Nicotinism vs. Glomerulopathies—Smoking as a Risk Factor for Primary Glomerulopathies
Abstract
1. Introduction
2. Methods
3. Glomerulonephritis
3.1. IgA Nephropathy
3.2. Membranous Nephropathy
3.3. Minimal Change Disease
4. Cigarette Smoking Versus the Occurrence of Primary Glomerulopathies
4.1. IgA Nephropathy
4.2. Minimal Change Disease
4.3. Membranous Nephropathy
5. Proposed Mechanisms of Cigarette-Induced Kidney Damage
5.1. Role of Oxidative Stress
5.2. Role of Inflammation and Immunity
5.3. Changes in Vasculature
6. Nicotine as a Main Compound Involved in Pathological Processes in the Kidneys
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
DN | Diabetic nephropathy |
ESRD | End-stage renal disease |
FSGS | Focal segmental glomerulosclerosis |
GBM | Glomerular basement membrane |
GN | Glomerulonephritis |
IgAN | IgA nephropathy |
MCD | Minimal change disease |
MN | Membranous nephropathy |
RAA | Renin–angiotensin–aldosterone |
ROS | Reactive oxygen species |
References
- Śniadach, J.; Kicman, A.; Michalska-Falkowska, A.; Jończyk, K.; Waszkiewicz, N. Changes in Concentration of Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 1796. [Google Scholar] [CrossRef]
- Tobacco. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 11 September 2025).
- Reitsma, M.B.; Flor, L.S.; Mullany, E.C.; Gupta, V.; Hay, S.I.; Gakidou, E. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and initiation among young people in 204 countries and territories, 1990–2019. Lancet Public Health 2021, 6, e472–e481. [Google Scholar] [CrossRef]
- Current Cigarette Smoking Among Adults in the United States. Available online: https://www.cdc.gov/tobacco/php/data-statistics/adult-data-cigarettes/index.html (accessed on 11 September 2025).
- Smoking and Tobacco. Available online: https://www.healthdata.org/research-analysis/health-topics/smoking-and-tobacco (accessed on 11 September 2025).
- Office on Smoking and Health (US). The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US). 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK44324/ (accessed on 12 September 2025).
- Halimi, J.M.; Giraudeau, B.; Vol, S.; Cacès, E.; Nivet, H.; Tichet, J. The risk of hypertension in men: Direct and indirect effects of chronic smoking. J. Hypertens. 2002, 20, 187–193. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Rallidis, L.S.; Pitsavos, C.; Stefanadis, C.; Kremastinos, D. Cigarette smoking and myocardial infarction in young men and women: A case-control study. Int. J. Cardiol. 2007, 116, 371–375. [Google Scholar] [CrossRef]
- Grines, C.L.; Topol, E.J.; O’Neill, W.W.; George, B.S.; Kereiakes, D.; Phillips, H.R.; Leimberger, J.D.; Woodlief, L.H.; Califf, R.M. Effect of cigarette smoking on outcome after thrombolytic therapy for myocardial infarction. Circulation 1995, 91, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Rahman, M.A.; Koka, S.; Boini, K.M. Mitigation of nicotine-induced podocyte injury through inhibition of thioredoxin interacting protein. Biomed. Pharmacother. 2025, 187, 118110. [Google Scholar] [CrossRef]
- Orth, S.R. Effects of smoking on systemic and intrarenal hemodynamics: Influence on renal function. J. Am. Soc. Nephrol. 2004, 15, S58–S63. [Google Scholar] [CrossRef] [PubMed]
