Marco, P.; et al. Chemical Composition and Evaluation of Antioxidant, Antimicrobial and Antiproliferative Activities of Tuber and Terfezia Truffles. Food Res. Int. 2021, 140, 110071. [Google Scholar] [CrossRef]
- Lee, H.; Nam, K.; Zahra, Z.; Farooqi, M.Q.U. Potentials of Truffles in Nutritional and Medicinal Applications: A Review. Fungal Biol. Biotechnol. 2020, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Phong, W.N.; Gibberd, M.R.; Payne, A.D.; Dykes, G.A.; Coorey, R. Methods Used for Extraction of Plant Volatiles Have Potential to Preserve Truffle Aroma: A Review. Comp. Rev. Food Sci. Food Safe 2022, 21, 1677–1701. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Al-Shalhat, A.; Al-Sogair, A.; Al-Mohammad, M. Chemical Composition and Nutritive Value of Truffles of Saudi Arabia. J. Food Sci. 1985, 50, 450–453. [Google Scholar] [CrossRef]
- Murcia, M.A.; Martínez-Tomé, M.; Vera, A.; Morte, A.; Gutierrez, A.; Honrubia, M.; Jiménez, A.M. Effect of Industrial Processing on Desert Truffles Terfezia Claveryi Chatin and Picoa Juniperi Vittadini): Proximate Composition and Fatty Acids. J. Sci. Food Agric. 2003, 83, 535–541. [Google Scholar] [CrossRef]
- Khlaif, D.K.; Kadum, H.; Abod, N.S. Nutritional and Chemical Compositions of The Desert Truffle (Terfezia claveryi) in Samawa City of Iraq. IOP Conf. Ser. Earth Environ. Sci. 2021, 923, 012050. [Google Scholar] [CrossRef]
- Vetter, J.; Kruzselyi, D. Complex Chemical Evaluation of the Summer Truffle (Tuber Aestivum Vittadini) Fruit Bodies. J. Appl. Bot. Food Qual. 2014, 87, 291–295. [Google Scholar] [CrossRef]
- Piatti, D.; Marconi, R.; Caprioli, G.; Zannotti, M.; Giovannetti, R.; Sagratini, G. White Acqualagna Truffle (Tuber Magnatum Pico): Evaluation of Volatile and Non-Volatile Profiles by GC-MS, Sensory Analyses and Elemental Composition by ICP-MS. Food Chem. 2024, 439, 138089. [Google Scholar] [CrossRef]
- Beara, I.N.; Lesjak, M.M.; Četojević-Simin, D.D.; Marjanović, Ž.S.; Ristić, J.D.; Mrkonjić, Z.O.; Mimica-Dukić, N.M. Phenolic Profile, Antioxidant, Anti-Inflammatory and Cytotoxic Activities of Black (Tuber Aestivum Vittad.) and White (Tuber Magnatum Pico) Truffles. Food Chem. 2014, 165, 460–466. [Google Scholar] [CrossRef]
- Wu, Z.; Meenu, M.; Xu, B. Nutritional Value and Antioxidant Activity of Chinese Black Truffle (Tuber Indicum) Grown in Different Geographical Regions in China. LWT 2021, 135, 110226. [Google Scholar] [CrossRef]
- Veeraraghavan, V.P.; Hussain, S.; Papayya Balakrishna, J.; Dhawale, L.; Kullappan, M.; Mallavarapu Ambrose, J.; Krishna Mohan, S. A Comprehensive and Critical Review on Ethnopharmacological Importance of Desert Truffles: Terfezia claveryi, Terfezia boudieri, and Tirmania nivea. Food Rev. Int. 2022, 38, 846–865. [Google Scholar] [CrossRef]
- Sonji, G.M.; Assi, M.; Sonji, N.M.; Boukhary, R.; Rahal, M. Antioxidant Activity, Metal Content, and Essential Oil Composition of Two Desert Truffles Species: Terfezia boudieri and Terfezia claveryi. J. Pharmacogn. Phytochem. 2022, 11, 10–19. [Google Scholar] [CrossRef]
- Dundar, A.; Yesil, O.F.; Acay, H.; Okumus, V.; Ozdemir, S.; Yildiz, A. Antioxidant Properties, Chemical Composition and Nutritional Value of Terfezia Boudieri (Chatin) from Turkey. Food Sci. Technol. Int. 2012, 18, 317–328. [Google Scholar] [CrossRef]
- Bouzadi, M.; Grebenc, T.; Turunen, O.; Kraigher, H.; Taib, H.; Alafai, A.; Sbissi, I.; Assad, M.E.H.; Bedade, D.; Shamekh, S. Characterization of Natural Habitats and Diversity of Libyan Desert Truffles. 3 Biotech 2017, 7, 328. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, X.-H.; Li, H.-M.; Wang, S.-H.; Chen, T.; Yuan, Z.-P.; Tang, Y.-J. Isolation and Characterization of Polysaccharides with the Antitumor Activity from Tuber Fruiting Bodies and Fermentation System. Appl. Microbiol. Biotechnol. 2014, 98, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Perera, C.; Hemar, Y. Antitumor Activity of Mushroom Polysaccharides: A Review. Food Funct. 2012, 3, 1118. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Ye, L.; Kang, Z.; Zhang, X.; Huang, Y.; Zhang, B.; Zou, Y. Comparison of the Partial Structure and Antioxidant Activity of Polysaccharides from Two Species of Chinese Truffles. Molecules 2020, 25, 4345. [Google Scholar] [CrossRef]
- Shah, N.N.; Hokkanen, S.; Pastinen, O.; Eljamil, A.; Shamekh, S. A Study on the Fatty Acid Composition of Lipids in Truffles Selected from Europe and Africa. 3 Biotech 2020, 10, 415. [Google Scholar] [CrossRef]
- Murcia, M.A.; Maggi, L.; Hussain, G.; Jiménez-Monreal, A.M.; Martínez-Tomé, M.; Alruqaie, I.M. Preservation of Truffles. In Desert Truffles; Kagan-Zur, V., Roth-Bejerano, N., Sitrit, Y., Morte, A., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 38, pp. 299–321. ISBN 978-3-642-40095-7. [Google Scholar]
