Bioactive Compounds, Antioxidant, Antimicrobial and Anticancerogenic Activity in Lacmellea edulis H. Karst., at Different Stages of Maturity
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Physico-Chemical Analyses
Mineral Profile
2.3. Analysis of Bioactive Compounds
2.3.1. Ascorbic Acid
2.3.2. Organic Acid Profile
2.3.3. Carotenoid Profile
2.3.4. Chlorophylls and Their Derivatives
2.3.5. Phenol Profile
2.4. Antioxidant Activity Analyses
2.5. Antimicrobial Activity Analyses
2.5.1. Antibacterial Activity
2.5.2. Antifungal Activity
2.6. Anticancer Activity
2.7. Haemolytic Activity
2.8. Statistical Analysis
3. Results
3.1. Physico-Chemical Characteristics
3.2. Analysis of Bioactive Compounds and Antioxidant Activity
3.3. Antimicrobial Activity Analyses
3.4. Anticancer Activity
3.5. Hemolytic Activity
3.6. Statistical Analysis
4. Discussion
4.1. Physico-Chemical
4.2. Bioactive Compounds and Antioxidant Activity
4.3. Antimicrobial Activity
4.4. Anticancer Activity
4.5. Hemolytic Activity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, S.; Malhi, Y. Biodiversity: Concepts, Patterns, Trends, and Perspectives. Annu. Rev. Environ. Resour. 2022, 47, 31–63. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Lucini, L.; Aromolo, R.; Martinelli, E.; Souto, E.; Santini, A.; Pignatti, G. Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life 2021, 11, 970. [Google Scholar] [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-Processed Foods and the Nutrition Transition: Global, Regional and National Trends, Food Systems Transformations and Political Economy Drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Neira, C.; Godinho, R.; Rincón, F.; Mardones, R.; Pedroso, J. Consequences of the COVID-19 Syndemic for Nutritional Health: A Systematic Review. Nutrients 2021, 13, 1168. [Google Scholar] [CrossRef]
- Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Sobczyk, K.; Grot, M.; Kowalski, O.; Staśkiewicz, W. Nutrition and Mental Health: A Review of Current Knowledge about the Impact of Diet on Mental Health. Front. Nutr. 2022, 9, 943998. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Coque, T.; Cantón, R.; Pérez-Cobas, A.; Fernández-de-Bobadilla, M.; Baquero, F. Antimicrobial Resistance in the Global Health Network: Known Unknowns and Challenges for Efficient Responses in the 21st Century. Microorganisms 2023, 11, 32. [Google Scholar] [CrossRef]
- Mohammed, A.; Abdul-Hameed, Z.; Alotaibi, M.; Bawakid, N.; Sobahi, T.; Abdel-Lateff, A.; Alarif, W. Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (Mias) from Six Apocynaceae Genera. Molecules 2021, 26, 488. [Google Scholar] [CrossRef]
- Chelaghma, W.; Loucif, L.; Bendahou, M.; Rolain, J. Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Microorganisms 2021, 9, 2534. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents Against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef]
- García-Mahecha, M.; Soto-Valdez, H.; Carvajal-Millan, E.; Madera-Santana, T.; Lomelí-Ramírez, M.; Colín-Chávez, C. Bioactive Compounds in Extracts from the Agro-Industrial Waste of Mango. Molecules 2023, 28, 458. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Méndez, G.; Moya, M.; Martínez, A.; Viera, W.; Heredia-Moya, J.; Beltrán, E.; Vera, E.; Villacís, M. Functional and Antioxidant Evaluation of Two Ecotypes of Control and Grafted Tree Tomato (Solanum betaceum) at Different Altitudes. Foods 2023, 12, 30. [Google Scholar] [CrossRef]
- Kumoro, A.; Alhanif, M.; Wardhani, D. A Critical Review on Tropical Fruits Seeds as Prospective Sources of Nutritional and Bioactive Compounds for Functional Foods Development: A Case of Indonesian Exotic Fruits. Int. J. Food Sci. 2020, 2020, 4051475. [Google Scholar] [CrossRef] [PubMed]
- Lara, M.; Bonghi, C.; Famiani, F.; Vizzotto, G.; Walker, R.; Drincovich, M. Stone Fruit as Biofactories of Phytochemicals with Potential Roles in Human Nutrition and Health. Front. Plant Sci. 2020, 11, 562252. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Villacís, M.; Rivera, J.; Neto, M.; Méndez, G.; Heredia-Moya, J.; Vera, E. Evaluation of Bioactive Compounds and Antioxidant Activity in 51 Minor Tropical Fruits of Ecuador. Foods 2023, 12, 4439. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Rodríguez, E.; Heredia-Moya, J.; Méndez, G. Functional and Antimicrobial Evaluation of Artocarpus Heterophyllus (Jackfruit) Fruit and Leaves at Different Ripening Stages. In Emerging Research in Intelligent Systems; Springer: Cham, Switzerland, 2024; Volume 2, ISBN 978-3-031-87701-8. [Google Scholar]
- Nirmal, N.; Khanashyam, A.; Mundanat, A.; Shah, K.; Babu, K.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.; Chicué, A.; Murillo, E.; Méndez, J. Bioprospecting of Lacmellea Standleyi Fruits (Lechemiel). Rev. Cuba. Plantas Med. 2013, 18, 412–430. [Google Scholar]
- Coyago-Cruz, E.; Méndez, G.; Escobar-Quiñonez, R.; Cerna, M.; Heredia-Moya, J. Lacmellea Oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices. Antioxidants 2025, 14, 23. [Google Scholar] [CrossRef]
- WFO The World Flora Online. Available online: https://wfoplantlist.org/plant-list (accessed on 14 June 2024).