- Benck, U.; Clorius, J.H.; Zuna, I.; Ritz, E. Renal hemodynamic changes during smoking: Effects of adrenoreceptor blockade. Eur. J. Clin. Investig. 1999, 29, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Orth, S.R.; Stöckmann, A.; Conradt, C.; Ritz, E.; Ferro, M.; Kreusser, W.; Piccoli, G.; Rambausek, M.; Roccatello, D.; Schäfer, K.; et al. Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney Int. 1998, 54, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Kent, B.D.; Eltayeb, E.E.; Woodman, A.; Mutwali, A.; Nguyen, H.T.; Stack, A.G. The impact of chronic obstructive pulmonary disease and smoking on mortality and kidney transplantation in end-stage kidney disease. Am. J. Nephrol. 2012, 36, 287–295. [Google Scholar] [CrossRef]
- Yacoub, R.; Habib, H.; Lahdo, A.; Al Ali, R.; Varjabedian, L.; Atalla, G.; Kassis Akl, N.; Aldakheel, S.; Alahdab, S.; Albitar, S. Association between smoking and chronic kidney disease: A case control study. BMC Public Health 2010, 10, 731. [Google Scholar] [CrossRef]
- Pijanowska, M.; Zajaczkowska, M. Bierne palenie tytoniu a wyniki 24-godzinnego pomiaru cisnienia tqtniczego u zdrowych dzieci [Passive smoking and patterns of 24-hour ambulatory blood pressure in healthy children]. Pol. Merkur. Lek. Organ. Pol. Tow. Lek. 2004, 16, 320–322. [Google Scholar]
- Omoloja, A.; Chand, D.; Greenbaum, L.; Wilson, A.; Bastian, V.; Ferris, M.; Bernert, J.; Stolfi, A.; Patel, H. Cigarette smoking and second-hand smoking exposure in adolescents with chronic kidney disease: A study from the Midwest Pediatric Nephrology Consortium. Nephrol. Dial. Transplant. 2011, 26, 908–913. [Google Scholar] [CrossRef]
- Jaimes, E.A.; Tian, R.X.; Raij, L. Nicotine: The link between cigarette smoking and the progression of renal injury? Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H76–H82. [Google Scholar] [CrossRef]
- Salonen, J.T.; Salonen, R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation 1993, 87, II56–II65. [Google Scholar] [PubMed]
- Passarelli, M.N.; Newcomb, P.A.; Hampton, J.M.; Trentham-Dietz, A.; Titus, L.J.; Egan, K.M.; Baron, J.A.; Willett, W.C. Cigarette Smoking Before and After Breast Cancer Diagnosis: Mortality From Breast Cancer and Smoking-Related Diseases. J. Clin. Oncol. 2016, 34, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.J.; Newton, C.C.; Carter, B.D.; Feskanich, D.; Freedman, N.D.; Prentice, R.L.; Flanders, W.D. What proportion of cancer deaths in the contemporary United States is attributable to cigarette smoking? Ann. Epidemiol. 2015, 25, 179–182.e1. [Google Scholar] [CrossRef]
- Lv, G.; Yang, M.; Gai, K.; Jia, Q.; Wang, Z.; Wang, B.; Li, X. Multiple functions of HMGB1 in cancer. Front. Oncol. 2024, 14, 1384109. [Google Scholar] [CrossRef]
- Datta, S.; Rahman, M.A.; Koka, S.; Boini, K.M. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024, 13, 1946. [Google Scholar] [CrossRef]
- Cryer, P.E.; Haymond, M.W.; Santiago, J.V.; Shah, S.D. Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events. N. Engl. J. Med. 1976, 295, 573–577. [Google Scholar] [CrossRef]
- Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993, 362, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet Lond. Engl. 2013, 382, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Altamura, S.; Pietropaoli, D.; Lombardi, F.; Del Pinto, R.; Ferri, C. An Overview of Chronic Kidney Disease Pathophysiology: The Impact of Gut Dysbiosis and Oral Disease. Biomedicines 2023, 11, 3033. [Google Scholar] [CrossRef]
- Drawz, P.E.; Beddhu, S.; Kramer, H.J.; Rakotz, M.; Rocco, M.V.; Whelton, P.K. Blood Pressure Measurement: A KDOQI Perspective. Am. J. Kidney Dis. 2020, 75, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Dykes, K.; Desale, S.; Javaid, B.; Miatlovich, K.; Kessler, C. A New Reality for Multiple Myeloma Renal Failure: US Data Report on Kidney Transplant Outcomes. Clin. Lymphoma Myeloma Leuk. 2022, 22, e314–e320. [Google Scholar] [CrossRef]
- Panwar, B.; Hanks, L.J.; Tanner, R.M.; Muntner, P.; Kramer, H.; McClellan, W.M.; Warnock, D.G.; Judd, S.E.; Gutiérrez, O.M. Obesity, metabolic health, and the risk of end-stage renal disease. Kidney Int. 2015, 87, 1216–1222. [Google Scholar] [CrossRef]
- Schmidt-Lauber, C.; Hänzelmann, S.; Schunk, S.; Petersen, E.L.; Alabdo, A.; Lindenmeyer, M.; Hausmann, F.; Kuta, P.; Renné, T.; Twerenbold, R.; et al. Kidney outcome after mild to moderate COVID-19. Nephrol. Dial. Transplant. 2023, 38, 2031–2040. [Google Scholar] [CrossRef]
- Prakash, S.; O’Hare, A.M. Interaction of aging and chronic kidney disease. Semin. Nephrol. 2009, 29, 497–503. [Google Scholar] [CrossRef]
- Ye, J.J.; Wang, S.S.; Fang, Y.; Zhang, X.J.; Hu, C.Y. Ambient air pollution exposure and risk of chronic kidney disease: A systematic review of the literature and meta-analysis. Environ. Res. 2021, 195, 110867. [Google Scholar] [CrossRef]
- Hogan, S.L.; Vupputuri, S.; Guo, X.; Cai, J.; Colindres, R.E.; Heiss, G.; Coresh, J. Association of cigarette smoking with albuminuria in the United States: The third National Health and Nutrition Examination Survey. Ren. Fail. 2007, 29, 133–142. [Google Scholar] [CrossRef]
- Wang, X.; Su, S. The hidden impact: The rate of nicotine metabolism and kidney health. Front. Endocrinol. 2024, 15, 1424068. [Google Scholar] [CrossRef]
- Jaimes, E.A.; Zhou, M.S.; Siddiqui, M.; Rezonzew, G.; Tian, R.; Seshan, S.V.; Muwonge, A.N.; Wong, N.J.; Azeloglu, E.U.; Fornoni, A.; et al. Nicotine, smoking, podocytes, and diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2021, 320, F442–F453. [Google Scholar] [CrossRef]
- Singh, G.B.; Kshirasagar, N.; Patibandla, S.; Puchchakayala, G.; Koka, S.; Boini, K.M. Nicotine instigates podocyte injury via NLRP3 inflammasomes activation. Aging 2019, 11, 12810–12821. [Google Scholar] [CrossRef]
- Lan, X.; Lederman, R.; Eng, J.M.; Shoshtari, S.S.M.; Saleem, M.A.; Malhotra, A.; Singhal, P.C. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress. PLoS ONE 2016, 11, e0167071. [Google Scholar] [CrossRef]
- Murt, A.; Berke, I.; Bruchfeld, A.; Caravaca-Fontán, F.; Floege, J.; Frangou, E.; Mirioglu, S.; Moran, S.M.; Steiger, S.; Stevens, K.I.; et al. Malignancies and glomerulonephritis: When to suspect and when to screen? Clin. Kidney J. 2025, 18, sfaf101. [Google Scholar] [CrossRef] [PubMed]
- Kazi, A.M.; Hashmi, M.F. Glomerulonephritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560644/ (accessed on 1 September 2025).