- Ma, Y.; Yao, J.; Zhou, L.; Zhao, M.; Liu, J.; Marchioni, E. Characterization and Discrimination of Volatile Organic Compounds and Lipid Profiles of Truffles under Different Treatments by UHPLC-QE Orbitrap/MS/MS and P&T-GC–MS. Food Chem. 2023, 410, 135432. [Google Scholar] [CrossRef]
- Villares, A.; García-Lafuente, A.; Guillamón, E.; Ramos, Á. Identification and Quantification of Ergosterol and Phenolic Compounds Occurring in Tuber Spp. Truffles. J. Food Compos. Anal. 2012, 26, 177–182. [Google Scholar] [CrossRef]
- Henkrar, F.; Khabar, L. Proximate Analysis of Lipid Composition in Moroccan Truffles and Desert Truffles. Ital. J. Food Sci. 2022, 34, 67–73. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Tranchant, C.C.; Alhamad, M.N.; Rababah, T.; Al-U’datt, D.; Gammoh, S.; Alrosan, M.; Alkandari, S.; Zghoul, R. Impact of Ultrasonication on the Contents, Profiles and Biofunctional Properties of Free and Bound Phenolics from White Desert Truffle (Tirmania nivea) and Its Protein Fractions. Food Res. Int. 2023, 174, 113453. [Google Scholar] [CrossRef]
- Akyüz, M.; Kirbag, S. Nutritive Value of Desert Truffles Species of Genera Terfezia and Picoa (Ascomycetes) from Arid and Semiarid Regions of Eastern Turkey. Int. J. Med. Mushrooms 2018, 20, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.; Bennett, J.W. Tour of Truffles: Aromas, Aphrodisiacs, Adaptogens, and More. Mycobiology 2021, 49, 201–212. [Google Scholar] [CrossRef]
- Zamany, S.; Sedghi, M.; Hafizi, M.; Nazaran, M.H.; KimiaeiTalab, M.V. Organic Acid-Based Chelate Trace Mineral Supplement Improves Broiler Performance, Bone Composition, Immune Responses, and Blood Parameters. Biol. Trace Elem. Res. 2023, 201, 4882–4899. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L.; Agarwal, S. Nutritional Impact of Adding a Serving of Mushrooms on Usual Intakes and Nutrient Adequacy Using National Health and Nutrition Examination Survey 2011–2016 Data. Food Sci. Nutr. 2021, 9, 1504–1511. [Google Scholar] [CrossRef]
- Pacioni, G.; Rapino, C.; Zarivi, O.; Falconi, A.; Leonardi, M.; Battista, N.; Colafarina, S.; Sergi, M.; Bonfigli, A.; Miranda, M.; et al. Truffles Contain Endocannabinoid Metabolic Enzymes and Anandamide. Phytochemistry 2015, 110, 104–110. [Google Scholar] [CrossRef]
- Di Marzo, V.; Sepe, N.; De Petrocellis, L.; Berger, A.; Crozier, G.; Fride, E.; Mechoulam, R. Trick or Treat from Food Endocannabinoids? Nature 1998, 396, 636. [Google Scholar] [CrossRef]
- Bokhary, H.A.; Parvez, S. Chemical Composition of Desert Truffles Terfezia Claveryi. J. Food Compos. Anal. 1993, 6, 285–293. [Google Scholar] [CrossRef]
- Ferreira, I.; Dias, T.; Mouazen, A.M.; Cruz, C. Using Science and Technology to Unveil the Hidden Delicacy Terfezia Arenaria, a Desert Truffle. Foods 2023, 12, 3527. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Mohamed, M.A.; Hami, M.A. Libyan Truffles “Terfezia Boudieri Chatin:” Chemical Composition and Toxicity. J. Food Sci. 1981, 46, 927–929. [Google Scholar] [CrossRef]
- Shimokawa, T.; Kinoshita, A.; Kusumoto, N.; Nakano, S.; Nakamura, N.; Yamanaka, T. Component Features, Odor-active Volatiles, and Acute Oral Toxicity of Novel White-colored Truffle Tuber Japonicum Native to Japan. Food Sci. Nutr. 2020, 8, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Ye, L.; Kang, Z.; Jia, D.; Yang, L.; Zhang, B. LC-MS-Based Metabolomic Approach Revealed the Significantly Different Metabolic Profiles of Five Commercial Truffle Species. Front. Microbiol. 2019, 10, 2227. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Ye, L.; Zhang, B.; Zhang, X.; Li, X. Label-Free Based Comparative Proteomics Approach Revealed the Changes in Proteomic Profiles Driven by Different Maturities in Two Chinese White Truffles, Tuber Panzhihuanense and Tuber Latisporum. Food Chem. 2024, 443, 138535. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Yan, L.; Kang, Z.; Tan, H.; Jia, D.; Yang, L.; Ye, L.; Li, X. Different Maturities Drive Proteomic and Metabolomic Changes in Chinese Black Truffle. Food Chem. 2021, 342, 128233. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; Marco, P.; Sánchez, S.; Garcia-Barreda, S.; Smiderle, F.R.; Iacomini, M.; Villalva, M.; Santoyo, S.; Soler-Rivas, C. Screening of Bioactive Compounds in Truffles and Evaluation of Pressurized Liquid Extractions (PLE) to Obtain Fractions with Biological Activities. Food Res. Int. 2020, 132, 109054. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, Z.; Xin, G.; Sun, B.; Bao, X.; Wei, Y.; Zhao, X.; Xu, H. Advances in Umami Taste and Aroma of Edible Mushrooms. Trends Food Sci. Technol. 2020, 96, 176–187. [Google Scholar] [CrossRef]