- US-ISO-2173:2003; Fruit and Vegetable Products—Determination of Soluble Solids—Refractometric Method. ISO: Geneva, Switzerland, 2009.
- Berghof-GmbH. Food, Pharma, Cosmetic Microwave Digestion of Spinach; Berghof-GmbH: Eningen unter Achalm, Germany, 2023; Volume 1, p. 72800. [Google Scholar]
- Coyago-cruz, E.; Zúñiga-miranda, J.; Méndez, G.; Guachamin, A.; Escobar-Quiñonez, R.; Barba-Ostria, C.; Heredia-Moya, J. Relationship between Bioactive Compounds and Biological Activities (Antioxidant, Antimicrobial, Antihaemolytic) of ‘Colcas’ Fruits at Different Stages of Maturity. Antioxidants 2025, 14, 1105. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). M02 Performance Standards for Antimicrobial Disk Suspectibility Tests, Approved Standard-Eleventh Edition. Clinical and Laboratory Standards Institue. Clin. Lab. Stand. Inst. 2018, 38, 2162–2914. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Rex, J.H. CLSI M44-A2 Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. Approved Guideline—Second Edition. Clin. Lab. Stand. Inst. 2009, 29, 29. [Google Scholar]
- Peters, M.; Ahlebæk, M.; Frandsen, M.; Jørgensen, B.; Jessen, C.; Carlsen, A.; Andersen, M.; Huang, W.; Eriksen, R. Investigating the Applicability of a Snapshot Computed Tomography Imaging Spectrometer for the Prediction of °Brix and PH of Grapes. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2025, 336, 126017. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Reddy, S.; Rao, B. Physico-Chemical Properties of Juice in Different Wine Varieties of Grape (Vitis vinifera L.). Int. J. Plant Soil Sci. 2022, 34, 64–75. [Google Scholar] [CrossRef]
- Hay, F.; Rezaei, S.; Buitink, J. Seed Moisture Isotherms, Sorption Models, and Longevity. Front. Plant Sci. 2022, 13, 891913. [Google Scholar] [CrossRef]
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V.; et al. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.). Molecules 2011, 16, 74–91. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Li, Z.; Peng, M.; Deng, W. Metabolism and Regulation of Ascorbic Acid in Fruits. Plants 2022, 11, 1602. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022, 11, 3408. [Google Scholar] [CrossRef] [PubMed]
- Batista-Silva, W.; Nascimento, V.; Medeiros, D.; Nunes-Nesi, A.; Ribeiro, D.; Zsögön, A.; Araújo, W. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef]
- Famiani, F.; Bonghi, C.; Chen, Z.; Drincovich, M.; Farinelli, D.; Lara, M.; Proietti, S.; Rosati, A.; Vizzotto, G.; Walker, R. Stone Fruits: Growth and Nitrogen and Organic Acid Metabolism in the Fruits and Seeds—A Review. Front. Plant Sci. 2020, 11, 572601. [Google Scholar] [CrossRef]