- Anders, H.J.; Kitching, A.R.; Leung, N.; Romagnani, P. Glomerulonephritis: Immunopathogenesis and immunotherapy. Nat. Rev. Immunol. 2023, 23, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Fervenza, F.C. Standardized classification and reporting of glomerulonephritis. Nephrol. Dial. Transplant. 2019, 34, 193–199. [Google Scholar] [CrossRef]
- Romagnani, P.; Kitching, A.R.; Leung, N.; Anders, H.J. The five types of glomerulonephritis classified by pathogenesis, activity and chronicity (GN-AC). Nephrol. Dial. Transplant. 2023, 38, ii3–ii10. [Google Scholar] [CrossRef]
- Ellison, B.; Cader, R.; Willcocks, L. Advances in primary glomerulonephritis. Br. J. Hosp. Med. 2024, 85, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McGrogan, A.; Franssen, C.F.; de Vries, C.S. The incidence of primary glomerulonephritis worldwide: A systematic review of the literature. Nephrol. Dial. Transplant. 2011, 26, 414–430. [Google Scholar] [CrossRef]
- Floege, J.; Amann, K. Primary glomerulonephritides. Lancet 2016, 387, 2036–2048. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Ali, A.A.; Sharif, D.A.; Almukhtar, S.E.; Abd, K.H.; Saleem, Z.S.M.; Hughson, M.D. Incidence of glomerulonephritis and non-diabetic end-stage renal disease in a developing Middle-East region near armed conflict. BMC Nephrol. 2018, 19, 257. [Google Scholar] [CrossRef]
- AlYousef, A.; AlSahow, A.; AlHelal, B.; Alqallaf, A.; Abdallah, E.; Abdellatif, M.; Nawar, H.; Elmahalawy, R. Glomerulonephritis Histopathological Pattern Change. BMC Nephrol. 2020, 21, 186. [Google Scholar] [CrossRef]
- Ihm, C.G. Hypertension in Chronic Glomerulonephritis. Electrolyte Blood Press. 2015, 13, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R. Clinical Presentation & Management of Glomerular Diseases: Hematuria, Nephritic & Nephrotic Syndrome. Mo. Med. 2011, 108, 33–36. [Google Scholar] [PubMed]
- Rout, P.; Limaiem, F.; Hashmi, M.F. IgA Nephropathy (Berger Disease). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://pubmed.ncbi.nlm.nih.gov/30855802/ (accessed on 1 September 2025).
- Ruszkowski, J.; Lisowska, K.A.; Pindel, M.; Heleniak, Z.; Dębska-Ślizień, A.; Witkowski, J.M. T cells in IgA nephropathy: Role in pathogenesis, clinical significance and potential therapeutic target. Clin. Exp. Nephrol. 2019, 23, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.C.; Haas, M.; Reich, H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 677–686. [Google Scholar] [CrossRef]
- Ronco, P.; Plaisier, E.; Debiec, H. Advances in Membranous Nephropathy. J. Clin. Med. 2021, 10, 607. [Google Scholar] [CrossRef]
- Lai, W.L.; Yeh, T.H.; Chen, P.M.; Chan, C.K.; Chiang, W.C.; Chen, Y.M.; Wu, K.D.; Tsai, T.J. Membranous nephropathy: A review on the pathogenesis, diagnosis, and treatment. J. Formos. Med. Assoc. 2015, 114, 102–111. [Google Scholar] [CrossRef]
- Ponticelli, C. Membranous Nephropathy. J. Clin. Med. 2025, 14, 761. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, J.; Fang, X.; Lin, W.; Yang, Y. Membranous nephropathy: Pathogenesis and treatments. MedComm 2024, 5, e614. [Google Scholar] [CrossRef] [PubMed]