- Farzaneh, P.; Khanahamadi, M.; Ehsani, M.R.; Sharifan, A. Bioactive Properties of Agaricus Bisporus and Terfezia Claveryi Proteins Hydrolyzed by Gastrointestinal Proteases. LWT 2018, 91, 322–329. [Google Scholar] [CrossRef]
- Feng, T.; Shui, M.; Song, S.; Zhuang, H.; Sun, M.; Yao, L. Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach. Molecules 2019, 24, 3305. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Nzekoue, F.K.; Abouelenein, D.; Sagratini, G.; Caprioli, G.; Torregiani, E. An Overview on Truffle Aroma and Main Volatile Compounds. Molecules 2020, 25, 5948. [Google Scholar] [CrossRef]
- Fan, M.; Li, M.; Ma, Y.; Wang, T.; Cai, S.; Du, M.; Sun, D.; Devahastin, S.; Yi, J. Identification of Novel Umami Peptides from Truffle and Their Effects on Umami Perception When Used in Combination with MSG or IMP. Curr. Res. Food Sci. 2025, 11, 101177. [Google Scholar] [CrossRef]
- Shan, Y.; Pu, D.; Cao, B.; Shi, Y.; Li, P.; Xiong, J.; Li, K.; Sun, B.; Zhang, Y. Elucidating Salt-Reduction Mechanisms of Aroma-Active Compounds from Yeast Extracts through Sensomics Approaches and Electroencephalography. Food Chem. X 2024, 22, 101339. [Google Scholar] [CrossRef]
- Epping, R.; Lisec, J.; Koch, M. Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions. J. Fungi 2024, 10, 354. [Google Scholar] [CrossRef]
- Vita, F.; Taiti, C.; Pompeiano, A.; Bazihizina, N.; Lucarotti, V.; Mancuso, S.; Alpi, A. Volatile Organic Compounds in Truffle (Tuber Magnatum Pico): Comparison of Samples from Different Regions of Italy and from Different Seasons. Sci. Rep. 2015, 5, 12629. [Google Scholar] [CrossRef] [PubMed]
- Culleré, L.; Ferreira, V.; Chevret, B.; Venturini, M.E.; Sánchez-Gimeno, A.C.; Blanco, D. Characterisation of Aroma Active Compounds in Black Truffles (Tuber melanosporum) and Summer Truffles (Tuber aestivum) by Gas Chromatography–Olfactometry. Food Chem. 2010, 122, 300–306. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Sanz, M.Á.; Marco, P. Black Truffle Aroma Evaluation: SPME-GC-MS vs. Sensory Experts. Foods 2024, 13, 837. [Google Scholar] [CrossRef]
- Liu, D.; Pérez-Moreno, J.; He, X.; Garibay-Orijel, R.; Yu, F. Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees. mSphere 2021, 6, e00039-21. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Liu, T.; Yang, C.; Yang, H.; Liu, D. Relationship between Phospholipid Molecules Species and Volatile Compounds in Grilled Lambs during the Heating Process. Food Chem. X 2024, 21, 101113. [Google Scholar] [CrossRef]
- Li, Q.; Hu, H.; Tan, X.; Wang, J.; Mei, R.; Jiang, F.; Ling, Y.; Li, X. Effects of Storage in an Active and Spontaneous Controlled O2 /CO2 Atmosphere on Volatile Flavor Components and the Microbiome of Truffles. ACS Omega 2024, 9, 9331–9347. [Google Scholar] [CrossRef]
- Hussain, G.; Al-Ruqaie, I.M. Occurrence, Chemical Composition, and Nutritional Value of Truffles: An Overview. Pak. J. Biol. Sci. 1999, 2, 510–514. [Google Scholar] [CrossRef]
- Janakat, S.; Al-Fakhiri, S.; Sallal, A.-K. A Promising Peptide Antibiotic from Terfezia claveryi Aqueous Extract against Staphylococcus aureus in Vitro. Phytother. Res. 2004, 18, 810–813. [Google Scholar] [CrossRef]
- Gouzi, H.; Belyagoubi, L.; Abdelali, K.N.; Khelifi, A. In Vitro Antibacterial Activities of Aqueous Extracts from Algerian Desert Truffles (Terfezia and Tirmania, Ascomycetes) Against Pseudomonas Aeruginosa and Staphylococcus Aureus. Int. J. Med. Mushr. 2011, 13, 553–558. [Google Scholar] [CrossRef]
- Doðan, H.; Aydin, S. Determination of Antimicrobial Effect, Antioxidant Activity and Phenolic Contents of Desert Truffle in Turkey. Afr. J. Trad. Complement. Altern. Med. 2013, 10, 52–58. [Google Scholar] [CrossRef]
- Nadhim Owaid, M. Biosynthesis of Silver Nanoparticles from Truffles and Mushrooms and Their Applications as Nanodrugs. Curr. Appl. Sci. Technol. 2021, 22, 10-55003. [Google Scholar] [CrossRef]
- Hamza, A.; Jdir, H. Nutritional, Antioxidant and Antibacterial Properties of Tirmania Nivea, A Wild Edible Desert Truffle from Tunisia Arid Zone. Med. Aromat. Plants 2016, 5, 2167-0412. [Google Scholar] [CrossRef]
- Dib Bellahouel, S.; Fortas, Z. Antibacterial Activity of Various Fractions of Ethyl Acetate Extract from the Desert Truffle, Tirmania Pinoyi, Preliminarily Analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Afr. J. Biotechnol. 2011, 10, 9694–9699. [Google Scholar] [CrossRef]