- Ma, W.-F.; Li, Y.-B.; Nai, G.-J.; Liang, G.-P.; Ma, Z.-H.; Chen, B.-H.; Mao, J. Changes and Response Mechanism of Sugar and Organic Acids in Fruits Under Water Deficit Stress. PeerJ 2022, 10, e13691. [Google Scholar] [CrossRef]
- González-Peña, M.; Ortega-Regules, A.; de Parrodi, C.; Lozada-Ramirez, D. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids—A Review. Plants 2023, 12, 313. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, X.; Hu, Y.; Gu, Q.; Chen, W.; Li, J.; Guo, X.; Liu, Y. Evaluation of Carotenoids Accumulation and Biosynthesis in Two Genotypes of Pomelo (Citrus maxima) During Early Fruit Development. Molecules 2021, 26, 204–206. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Long, T.; Wang, S.; Yang, J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022, 12, 871. [Google Scholar] [CrossRef]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef]
- Ranggaini, D.; Halim, J.; Tjoe, A. Aktivitas Antioksidan Dengan Metode DPPH Dan ABTS Terhadap Ekstrak Etanol Daun Amaranthus hybridus L. J. Kedokt. Gigiterpadu 2024, 6, 65–69. [Google Scholar]
- Zhang, G.; Yang, Y.; Memon, F.; Hao, K.; Xu, B.; Wang, S.; Wang, Y.; Wu, E.; Chen, X.; Xiong, W.; et al. A Natural Antimicrobial Agent: Analysis of Antibacterial Effect and Mechanism of Compound Phenolic Acid on Escherichia Coli Based on Tandem Mass Tag Proteomics. Front. Microbiol. 2021, 12, 738896. [Google Scholar] [CrossRef] [PubMed]
- Clifton, L.; Skoda, M.; Le, A.; Ciesielski, F.; Kuzmenko, I.; Holt, S.; Lakey, J. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models. Langmuir 2015, 31, 404–412. [Google Scholar] [CrossRef]
- Burel, C.; Kala, A.; Purevdorj-Gage, L. Impact of PH on Citric Acid Antimicrobial Activity Against Gram-Negative Bacteria. Lett. Appl. Microbiol. 2020, 72, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Zimmer, K.; Macedo, A.; Trentin, D. Plant Natural Products Targeting Bacterial Virulence Factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.-S.; Zeng, X.-A.; Xu, X.-M.; Brennan, C. Membrane and Denomic DNA Dual-Targeting of Citrus Flavonoid Naringenin Against Staphylococcus Aureus. Integr. Biol. 2017, 10, 820–829. [Google Scholar] [CrossRef]
- Ude, J.; Tripathi, V.; Buyck, J.; Söderholm, S.; Cunrath, O.; Fanous, J.; Claudi, B.; Egli, A.; Schleberger, C.; Hiller, S.; et al. Outer Membrane Permeability: Antimicrobials and Diverse Nutrients Bypass Porins in Pseudomonas Aeruginosa. Proc. Natl. Acad. Sci. USA 2021, 118, e2107644118. [Google Scholar] [CrossRef]
- Leveque, L.; Drockenmuller, E.; Laktineh, I.; Alcouffe, P.; David, L.; Sudre, G.; Serghei, A. Nanotubes of Pristine Poly (3-Hexylthiophene) with Modulable Conductive Properties: The Interplay Between Confinement-Induced Orientation and Interfacial Effects. R. Soc. Chem. 2025, 21, 7144–7154. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Multidiscip. Digit. Publ. Inst. 2022, 27, 2494. [Google Scholar] [CrossRef] [PubMed]