- Keri, K.C.; Blumenthal, S.; Kulkarni, V.; Beck, L.; Chongkrairatanakul, T. Primary membranous nephropathy: Comprehensive review and historical perspective. Postgrad. Med. J. 2019, 95, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Glassock, R.J. Glomerular Diseases: Membranous Nephropathy—A Modern View. Clin. J. Am. Soc. Nephrol. 2014, 9, 609–616. [Google Scholar] [CrossRef]
- Heymann, W.; Hackel, D.B.; Harwood, S.; Wilson, S.G.; Hunter, J.L. Production of nephrotic syndrome in rats by Freund’s adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 1959, 100, 660–664. [Google Scholar] [CrossRef]
- Ali, A.; Al-Taee, H.; Kadhim, T.J. Relapsing De Novo Membranous Nephropathy. Case Rep. Transplant. 2022, 2022, 6754520. [Google Scholar] [CrossRef]
- van de Logt, A.E.; Fresquet, M.; Wetzels, J.F.; Brenchley, P. The anti-PLA2R antibody in membranous nephropathy: What we know and what remains a decade after its discovery. Kidney Int. 2019, 96, 1292–1302. [Google Scholar] [CrossRef]
- Sethi, S.; Beck, L.H.; Glassock, R.J.; Haas, M.; De Vriese, A.S.; Caza, T.N.; Hoxha, E.; Lambeau, G.; Tomas, N.M.; Madden, B.; et al. Mayo Clinic consensus report on membranous nephropathy: Proposal for a novel classification. Kidney Int. 2023, 104, 1092–1102. [Google Scholar] [CrossRef]
- Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal Change Disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 332–345. [Google Scholar] [CrossRef]
- Chugh, S.S.; Clement, L.C.; Macé, C. New Insights Into Human Minimal Change Disease: Lessons From Animal Models. Am. J. Kidney Dis. 2012, 59, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Nowicki, M. Detailed Pathophysiology of Minimal Change Disease: Insights into Podocyte Dysfunction, Immune Dysregulation, and Genetic Susceptibility. Int. J. Mol. Sci. 2024, 25, 12174. [Google Scholar] [CrossRef]
- Sewell, R.F.; Short, C.D. Minimal-change nephropathy: How does the immune system affect the glomerulus? Nephrol. Dial. Transplant. 1993, 8, 108–112. [Google Scholar]
- Elie, V.; Fakhoury, M.; Deschênes, G.; Jacqz-Aigrain, E. Physiopathology of idiopathic nephrotic syndrome: Lessons from glucocorticoids and epigenetic perspectives. Pediatr. Nephrol. 2012, 27, 1249–1256. [Google Scholar] [CrossRef]
- Mathieson, P.W. Immune dysregulation in minimal change nephropathy. Nephrol. Dial. Transplant. 2003, 18, vi26–vi29. [Google Scholar] [CrossRef]
- Hashimura, Y.; Nozu, K.; Kanegane, H.; Miyawaki, T.; Hayakawa, A.; Yoshikawa, N.; Nakanishi, K.; Takemoto, M.; Iijima, K.; Matsuo, M. Minimal change nephrotic syndrome associated with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr. Nephrol. 2009, 24, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, R.; Trivelli, A.; Magnasco, A.; Cioni, M.; Bodria, M.; Carrea, A.; Montobbio, G.; Barbano, G.; Ghiggeri, G.M. Failure of regulation results in an amplified oxidation burst by neutrophils in children with primary nephrotic syndrome. Clin. Exp. Immunol. 2010, 161, 151–158. [Google Scholar] [CrossRef]
- Moesta, A.K.; Li, X.Y.; Smyth, M.J. Targeting CD39 in cancer. Nat. Rev. Immunol. 2020, 20, 739–755. [Google Scholar] [CrossRef]
- Musante, L.; Candiano, G.; Petretto, A.; Bruschi, M.; Dimasi, N.; Caridi, G.; Pavone, B.; Del Boccio, P.; Galliano, M.; Urbani, A.; et al. Active focal segmental glomerulosclerosis is associated with massive oxidation of plasma albumin. J. Am. Soc. Nephrol. 2007, 18, 799–810. [Google Scholar] [CrossRef]