- Stojković, D.; Reis, F.S.; Ferreira, I.C.F.R.; Barros, L.; Glamočlija, J.; Ćirić, A.; Nikolić, M.; Stević, T.; Giveli, A.; Soković, M. Tirmania Pinoyi: Chemical Composition, in Vitro Antioxidant and Antibacterial Activities and in Situ Control of Staphylococcus Aureus in Chicken Soup. Food Res. Int. 2013, 53, 56–62. [Google Scholar] [CrossRef]
- Nadim, M.; Deshaware, S.; Saidi, N.; Abd-Elhakeem, M.A.; Ojamo, H.; Shamekh, S. Extracellular Enzymatic Activity of Tuber maculatum and Tuber aestivum Mycelia. Adv. Microbiol. 2015, 05, 523–530. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Burlinson, P.; Deveau, A.; Barret, M.; Tarkka, M.; Sarniguet, A. Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiol. Mol. Biol. Rev. 2011, 75, 583–609. [Google Scholar] [CrossRef]
- Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications. Mediat. Inflamm. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Xu, W.; Lin, Z.; Cortez-Jugo, C.; Qiao, G.G.; Caruso, F. Antimicrobial Phenolic Materials: From Assembly to Function. Angew. Chem. Int. Ed. 2025, 64, e202423654. [Google Scholar] [CrossRef]
- Khojah, H.M.J.; Abdelhalim, O.B.; Mostafa, M.A.H.; Habib, E.-S.E. Antimicrobial Efficacy of Extracts of Saudi Arabian Desert Terfezia Claveryi Truffles. Saudi J. Biol. Sci. 2022, 29, 103462. [Google Scholar] [CrossRef]
- El Enshasy, H.; Elsayed, E.A.; Aziz, R.; Wadaan, M.A. Mushrooms and Truffles: Historical Biofactories for Complementary Medicine in Africa and in the Middle East. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Kostić, K.; Brborić, J.; Delogu, G.; Simić, M.R.; Samardžić, S.; Maksimović, Z.; Dettori, M.A.; Fabbri, D.; Kotur-Stevuljević, J.; Saso, L. Antioxidant Activity of Natural Phenols and Derived Hydroxylated Biphenyls. Molecules 2023, 28, 2646. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, J.; Yan, L.; Tang, Y.; Ding, X.; Yang, Z.; Sun, Q. Composition and Antioxidant Activity of Water-Soluble Polysaccharides from Tuber indicum. J. Med. Food 2011, 14, 1609–1616. [Google Scholar] [CrossRef]
- Gouzi, H.; Leboukh, M.; Bouchouka, E. Antioxidant and Antiradical Properties of Methanolic Extracts from Algerian Wild Edible Desert Truffles (Terfezia and Tirmania, Ascomycetes). Int. J. Med. Mushr. 2013, 15, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, S.; Ran, C.; Wang, L.; Kan, J. Extraction, Characterization and Antioxidant Activity of Water-Soluble Polysaccharides from Tuber Huidongense. Int. J. Biol. Macromol. 2016, 91, 431–442. [Google Scholar] [CrossRef]
- Guo, D.; Liao, Y.; Na, J.; Wu, L.; Yin, Y.; Mi, Z.; Fang, S.; Liu, X.; Huang, Y. The Involvement of Ascorbic Acid in Cancer Treatment. Molecules 2024, 29, 2295. [Google Scholar] [CrossRef] [PubMed]
- Murcia, M.A.; Martínez-Tomé, M.; Jiménez, A.M.; Vera, A.M.; Honrubia, M.; Parras, P. Antioxidant Activity of Edible Fungi (Truffles and Mushrooms): Losses during Industrial Processing. J. Food Prot. 2002, 65, 1614–1622. [Google Scholar] [CrossRef]
- Chen, F.; Kang, R.; Tang, D.; Liu, J. Ferroptosis: Principles and Significance in Health and Disease. J. Hematol. Oncol. 2024, 17, 41. [Google Scholar] [CrossRef]
- Al-Laith, A.A.A. Antioxidant Components and Antioxidant/Antiradical Activities of Desert Truffle (Tirmania nivea) from Various Middle Eastern Origins. J. Food Compos. Anal. 2010, 23, 15–22. [Google Scholar] [CrossRef]
- Hsu, J.-Y.; Chen, M.-H.; Lai, Y.-S.; Chen, S.-D. Antioxidant Profile and Biosafety of White Truffle Mycelial Products Obtained by Solid-State Fermentation. Molecules 2021, 27, 109. [Google Scholar] [CrossRef]
- Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016, 5, 80. [Google Scholar] [CrossRef]
- Muriach, M.; Flores-Bellver, M.; Romero, F.J.; Barcia, J.M. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy. Oxidative Med. Cell. Longev. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Castelli, S.; Carinci, E.; Baldelli, S. Oxidative Stress in Neurodegenerative Disorders: A Key Driver in Impairing Skeletal Muscle Health. IJMS 2025, 26, 5782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jayachandran, M.; Ganesan, K.; Xu, B. Black Truffle Aqueous Extract Attenuates Oxidative Stress and Inflammation in STZ-Induced Hyperglycemic Rats via Nrf2 and NF-κB Pathways. Front. Pharmacol. 2018, 9, 1257. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh Peer, M.; Fallahmohammadi, Z.; Akbari, A. The Effect of Progressive Endurance Training and Extract of Black Winter Truffle on Proteins Levels and Expression of Hippocampus α-Synuclein and HSF1 in the Healthy and Diabetic Rats. Metab. Open 2023, 17, 100232. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y.; Peng, C.; Gong, J. Truffle Protein and Its Derived Peptides Exhibit Sleep-Promoting Effects via Regulation of Lysosomal Autophagy, Neurological Activity, Tyrosine Metabolism, and Fatty Acid Elongation. Int. J. Biol. Macromol. 2024, 281, 136476. [Google Scholar] [CrossRef]