- Júnior, S.; Santos, J.; Campos, L.; Pereira, M.; Magalhães, N.; Cavalcanti, I. Antibacterial and Antibiofilm Activities of Quercetin Against Clinical Isolates of Staphyloccocus Aureus and Staphylococcus Saprophyticus with Resistance Profile. Int. J. Environ. Agric. Biotechnol. 2018, 3, 1948–1958. [Google Scholar] [CrossRef]
- Hou, J.; Wang, H.; Pan, K.; Wu, L.; Zhao, B. Enhanced Antibacterial Photodynamic Therapy with Qu/Ce6@ZIF-8 Nanoplatform for Staphylococcus Aureus Control in Food Preservation. Food Biosci. 2024, 62, 105037. [Google Scholar] [CrossRef]
- Francisconi, R.; Ferreira, E.; Marques, M.; Fontana, A.; Lombardi, T.; Correira, M.; Palomari, D. Effect of Melaleuca Alternifolia and Its Components on Candida Albicans and Candida Tropicalis. J. US-China Med. Sci. 2015, 12, 91–98. [Google Scholar] [CrossRef]
- Duda-Madej, A.; Stecko, J.; Sobieraj, J.; Szymańska, N.; Kozłowska, J. Naringenin and Its Derivatives—Health-Promoting Phytobiotic Against Resistant Bacteria and Fungi in Humans. Antibiotics 2022, 11, 1628. [Google Scholar] [CrossRef]
- Basílio, A.; Simas, M.; Araújo, V.; Cristo, O.; De-Barros, G.; Pohlit, A. Screening of Amazonian Plants from the Adolpho Ducke Forest Reserve, Manaus, State of Amazonas, Brazil, for Antimicrobial Activity. Mem. Inst. Oswaldo Cruz 2008, 103, 31–38. [Google Scholar] [CrossRef]
- Gonçalves, B.; Duarte, N.; Ramalhete, C.; Barbosa, F.; Madureira, A.; Ferreira, M. Monoterpene Indole Alkaloids with Anticancer Activity from Tabernaemontana Species. Phytochem. Rev. 2025, 24, 2271–2307. [Google Scholar] [CrossRef]
- Dhamdhere, A.; Dhalwade, M. A Detail Review: On Vinca Plant (Catharanthus roseus). Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5, 743–748. [Google Scholar] [CrossRef]
- Sharma, P.; Singla, N.; Kaur, R.; Bhardwaj, U. A Review on Phytochemical Constituents and Pharmacological Properties of Catharanthus roseus (L.) G. Don. J. Med. Plants Stud. 2024, 12, 131–156. [Google Scholar] [CrossRef]
- He, J.; Zhang, H. Research Progress on the Anti-Tumor Effect of Naringin. Front. Pharmacol. 2023, 14, 1217001. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, O.; González-Torres, A.; Álvarez-Salas, L.; Hernández-Sánchez, H.; García-Pérez, B.; Thompson-Bonilla, M.; Jaramillo-Flores, M. Effect of Naringenin and Its Combination with Cisplatin in Cell Death, Proliferation and Invasion of Cervical Cancer Spheroids. RSC Adv. 2020, 11, 129–141. [Google Scholar] [CrossRef]
- Guo, M.; Zeng, J.; Sun, Z.; Wu, X.; Hu, Z. Research Progress on Quercetin’s Biological Activity and Structural Modification Based on Its Antitumor Effects. ChemistrySelect 2023, 8, e202303167. [Google Scholar] [CrossRef]