- Bruschi, M.; Grilli, S.; Candiano, G.; Fabbroni, S.; Della Ciana, L.; Petretto, A.; Santucci, L.; Urbani, A.; Gusmano, R.; Scolari, F.; et al. New iodo-acetamido cyanines for labeling cysteine thiol residues. A strategy for evaluating plasma proteins and their oxido-redox status. Proteomics 2009, 9, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Smith-Salzberg, B.; Meyers, K.E.; Glenn, D.A.; Tuttle, K.R.; Derebail, V.K.; Brady, T.M.; Gibson, K.; Smith, A.R.; O’Shaughnessy, M.M.; et al. Tobacco exposure in adults and children with proteinuric glomerulopathies: A NEPTUNE cohort study. BMC Nephrol. 2023, 24, 30. [Google Scholar] [CrossRef]
- Stengel, B.; Couchoud, C.; Cénée, S.; Hémon, D. Age, blood pressure and smoking effects on chronic renal failure in primary glomerular nephropathies. Kidney Int. 2000, 57, 2519–2526. [Google Scholar] [CrossRef]
- Wang, S.; Qin, A.; Pei, G.; Jiang, Z.; Dong, L.; Tan, J.; Tan, L.; Tang, Y.; Qin, W. Cigarette smoking may accelerate the progression of IgA nephropathy. BMC Nephrol. 2021, 22, 239. [Google Scholar] [CrossRef]
- Shinzato, Y.; Zamami, R.; Oshiro, N.; Nakamura, T.; Ishida, A.; Ohya, Y.; Kohagura, K. The Association of Smoking and Hyperuricemia with Renal Arteriolosclerosis in IgA Nephropathy. Biomedicines 2023, 11, 2053. [Google Scholar] [CrossRef] [PubMed]
- Luan, R.; Tian, G.; Zhang, H.; Shi, X.; Li, J.; Zhang, R.; Lu, X. Urinary exosomal circular RNAs of sex chromosome origin are associated with gender-related risk differences of clinicopathological features in patients with IgA nephropathy. J. Nephrol. 2022, 35, 1069–1078. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, M.; Sun, C.; Wang, H.; Tang, T.; Xia, Y.; Shao, Q.; Liu, J.; Jiang, C. Soluble Vascular Cell Adhesion Molecule-1 Is Associated With Disease Activity in Adult-Onset Minimal Change Disease. Am. J. Med. Sci. 2019, 357, 311–315. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ando, M.; Yamamoto, R.; Akiyama, S.; Kato, S.; Katsuno, T.; Kosugi, T.; Sato, W.; Tsuboi, N.; Yasuda, Y.; et al. Smoking Is a Risk Factor for the Progression of Idiopathic Membranous Nephropathy. PLoS ONE 2014, 9, e100835. [Google Scholar] [CrossRef]
- Jiang, Z.; Cai, M.; Dong, B.; Yan, Y.; Yang, B.; Wang, M.; Wang, Y.; Li, X.; Lian, L.; Li, S.; et al. Clinicopathological features of atypical membranous nephropathy with unknown etiology in adult Chinese patients. Medicine 2018, 97, e11608. [Google Scholar] [CrossRef]
- Wei, X.; Long, M.; Fan, Z.; Hou, Y.; Zhu, X.; Qu, Z.; Du, Y. Prediction of immunotherapy response in idiopathic membranous nephropathy using deep learning-pathological and clinical factors. Front. Endocrinol. 2024, 15, 1328579. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.A.H.; Johnson, W.M.; Varadharaj, S.; Lian, J.; Kearns, P.N.; El-Mahdy, M.A.; Liu, X.; Zweier, J.L. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am. J. Physiol. Heart Circ. 2011, 300, H388–H396. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.S.; Park, J.M.; Kim, J.H.; Lee, M.Y. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants 2023, 12, 1732. [Google Scholar] [CrossRef]