- Smach, M.A.; Hammami, R.; Zarrouk, A.; Hafsa, J.; Charfeddine, B.; Limem, K.; Khadhri, A. In Silico and In Vivo Biological Evaluation of Extracts from Tunisian Desert Truffles (Tirmania nivea and Terfezia boudieri) on Scopolamine-Induced Memory Impairment in Mice. J. Med. Food 2025, 28, 673–681. [Google Scholar] [CrossRef]
- Janakat, S.; Nassar, M. Hepatoprotective Activity of Desert Truffle (Terfezia claveryi) in Comparison with the Effect of Nigella Sativa in the Rat. Pak. J. Nutr. 2010, 9, 52–56. [Google Scholar] [CrossRef]
- Mohamed, H.; Mahdi, M.; Elmosallamy, S.; Abdellatif, H. Biological Activities of Black Truffle (Terfezia claveryi) Against Dietary Acrylamide-Induced Toxicity in Rats Liver: Biochemical and Histopathological Study. Egypt. Acad. J. Biol. Sci. D. Histol. Histochem. 2022, 14, 147–163. [Google Scholar] [CrossRef]
- Nouiri, E.; Ben Ali, R.; Ghali, R.; Araoud, M.; Véronique El May, M.; Hedhili, A. Protective and Curative Effects of Aqueous Extract of Terfezia boudieri (Edible Desert Truffle Specie) against Paracetamol Acute Toxicity in the Rat. Nutr. Cancer 2021, 73, 113–123. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Recent Developments in Mushrooms as Anti-Cancer Therapeutics: A Review. 3 Biotech 2012, 2, 1–15. [Google Scholar] [CrossRef]
- Al-Shawi, A.A.A.; Hameed, M.F.; Hussein, K.A.; Neamah, H.F.; Luaibi, I.N. Gas Chromatography-Mass Spectrometry Analysis of Bioactive Compounds of Iraqi Truffle Terfezia claveryi (Ascomycetes), Synthesis of Silver Nanoparticles, and Appraisal of Its Biological Activities. Int. J. Med. Mushrooms 2021, 23, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, W.D.G. The Precious Truffles: Bioactive Compounds as a Source of Various Biological Activities. Environ. Sci. 2024, 3, 40. [Google Scholar] [CrossRef]
- Dahham, S.S.; Al-Rawi, S.S.; Ibrahim, A.H.; Abdul Majid, A.S.; Abdul Majid, A.M.S. Antioxidant, Anticancer, Apoptosis Properties and Chemical Composition of Black Truffle Terfezia claveryi. Saudi J. Biol. Sci. 2018, 25, 1524–1534. [Google Scholar] [CrossRef]
- Casarica, A.; Moscovici, M.; Daas, M.; Nicu, I.; Panteli, M.; Rasit, I. A Purified Extract from Brown Truffles of The Species Terfezia claveryi Chatin And Its Antimicrobial Activity. Farmacia 2016, 64, 298–301. [Google Scholar]
- Althobaiti, N.A.; Alhasani, N.H.; BinMowyna, M.N.; Albalawi, A.E.; Alsharif, I. Terfezia Claveryi Chatin: Anti-Tumor Effects against Ehrlich Solid Tumor in Mice. Pharmacogn. Mag. 2022, 18, 651–658. [Google Scholar]
- Patsos, H.A. The Endogenous Cannabinoid, Anandamide, Induces Cell Death in Colorectal Carcinoma Cells: A Possible Role for Cyclooxygenase 2. Gut 2005, 54, 1741–1750. [Google Scholar] [CrossRef]
- Çayan, F.; Tel-Çayan, G.; Deveci, E.; Duru, M.E.; Öztürk, M. Isolation and Identification of Compounds from Truffle Reddellomyces Westraliensis and Their Antioxidant, Cytotoxic and Enzyme Inhibitory Activities. Process Biochem. 2022, 121, 553–562. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, H.; Yang, G.; Chen, Y.; Zhong, X.; Li, S.; Pan, M.; Li, Y.; Zhang, J. Enhancing the Black Truffle Polysaccharide Extraction Efficiency Using a Combination of Natural Deep Eutectic Solvents and Ultrasound-Assisted Techniques. Food Meas. 2025, 19, 2208–2219. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Marco, P.; Spègel, P.; Soler-Rivas, C. Extraction and Trapping of Truffle Flavoring Compounds into Food Matrices Using Supercritical CO2. Food Res. Int. 2023, 164, 112422. [Google Scholar] [CrossRef]
- Mudliyar, D.S.; Wallenius, J.H.; Bedade, D.K.; Singhal, R.S.; Madi, N.; Shamekh, S.S. Ultrasound Assisted Extraction of the Polysaccharide from Tuber Aestivum and Its in Vitro Anti-Hyperglycemic Activity. Bioact. Carbohydr. Diet. Fibre 2019, 20, 100198. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; Morillo, L.; Vega, L.; Caro, M.; Smiderle, F.R.; Iacomini, M.; Marco, P.; Soler-Rivas, C. Pressurized Liquid (PLE) Truffle Extracts Have Inhibitory Activity on Key Enzymes Related to Type 2 Diabetes (α-Glucosidase and α-Amylase). Foods 2023, 12, 2724. [Google Scholar] [CrossRef] [PubMed]