- Icard, P.; Coquerel, A.; Wu, Z.; Gligorov, J.; Fuks, D.; Fournel, L.; Lincet, H.; Simula, L. Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int. J. Mol. Sci. 2021, 22, 6587. [Google Scholar] [CrossRef]
- Oteiza, P.; Erlejman, A.; Verstraeten, S.; Keen, C.; Fraga, C. Flavonoid-Membrane Interactions: A Protective Role of Flavonoids at the Membrane Surface? Clin. Dev. Immunol. 2005, 12, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Byrem, T.; Nair, M.; Strasburg, G. Modulation of Liposomal Membrane Fluidity by Flavonoids and Isoflavonoids. Arch. Biochem. Biophys. 2000, 373, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Gebicka, L.; Banasiak, E. Toxicology In Vitro Hypochlorous Acid-Induced Heme Damage of Hemoglobin and Its Inhibition by Flavonoids. Toxicol. Vitr. 2012, 26, 924–929. [Google Scholar] [CrossRef]
- Asgary, S.; Naderi, G.; Askari, N. Protective Effect of Flavonoids against Red Blood Cell Hemolysis by Free Radicals. Exp. Cardiol. 2005, 10, 88–90. [Google Scholar]
- Tomasz, R.; Girych, M.; Bunker, A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14, 1062. [Google Scholar] [CrossRef] [PubMed]
- Cejas, J.P.; Rosa, A.S.; Nazareno, M.A.; Disalvo, E.A.; Frias, M.A. Interaction of Chlorogenic Acid with Model Lipid Membranes and Its Influence on Antiradical Activity. BBA-Biomembr. 2021, 1863, 183484. [Google Scholar] [CrossRef] [PubMed]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Benítez-González, A.M.; Stinco, C.M.; Meléndez-Martínez, A.J. Antioxidants (Carotenoids and Phenolics) Profile of Cherry Tomatoes as Influenced by Deficit Irrigation, Ripening and Cluster. Food Chem. 2018, 240, 870–884. [Google Scholar] [CrossRef]
Pulp | Peel | Seed | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maturity | M0% | M50% | M80% | M100% | M0% | M50% | M80% | M100% | M0% | M50% | M80% | M100% | AM0 | AM50 | AM80 | AM100 |
Weight (g) | 14.6 ± 3.5 a | 16.9 ± 4.8 a | 15.4 ± 2.2 a | 12.5 ± 0.7 b | 8.7 ± 2.1 a | 2.8 + 0.9 c | 2.9 + 0.7 c | 3.4 + 0.6 b | 5.8 ± 1.4 a | 0.7 + 0.1 c | 0.6 + 0.1 c | 1.1 + 0.6 b | ** | ns | *** | *** |
pH | 5.8 ± 0.1 a | 2.6 ± 0.1 b | 2.4 ± 0.1 c | 2.4 ± 0.0 c | 6.0 ± 0.0 a | 3.0 ± 0.0 c | 3.0 ± 0.0 c | 3.5 ± 0.0 b | 5.8 ± 0.1 ab | 6.0 ± 0.0 a | 5.5 ± 0.0 b | 5.0 ± 0.0 b | ns | *** | *** | *** |
SS (°Brix) | 2.0 ± 0.0 c | 16.9 ± 1.0 b | 17.5 ± 1.0 ab | 18.6 ± 0.4 a | 2.0 ± 0.0 a | 2.0 ± 0.0 a | 2.1 ± 0.1 a | 1.7 ± 0.3 b | 2.0 ± 0.0 a | 1.0 ± 0.0 b | 0.1 ± 0.0 c | 1.0 ± 0.1 b | ns | *** | *** | *** |
TA (%) | 0.2 ± 0.0 c | 2.3 ± 0.1 b | 2.8 ± 0.1 a | 2.7 ± 0.1 a | 0.1 ± 0.0 d | 2.1 ± 0.1 a | 1.7 ± 0.1 b | 1.2 ± 0.1 c | 0.2 ± 0.0 b | 0.6 ± 0.0 a | 0.1 ± 0.0 c | 0.1 ± 0.0 c | ns | *** | *** | *** |