- Wu, J.; Shao, X.; Shen, J.; Lin, Q.; Zhu, X.; Li, S.; Li, J.; Zhou, W.; Qi, C.; Ni, Z. Downregulation of PPARα mediates FABP1 expression, contributing to IgA nephropathy by stimulating ferroptosis in human mesangial cells. Int. J. Biol. Sci. 2022, 18, 5438–5458. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, L.; Li, K.; Yang, J. The Role of NLRP3 Inflammasome in IgA Nephropathy. Medicina 2022, 59, 82. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Q.; Xu, C.; Chen, L.; Zhang, H. Mechanism of kidney injury induced by cisplatin. Toxicol. Res. 2022, 11, 385–390. [Google Scholar] [CrossRef]
- Chang, Y.-P.; Ka, S.-M.; Hsu, W.-H.; Chen, A.; Chao, L.K.; Lin, C.-C.; Hsieh, C.-C.; Chen, M.-C.; Chiu, H.-W.; Ho, C.-L.; et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J. Cell Physiol. 2015, 230, 1567–1579. [Google Scholar] [CrossRef]
- Liang, D.Y.; Cong, S.H.; Li, L.H.; Yi, Q.Q.; Tang, L.P.; Cao, L.O. Luteolin delays the progression of IgA nephropathy by attenuating inflammation, oxidative stress and reducing extracellular matrix accumulation through activating the Nrf-2/HO-1 pathway. Front. Pharmacol. 2025, 16, 1530655. [Google Scholar] [CrossRef]
- Wang, H.; Lv, D.; Jiang, S.; Hou, Q.; Zhang, L.; Li, S.; Zhu, X.; Xu, X.; Wen, J.; Zeng, C.; et al. Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction. Cell Death Dis. 2022, 13, 281. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.K.; Zhang, X.; Wu, H.L.; Gan, Y.; Ye, L.; Zheng, H.; Zhu, Z.; Liu, W.J.; Liu, H.F. ROS-ERK Pathway as Dual Mediators of Cellular Injury and Autophagy-Associated Adaptive Response in Urinary Protein-Irritated Renal Tubular Epithelial Cells. J. Diabetes Res. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Bruschi, M.; Candiano, G.; Petretto, A.; Angeletti, A.; Meroni, P.L.; Prunotto, M.; Ghiggeri, G.M. Antibodies Against Anti-Oxidant Enzymes in Autoimmune Glomerulonephritis and in Antibody-Mediated Graft Rejection. Antioxidants 2024, 13, 1519. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wang, M.; Jiang, W. New insights into pathogenesis of IgA nephropathy. Int. Urol. Nephrol. 2022, 54, 1873–1880. [Google Scholar] [CrossRef] [PubMed]
- Sanz, A.B.; Sanchez-Niño, M.D.; Ramos, A.M.; Ortiz, A. Regulated cell death pathways in kidney disease. Nat. Rev. Nephrol. 2023, 19, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, G.; Chen, N.; Lu, T.; Nie, S.; Xu, G.; Zhang, P.; Luo, Y.; Wang, Y.; Wang, X.; et al. Long-Term Exposure to Air Pollution and Increased Risk of Membranous Nephropathy in China. J. Am. Soc. Nephrol. 2016, 27, 3739–3746. [Google Scholar] [CrossRef]
- Conlon, T.M.; John-Schuster, G.; Heide, D.; Pfister, D.; Lehmann, M.; Hu, Y.; Ertüz, Z.; Lopez, M.A.; Ansari, M.; Strunz, M.; et al. Publisher Correction: Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 2021, 589, E6. [Google Scholar] [CrossRef] [PubMed]
- Schierl, M.; Patel, D.; Ding, W.; Kochhar, A.; Adhami, K.; Zhou, X.K.; Dannenberg, A.J.; Granstein, R.D. Tobacco smoke-induced immunologic changes may contribute to oral carcinogenesis. J. Investig. Med. 2014, 62, 316–323. [Google Scholar] [CrossRef]
- Jain, N.; Khullar, B.; Oswal, N.; Banoth, B.; Joshi, P.; Ravindran, B.; Panda, S.; Basak, S.; George, A.; Rath, S.; et al. TLR-mediated albuminuria needs TNFα-mediated cooperativity between TLRs present in hematopoietic tissues and CD80 present on non-hematopoietic tissues in mice. Dis. Model. Mech. 2016, 9, 707–717. [Google Scholar] [CrossRef]