- Bhotmange, D.U.; Wallenius, J.H.; Singhal, R.S.; Shamekh, S.S. Enzymatic Extraction and Characterization of Polysaccharide from Tuber Aestivum. Bioact. Carbohydr. Diet. Fibre 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Kumla, J.; Thangrongthong, S.; Kaewnunta, A.; Suwannarach, N. Research Advances in Fungal Polysaccharides: Production, Extraction, Characterization, Properties, and Their Multifaceted Applications. Front. Cell. Infect. Microbiol. 2025, 15, 1604184. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Morte, A.; Siles-Sánchez, M.D.L.N.; Soler-Rivas, C.; Santoyo, S.; Marco, P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods 2022, 11, 298. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, T.; Khalil, A.A.; Akhtar, M.N.; Khalid, A.; Tariq, M.R.; Alsulami, T.; Mugabi, R.; Nayik, G.A. Ultrasound-Assisted Solvent Extraction of Phenolics, Flavonoids, and Major Triterpenoids from Centella Asiatica Leaves: A Comparative Study. Ultrason. Sonochem. 2024, 111, 107091. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, N.; Zhou, S.; Han, W.; Zhang, J.; Xiong, H. Comparative Analysis of Volatile Components of Fresh and Dried Tuber Indicum Truffles with Different Extraction Methods. Int. J. Food. Sci. Technol. 2024, 59, 797–806. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Manousi, N.; Paraskevopoulou, A.; Mourtzinos, I.; Zachariadis, G.A.; Rosenberg, E. Headspace Solid-Phase Microextraction Followed by Gas Chromatography-Mass Spectrometry as a Powerful Analytical Tool for the Discrimination of Truffle Species According to Their Volatiles. Front. Nutr. 2022, 9, 856250. [Google Scholar] [CrossRef] [PubMed]
- Díaz, P.; Ibáñez, E.; Reglero, G.; Señoráns, F.J. Optimization of Summer Truffle Aroma Analysis by SPME: Comparison of Extraction with Different Polarity Fibres. LWT Food Sci. Technol. 2009, 42, 1253–1259. [Google Scholar] [CrossRef]
- Splivallo, R.; Ottonello, S.; Mello, A.; Karlovsky, P. Truffle Volatiles: From Chemical Ecology to Aroma Biosynthesis. New Phytol. 2011, 189, 688–699. [Google Scholar] [CrossRef]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.-S. Advances in Lipid Extraction Methods—A Review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef] [PubMed]
- Creydt, M.; Fischer, M. Food Authentication: Truffle Species Classification by Non-Targeted Lipidomics Analyses Using Mass Spectrometry Assisted by Ion Mobility Separation. Mol. Omics 2022, 18, 616–626. [Google Scholar] [CrossRef]
- Saltarelli, R.; Ceccaroli, P.; Cesari, P.; Barbieri, E.; Stocchi, V. Effect of Storage on Biochemical and Microbiological Parameters of Edible Truffle Species. Food Chem. 2008, 109, 8–16. [Google Scholar] [CrossRef]
- Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Maiuro, L.; Sturchio, M.; Coppola, R.; Tremonte, P. Antimicrobial Activity of Gallic Acid against Food-Related Pseudomonas Strains and Its Use as Biocontrol Tool to Improve the Shelf Life of Fresh Black Truffles. Int. J. Food Microbiol. 2018, 266, 183–189. [Google Scholar] [CrossRef]
- Marco, P.; Campo, E.; Oria, R.; Blanco, D.; Venturini, M.E. Effect of Lyophilisation in the Black Truffle (Tuber melanosporum) Aroma: A Comparison with Other Long-Term Preservation Treatments (Freezing and Sterilization). Acta Hortic. 2018, 1194, 831–838. [Google Scholar] [CrossRef]
- Rivera, C.S.; Blanco, D.; Salvador, M.L.; Venturini, M.E. Shelf-Life Extension of Fresh Tuber aestivum and Tuber melanosporum Truffles by Modified Atmosphere Packaging with Microperforated Films. J. Food Sci. 2010, 75, E225–E233. [Google Scholar] [CrossRef]
- Zabot, G.L.; Schaefer Rodrigues, F.; Polano Ody, L.; Vinícius Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.S.; Best, I.; Olivera-Montenegro, L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef]
- Daba, G.M.; Elkhateeb, W.A.; Saleh, S.A.A.; Soliman, T.N.; El-Dein, A.N. Physicochemical and Sensory Characterization of Functional Synbiotic Labneh Fortified with the Bacteriocin-Producing Lactiplantibacillus Plantarum Strain GA7 and Nano-Encapsulated Tirmania Pinoyi Extract. Microb. Cell Fact. 2025, 24, 18. [Google Scholar] [CrossRef]
- Phong, W.N.; Al-Salami, H.; Gibberd, M.R.; Dykes, G.A.; Payne, A.D.; Coorey, R. Comparative Evaluation of Encapsulation Using Β-cyclodextrin versus Freeze-drying for Better Retention and Stabilizing of Black Périgord Truffle (Tuber melanosporum) Aroma. J. Food Sci. 2022, 87, 3482–3495. [Google Scholar] [CrossRef]
- Choo, K.S.O.; Bollen, M.; Dykes, G.A.; Coorey, R. Effect of Different Coating Materials on Black Périgord Truffle (Tuber melanosporum) Aroma Profile and Its Shelf Life. Food Bioprocess Technol. 2025, 18, 2561–2573. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Baquero-Aznar, V.; Vega-Diez, S.; Salvador, M.L.; Sanz, M.Á.; Sánchez, S.; Marco, P.; García-Barreda, S.; González-Buesa, J. Potential of a Smart Gelatine Hydrogel-Based Package to Extend Fresh Black Truffle (Tuber melanosporum) Shelf-Life Preserving Its Aroma Profile. Food Hydrocoll. 2024, 151, 109874. [Google Scholar] [CrossRef]