Humidity (%) | 75.9 ± 3.8 b | 81.3 ± 2.5 a | 75.7 ± 1.1 b | 77.2 ± 0.2 ab | 75.2 ± 0.5 a | 66.2 ± 6.5 b | 68.6 ± 2.5 b | 75.6 ± 0.2 a | 75.9 ± 3.8 a | 61.5 ± 1.1 b | 54.7 ± 4.9 d | 58.1 ± 0.6 c | ns | ** | *** | *** |
Ash (%) | 0.7 ± 0.0 b | 0.7 ± 0.1 b | 0.8 ± 0.2 b | 1.1 ± 0.3 a | 0.5 ± 0.1 c | 1.4 ± 0.5 a | 1.1 ± 0.1 b | 0.9 ± 0.1 b | 0.7 ± 0.0 ab | 0.8 ± 0.1 a | 0.9 ± 0.1 a | 0.6 ± 0.4 b | * | ns | *** | ns |
Mineral (mg/100 g DW) | ||||||||||||||||
Ca | 151.0 ± 34.2 b | 339.3 ± 9.2 a | 51.5 ± 8.9 c | 122.6 ± 14.4 b | 404.4 ± 4.2 a | 129.3 ± 1.9 c | 113.4 ± 3.6 d | 281.4 ± 35.7 b | 185.4 ± 80.5 a | 52.9 ± 0.2 d | 57.9 ± 12.2 c | 84.5 ± 5.8 b | *** | * | * | ** |
Fe | 12.9 ± 0.5 | lnd | lnd | lnd | 5.3 ± 0.9 a | 3.0 ± 0.1 b | 2.5 ± 0.2 c | 0.1 ± 0.0 d | 10.9 ± 2.3 | lnd | lnd | lnd | ** | |||
K | 535.2 ± 38.0 d | 713.2 ± 12.8 a | 635.3 ± 14.6 b | 609.5 ± 8.0 c | 449.5 ± 42.1 d | 568.4 ± 18.1 c | 661.1 ± 19.0 b | 824.9 ± 97.0 a | 411.8 ± 20.7 a | 103.1 ± 0.4 d | 284.5 ± 5.0 c | 340.6 ± 37.2 b | ** | *** | *** | *** |
Mg | 543.7 ± 27.5 a | 84.2 ± 18.5 b | 37.8 ± 1.7 d | 44.8 ± 0.9 c | 523.6 ± 6.5 a | 60.8 ± 1.0 c | 65.9 ± 6.3 b | 33.0 ± 6.8 d | 752.7 ± 35.8 a | 65.9 ± 11.3 c | 64.5 ± 2.4 c | 74.8 ± 2.1 b | ** | ns | *** | *** |
Na | 59.5 ± 1.0 a | 7.4 ± 0.0 c | 10.4 ± 1.3 b | 7.7 ± 1.6 c | 56.6 ± 8.4 a | 6.5 ± 0.2 d | 8.0 ± 1.5 c | 11.5 ± 0.4 b | 50.3 ± 1.2 a | 0.6 ± 0.0 d | 8.1 ± 0.7 c | 10.3 ± 2.8 b | * | *** | ns | ns |
Pulp | Peel | Seed | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M0% | M50% | M80% | M100% | M0% | M50% | M80% | M100% | M0% | M50% | M80% | M100% | AM0 | AM50 | AM80 | AM100 | |
Vitamin C (mg/100 g DW) | 1.7 ± 0.6 c | 2.6 ± 0.3 b | 1.7 ± 0.0 c | 3.0 ± 0.15 a | 1.2 ± 0.5 a | 0.6 ± 0.0 b | 1.1 ± 0.0 a | 1.0 ± 0.0 a | 1.7 ± 0.5 a | 0.9 ± 0.0 b | 0.6 ± 0.0 c | 0.3 ± 0.0 d | * | *** | *** | *** |
Citric acid | 269.8 ± 6.8 d | 1595.8 ± 32.8 c | 1873.4 ± 17.8 a | 1667.6 ± 76.4 b | 85.0 ± 2.7 d | 630.9 ± 27.6 c | 988.4 ± 7.7 b | 1073.8 ± 12.1 a | 309.5 ± 0.0 a | 227.3 ± 30.2 c | 187.5 ± 6.8 d | 282.4 ± 5.1 b | *** | *** | *** | *** |
Malic acid | 3090.8 ± 4.3 a | 26.0 ± 1.2 c | 18.6 ± 9.6 d | 53.6 ± 3.3 b | 2912.0 ± 2.3 a | 35.8 ± 1.4 b | 23.0 ± 4.6 c | 10.0 ± 0.5 d | 2752.0 ± 0.1 a | 63.9 ± 5.1 d | 131.9 ± 26.7 c | 195.8 ± 26.5 b | ** | ** | * | ** |
Tartaric acid | 587.0 ± 4.3 a | 70.2 ± 0.8 c | 94.6 ± 28.8 b | 92.4 ± 11.9 b | 872.0 ± 2.1 a | 30.5 ± 2.3 d | 64.6 ± 0.8 c | 72.1 ± 7.5 b | 451.0 ± 0.1 a | 13.7 ± 1.2 d | 15.4 ± 0.1 c | 22.1 ± 1.3 b | *** | *** | * | ** |
Total | 3947.6 ± 9.3 a | 1689.0 ± 32.4 d | 1986.6 ± 20.6 b | 1813.5 ± 67.9 c | 3869.1 ± 4.9 a | 697.2 ± 31.3 d | 1076.0 ± 11.5 c | 1155.9 ± 12.9 b | 3512.5 ± 0.0 a | 304.9 ± 36.5 c | 334.9 ± 33.3 c | 500.3 ± 32.9 b | * | *** | *** | *** |