- Choo, K.S.O.; Bollen, M.; Ravensdale, J.T.; Dykes, G.A.; Coorey, R. Effect of Chitosan and Gum Arabic with Natamycin on the Aroma Profile and Bacterial Community of Australian Grown Black Périgord Truffles (Tuber melansoporum) during Storage. Food Microbiol. 2021, 97, 103743. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Calvo, E.; Morales, D.; García-Barreda, S.; Sánchez, S.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C.; Marco, P. Effects of Gamma Irradiation on the Shelf-Life and Bioactive Compounds of Tuber Aestivum Truffles Packaged in Passive Modified Atmosphere. Int. J. Food Microbiol. 2020, 332, 108774. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Picariello, G.; Coppola, R.; Reale, A.; Luccia, A.D. Evaluation of Gamma Rays Influence on Some Biochemical and Microbiological Aspects in Black Truffles. Food Chem. 2007, 103, 344–354. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Chen, S.-D. Effects of Media and Processes on the Aromas of White Truffle Solid-State Fermented Products. Processes 2024, 12, 2036. [Google Scholar] [CrossRef]
- Çayan, F.; Tel-Çayan, G.; Deveci, E.; Duru, M.E.; Türk, M. A Detailed Study on Multifaceted Bioactivities of the Extracts and Isolated Compounds from Truffle Reddellomyces parvulosporus. Int. J. Food Sci. Technol. 2022, 57, 1411–1419. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Sang, X.; Fan, L. Nutritional Value, Chemical Composition and Antioxidant Activity of Three Tuber Species from China. AMB Expr. 2017, 7, 136. [Google Scholar] [CrossRef]
- Barros, L.; Ferreira, M.-J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total Phenols, Ascorbic Acid, β-Carotene and Lycopene in Portuguese Wild Edible Mushrooms and Their Antioxidant Activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H.; Khalid, S.; Mubarak, M.S. Potential Health Benefits of Natural Products Derived from Truffles: A Review. Trends Food Sci. Technol. 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Hannan, M.A.; Al-Dakan, A.A.; Aboul-Enein, H.Y.; Al-Othaimeen, A.A. Mutagenic and Antimutagenic Factor(s) Extracted from a Desert Mushroom Using Different Solvents. Mutagenesis 1989, 4, 111–114. [Google Scholar] [CrossRef]
- Jinming, G. A Novel Sterol from Chinese Truffles Tuber Indicum. Steroids 2001, 66, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Mandeel, Q.A.; Al-Laith, A.A.A. Ethnomycological Aspects of the Desert Truffle among Native Bahraini and Non-Bahraini Peoples of the Kingdom of Bahrain. J. Ethnopharmacol. 2007, 110, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Dubost, N.; Ou, B.; Beelman, R. Quantification of Polyphenols and Ergothioneine in Cultivated Mushrooms and Correlation to Total Antioxidant Capacity. Food Chem. 2007, 105, 727–735. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive Compounds in Foods: Their Role in the Prevention of Cardiovascular Disease and Cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Hamza, A.; Zouari, N.; Zouari, S.; Jdir, H.; Zaidi, S.; Gtari, M.; Neffati, M. Nutraceutical Potential, Antioxidant and Antibacterial Activities of Terfezia Boudieri Chatin, a Wild Edible Desert Truffle from Tunisia Arid Zone. Arab. J. Chem. 2016, 9, 383–389. [Google Scholar] [CrossRef]
- Alirezalu, K.; Azadmard-Damirchi, S.; Achachlouei, B.F.; Hesari, J.; Emaratpardaz, J.; Tavakolian, R. Physicochemical Properties and Nutritional Composition of Black Truffles Grown in Iran. Chem. Nat. Compd. 2016, 52, 290–293. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Felices-Mayordomo, M.; Blanco, D.; Sánchez, S.; Marco, P. Truffle Flavored Commercial Products Veracity and Sensory Analysis from Truffle and Non-Truffle Consumers. Food Control 2023, 145, 109424. [Google Scholar] [CrossRef]
- Wang, S.; Marcone, M.F. The Biochemistry and Biological Properties of the World’s Most Expensive Underground Edible Mushroom: Truffles. Food Res. Int. 2011, 44, 2567–2581. [Google Scholar] [CrossRef]
- Daei, B.; Azadmard-Damirchi, S.; Javadi, A.; Torbati, M. Effects of Mild Thermal Processing and Storage Conditions on the Quality Attributes and Shelf Life of Truffles (Terfezia claveryi). Foods 2023, 12, 2212. [Google Scholar] [CrossRef]
- Strojnik, L.; Grebenc, T.; Ogrinc, N. Species and Geographic Variability in Truffle Aromas. Food Chem. Toxicol. 2020, 142, 111434. [Google Scholar] [CrossRef]

| Species | Main Carbohydrates (% DW) | Protein (% DW) | Fat (% DW) | Key Fatty Acids | Notable Bioactives | Main Minerals * | Origin (Region/Country) | References |
|---|---|---|---|---|---|---|---|---|
| Terfezia claveryi | 60–80 | 12–18 | 1–4 | Linoleic, (~35%), Oleic (~30%), Palmitic (~20%) → PUFA > MUFA | Rutin, gallic acid, flavonoids, carotenoids, polyphenols, essential amino acids | K, Na, Fe, Cu, Zn, Ca, P, Mg, Mn, Ni | Saudi Arabia | [5,6,7,12] |