α-Carotene | 5.8 ± 0.2 c | 8.8 ± 0.9 b | 14.6 ± 1.2 a | 0.9 ± 0.1 d | 6.7 ± 0.7 a | 1.2 ± 0.3 c | 3.3 ± 0.3 b | 11.2 ± 2.7 a | 3.3 ± 0.0 b | 1.1 ± 0.3 c | 0.4 ± 0.0 d | *** | ** | ** | *** | |
β-Carotene | 3.4 ± 0.5 c | 11.1 ± 1.5 b | 14.7 ± 0.1 a | 0.8 ± 0.1 d | 35.0 ± 0.7 a | 8.5 ± 0.7 c | 11.3 ± 0.7 b | 2.9 ± 0.4 a | 1.2 ± 0.1 b | 0.5 ± 0.0 c | *** | ** | *** | |||
Lutein | 0.1 ± 0.0 c | 0.3 ± 0.0 a | 0.2 ± 0.0 b | 1.4 ± 0.1 b | 2.7 ± 0.0 a | 0.3 ± 0.0 c | 0.3 ± 0.0 c | 3.4 ± 0.8 a | 0.7 ± 0.0 b | 0.3 ± 0.0 c | 0.1 ± 0.0 d | *** | *** | ns | ns | |
Zeinoxanthin | 0.1 ± 0.0 b | 0.2 ± 0.0 a | 0.2 ± 0.0 a | 0.1 ± 0.0 | 0.1 ± 0.0 | |||||||||||
Total carotenoids | 0.1 ± 0.0 d | 9.4 ± 0.7 c | 20.5 ± 0.6 b | 29.8 ± 1.3 a | 5.0 ± 0.5 d | 44.4 ± 0.0 a | 10.1 ± 1.0 c | 14.8 ± 0.4 b | 15.8 ± 3.1 a | 7.0 ± 0.4 b | 2.7 ± 0.5 c | 1.0 ± 0.0 d | *** | *** | *** | *** |
Chlorophyll b (mg/100 g DW) | 12.5 ± 0.1 a | 3.8 ± 0.0 b | 0.7 ± 0.1 c | |||||||||||||
Galic acid | 7.6 ± 1.4 d | 21.7 ± 2.5 b | 16.4 + 1.5 c | 50.6 + 5.7 a | 2.8 ± 0.3 c | 2.7 + 0.1 c | 33.5 + 3.5 b | 43.2 + 1.9 a | 9.9 ± 1.0 a | 8.3 + 0.0 b | 3.2 + 0.2 c | 7.9 + 1.8 b | ** | ** | ** | |
Syringic acid | 6.0 ± 0.2 | 6.7 ± 0.1 | 26.6 ± 3.6 a | 11.5 ± 1.4 b | 10.2 ± 0.7 b | 10.9 ± 0.6 b | ||||||||||
Chlorogenic acid | 26.9 ± 0.3 c | 155.0 ± 36.5 ab | 151.0 ± 4.9 b | 178.4 ± 33.8 a | 7.4 ± 0.8 c | 333.2 ± 14.7 a | 259.3 ± 25.4 ab | 244.0 ± 15.0 b | 66.8 ± 9.5 a | 14.3 ± 1.6 d | 24.4 ± 0.6 c | 28.7 ± 2.5 b | ** | ** | ** | |
Naringenin | 544.3 ± 57.4 a | 538.4 ± 5.3 a | 535.0 ± 82.8 a | 9945.7 ± 69.7 b | 8749.6 ± 61.8 c | 10,890.9 ± 26.8 a | ** | ** | *** | |||||||
Kampherol | 36.1 ± 1.3 | 36.3 ± 2.2 | 40.9 ± 1.3 a | 5.4 + 0.5 c | 5.5 + 0.2 c | 7.8 + 0.6 b | ||||||||||
Quercetin glucoside | 21.9 ± 1.4 | 44.6 ± 0.5 | 50.3 ± 8.7 a | 35.1 ± 2.9 b | 35.7 ± 3.0 b | 50.1 ± 6.6 a | ||||||||||
Quercetin | 271.1 ± 12.1 | 758.4 ± 26.4 | 455.6 ± 23.2 a | 67.3 ± 0.2 c | 53.6 ± 0.5 d | 79.5 ± 3.5 b | ||||||||||
Total phenolics | 369.5 ± 13.7 d | 740.7 ± 10.1 b | 705.8 ± 1.9 c | 764.0 ± 12.2 a | 856.2 ± 28.5 d | 10,281.6 ± 71.2 b | 9042.5 ± 64.6 c | 11,178.1 ± 28.5 a | 650.1 ± 22.6 a | 141.8 ± 6.6 c | 132.5 ± 3.8 d | 185.0 ± 15.6 b | *** | *** | *** | |
ABTS | 3.3 ± 0.2 a | 2.09 ± 0.4 b | 2.70 ± 0.4 ab | 3.12 ± 0.4 a | 3.2 ± 0.0 c | 6.3 ± 0.1 a | 5.8 ± 0.4 ab | 5.3 ± 0.4 b | 6.4 ± 0.1 a | 4.2 ± 0.8 b | 3.4 ± 0.3 c | 3.1 ± 0.5 c | ** | *** | *** | *** |
DPPH | 17.1 ± 1.1 b | 16.5 ± 1.2 b | 18.8 ± 0.7 b | 28.8 ± 2.8 a | 41.6 ± 1.8 c | 63.3 ± 0.7 a | 57.0 ± 2.6 b | 54.8 ± 1.3 b | 2.2 ± 0.1 d | 19.1 ± 4.2 a | 17.7 ± 0.9 b | 15.9 ± 1.4 c | *** | *** | *** | *** |