| Terfezia boudieri | 55–68 | 12–28 | 3–5 | Linoleic (up to 54%) | Polyphenols, flavonoids, terpenoids, phytosterols, anthocyanins, ascorbic acid | K, P, Fe, Ca, Na, Mg, Zn, Cu | Turkey/Tunisia/Saudi Arabia | [12,13,14] |
| Tirmania nivea | 50–65 | 12–27 | 2–7 | Linoleic, Oleic | Polyphenols, flavonoids, carotenoids, vitamin C | K, P, Fe, Ca, Na, Mg, Zn, Cu, Mn | Saudi Arabia/Tunisia | [5,6,13,15] |
| Tuber aestivum | 60–79 | 14–24 | 1–5 | Oleic (40–50%), linoleic (20–30%), palmitic (10–15%) | Polyphenols, flavonoids, sterols | K, P, Fe, Ca, Mg, Zn, Cu | Italy/France | [2,13] |
| Tuber melanosporum | 74–75 | 12–18 | 2–4 | Oleic (~45%), linoleic (~25%), palmitic (~15%) → MUFA > PUFA | Ergosterol, phenolics | K, P, Fe, Ca, Mg, Zn, Cu | France/Spain | [13] |
| Tuber magnatum | 60–75 | 10–22 | 1–5 | Palmitic > oleic > linoleic | High phenolics, ergosterol | K, P, Fe, Ca, Mg, Zn, Cu | Italy | [2,13] |
| Tuber indicum | 52–80 | 13–23 | 2–7 | Linoleic (~40–45%), Oleic (~25–30%), Palmitic (~15%) → PUFA > MUFA | Phenolics, tocopherols, ergosterol | K, P, Ca, Mg, Fe, Zn | China | [2,11] |
| Tuber sinense | 65–70 | 14–20 | 3–4 | Oleic (~40%), Linoleic (~30%), Palmitic (~15%) → MUFA ≈ PUFA | K, P, Ca, Mg, Fe, Zn | China | [16] | |
| Picoa juniperi | 37 | 22.5 | 20 | Linoleic, Oleic | Polyphenols, fiber | K, P, Fe, Ca, Mg, Zn, Cu | Turkey/Spain | [6] |
| Truffles | Antiviral, Antibacterial and Antimicrobial Effects | References |
|---|---|---|
| Terfezia claveryi |
| [53,54] |
| Tuber nivea |
| [54,56] |
| Terfezia boudieri | Antimicrobial activity against both Gram-positive and Gram-negative bacteri | [55] |
| Tirmania sp. | Antibacterial effect (Gram-positive and Gram-negative) | [56] |
| Tuber pinoyi | Limit the proliferation of Staphylococcus aureus | [58,59] |
| Truffles | Antioxidant and Anti-Inflammatory Activities | References |
|---|---|---|
| Terfezia boudieri | Scavenging activity against DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals | [55] |
| Tuber huidongense | High radical-scavenging capacity | [68,69] |
| Tuber leonis | High radical-scavenging capacity | [68,69] |
| Tuber pinoyi | High radical-scavenging capacity | [68] |
| Terfezia claveryi |
| [82] |
| Picoa juniperi | High activity in inhibiting lipid peroxidation | [71] |
| Tuber nivea |
| [73] |
| Tuber melanosporum | Activation of the Nrf2 and NF-κB pathways and the enhancement of antioxidant defenses, both enzymatic (superoxide dismutase, catalase) and non-enzymatic (vitamins C and E) | [2] |
| Tuber magnatum | Inhibits pro-inflammatory metabolites derived from the COX-1 and 12-LOX pathways, such as 12-HHT, TXB2, and 12-HETE | [2,10] |
| Truffles | Antioxidant and Anti-Inflammatory Activities | References |
|---|---|---|
| Terfezia claveryi |
| [82,83,84] |
| Truffles | Antitumor and Anticarcinogenic Potential | References |
|---|---|---|
| Tuber aestivum | Marked cytotoxicity in vitro on cervical (HeLa), breast (MCF-7), and colon (HT-29) cancer cells | [10,16] |
| Tuber magnatum | Marked cytotoxicity in vitro on cervical (HeLa), breast (MCF-7), and colon (HT-29) cancer cells | [10] |
| Terfezia claveryi |
| [87,90] |
| Tuber gennadii | Inhibiting the cellular growth of several cancer cell lines, including NCI-H460, HeLa, HepG2, and MCF-7 cell lines | [87] |
| Tuber melanosporum | Induce apoptosis in colorectal carcinoma cells via COX-2-derived prostaglandin metabolites, and reduce tumor cell proliferation | [29,91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldelli, S.; Aiello, G.; De Bruno, A.; Castelli, S.; Lombardo, M.; Stocchi, V.; Tripodi, G. Bioactive Compounds and Antioxidant Potential of Truffles: A Comprehensive Review. Antioxidants 2025, 14, 1341. https://doi.org/10.3390/antiox14111341
Baldelli S, Aiello G, De Bruno A, Castelli S, Lombardo M, Stocchi V, Tripodi G. Bioactive Compounds and Antioxidant Potential of Truffles: A Comprehensive Review. Antioxidants. 2025; 14(11):1341. https://doi.org/10.3390/antiox14111341
Chicago/Turabian StyleBaldelli, Sara, Gilda Aiello, Alessandra De Bruno, Serena Castelli, Mauro Lombardo, Vilberto Stocchi, and Gianluca Tripodi. 2025. "Bioactive Compounds and Antioxidant Potential of Truffles: A Comprehensive Review" Antioxidants 14, no. 11: 1341. https://doi.org/10.3390/antiox14111341
APA StyleBaldelli, S., Aiello, G., De Bruno, A., Castelli, S., Lombardo, M., Stocchi, V., & Tripodi, G. (2025). Bioactive Compounds and Antioxidant Potential of Truffles: A Comprehensive Review. Antioxidants, 14(11), 1341. https://doi.org/10.3390/antiox14111341