Bacteria or Fungus Strain | Minimal Inhibitory Concentration (mg/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pulp | Peel | Seeds | ||||||||||
M0% | M50% | M80% | M100% | M0% | M50% | M80% | M100% | M0% | M50% | M80% | M100% | |
E. coli ATCC 8739 | 10.4 | 10.6 | 2.7 | 5.3 | 10.7 | 5.3 | 10.9 | 5.3 | 44.3 | 5.3 | 83.3 | 41.7 |
P. aeruginosa ATCC 9027 | 83.5 | 42.3 | 21.9 | 84.0 | 42.6 | 84.0 | 43.7 | 85.0 | 88.5 | 84.2 | 83.3 | 83.3 |
S. aureus ATCC 6538P | 41.8 | 42.3 | 43.8 | 84.0 | 21.3 | 84.0 | 43.7 | 21.3 | 84.2 | 84.2 | 83.3 | 83.3 |
S. mutans ATCC 25175 | 5.2 | 2.6 | 10.9 | 21.0 | 10.7 | 21.0 | 10.9 | 5.3 | 11.1 | 5.3 | 20.8 | 83.3 |
C. albicans ATCC 1031 | 21.0 | 21.2 | 21.9 | 21.0 | 21.3 | 21.0 | 21.8 | 21.3 | 88.5 | 88.5 | 83.3 | 20.8 |
C. tropicalis ATCC 13803 | 2.6 | 10.6 | 10.9 | 5.3 | 10.7 | 5.3 | 43.7 | 10.7 | 44.3 | 42.1 | 83.3 | 20.8 |
Pulp M100% | Peel M100% | Seeds M100% | ||||
---|---|---|---|---|---|---|
IC50 | TI a | IC50 | TI a | IC50 | TI a | |
HeLa | 5.24 ± 0.70 | 0.4 | 1.51 ± 0.35 | 1.9 | NA | -- |
HCT116 | 2.76 ± 0.30 | 0.8 | 2.32 ± 1.14 | 1.2 | NA | -- |
THJ29T | 5.05 ± 0.43 | 0.4 | 4.38 ± 0.40 | 0.6 | NA | -- |
HepG2 | 4.62 ± 0.61 | 0.5 | 1.34 ± 0.13 | 2.1 | NA | -- |
NIH3T3 | 2.23 ± 0.30 | -- | 2.81 ± 0.28 | -- | NA | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyago-Cruz, E.; Zúñiga-Miranda, J.; Méndez, G.; Alomoto, M.; Vélez-Vite, S.; Barba-Ostria, C.; Gonzalez-Pastor, R.; Heredia-Moya, J. Bioactive Compounds, Antioxidant, Antimicrobial and Anticancerogenic Activity in Lacmellea edulis H. Karst., at Different Stages of Maturity. Antioxidants 2025, 14, 1232. https://doi.org/10.3390/antiox14101232
Coyago-Cruz E, Zúñiga-Miranda J, Méndez G, Alomoto M, Vélez-Vite S, Barba-Ostria C, Gonzalez-Pastor R, Heredia-Moya J. Bioactive Compounds, Antioxidant, Antimicrobial and Anticancerogenic Activity in Lacmellea edulis H. Karst., at Different Stages of Maturity. Antioxidants. 2025; 14(10):1232. https://doi.org/10.3390/antiox14101232
Chicago/Turabian StyleCoyago-Cruz, Elena, Johana Zúñiga-Miranda, Gabriela Méndez, Melany Alomoto, Steven Vélez-Vite, Carlos Barba-Ostria, Rebeca Gonzalez-Pastor, and Jorge Heredia-Moya. 2025. "Bioactive Compounds, Antioxidant, Antimicrobial and Anticancerogenic Activity in Lacmellea edulis H. Karst., at Different Stages of Maturity" Antioxidants 14, no. 10: 1232. https://doi.org/10.3390/antiox14101232
APA StyleCoyago-Cruz, E., Zúñiga-Miranda, J., Méndez, G., Alomoto, M., Vélez-Vite, S., Barba-Ostria, C., Gonzalez-Pastor, R., & Heredia-Moya, J. (2025). Bioactive Compounds, Antioxidant, Antimicrobial and Anticancerogenic Activity in Lacmellea edulis H. Karst., at Different Stages of Maturity. Antioxidants, 14(10), 1232. https://doi.org/10.3390/antiox14101232