- Rigothier, C.; Daculsi, R.; Lepreux, S.; Auguste, P.; Villeneuve, J.; Dewitte, A.; Doudnikoff, E.; Saleem, M.; Bourget, C.; Combe, C.; et al. CD154 Induces Matrix Metalloproteinase-9 Secretion in Human Podocytes. J. Cell Biochem. 2016, 117, 2737–2747. [Google Scholar] [CrossRef]
- Mohandes, S.; Doke, T.; Hu, H.; Mukhi, D.; Dhillon, P.; Susztak, K. Molecular pathways that drive diabetic kidney disease. J. Clin. Investig. 2023, 133, e165654. [Google Scholar] [CrossRef]
- Ushio, Y.; Akihisa, T.; Karasawa, K.; Seki, M.; Kobayashi, S.; Miyabe, Y.; Kataoka, H.; Ito, N.; Taneda, S.; Akiyama, S.; et al. PLA2R-positive membranous nephropathy in IgG4-related disease. BMC Nephrol. 2024, 25, 66. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.C.; Tung, H.Y.; Liu, C.W.; Su, C.F.; Sun, Y.S.; Chen, W.S.; Chen, M.H.; Lai, C.C.; Liao, H.T.; Yang, Y.Y.; et al. Significance of high serum IgG4 in complete or non-full-fledged IgG4-related disease—A retrospective investigation of 845 patients and its clinical relevance. Clin. Rheumatol. 2022, 41, 115–122. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Misaki, T.; Ito, S.; Naka, S.; Wato, K.; Nomura, R.; Matsumoto-Nakano, M.; Nakano, K. Title IgA Nephropathy and Oral Bacterial Species Related to Dental Caries and Periodontitis. Int. J. Mol. Sci. 2022, 23, 725. [Google Scholar] [CrossRef]
- Bedford, J.G.; Heinlein, M.; Garnham, A.L.; Nguyen, T.H.O.; Loudovaris, T.; Ge, C.; Mannering, S.I.; Elliott, M.; Tangye, S.G.; Kedzierska, K.; et al. Unresponsiveness to inhaled antigen is governed by conventional dendritic cells and overridden during infection by monocytes. Sci. Immunol. 2020, 5, eabb5439. [Google Scholar] [CrossRef] [PubMed]
- Kano, T.; Suzuki, H.; Makita, Y.; Fukao, Y.; Suzuki, Y. Nasal-associated lymphoid tissue is the major induction site for nephritogenic IgA in murine IgA nephropathy. Kidney Int. 2021, 100, 364–376. [Google Scholar] [CrossRef]
- Kawasaki, K.; Ohta, Y.; Castro, C.D.; Flajnik, M.F. The immunoglobulin J chain is an evolutionarily co-opted chemokine. Proc. Natl. Acad. Sci. USA 2024, 121, e2318995121. [Google Scholar] [CrossRef] [PubMed]
- Gentile, M.; Sanchez-Russo, L.; Riella, L.V.; Verlato, A.; Manrique, J.; Granata, S.; Fiaccadori, E.; Pesce, F.; Zaza, G.; Cravedi, P. Immune abnormalities in IgA nephropathy. Clin. Kidney J. 2023, 16, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Abidi, E.; Habeichi, N.J.; Ghali, R.; Alawasi, H.; Fakih, C.; Zibara, K.; Kobeissy, F.; Husari, A.; Booz, G.W.; et al. Gender-biased kidney damage in mice following exposure to tobacco cigarette smoke: More protection in premenopausal females. Physiol. Rep. 2020, 8, e14339. [Google Scholar] [CrossRef]
- Qian, G.; Jiang, W.; Sun, D.; Sun, Z.; Chen, A.; Fang, H.; Wang, J.; Liu, Y.; Yin, Z.; Wei, H.; et al. B-cell-derived IL-10 promotes allergic sensitization in asthma regulated by Bcl-3. Cell Mol. Immunol. 2023, 20, 1313–1327. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, H.; Hu, Y.; Dai, H.; Zhao, Q.; Zheng, Y.; Liu, W.; Rui, H.; Liu, B. B cell dysregulation and depletion therapy in primary membranous nephropathy: Prospects and potential challenges. Int. Immunopharmacol. 2024, 140, 112769. [Google Scholar] [CrossRef]
- Furuta, K.; Yoshioka, T.; Nishikaze, K.; Yoshikawa, N.; Nakamura, K.; Kaito, C. Nicotine- and tar-removed cigarette smoke extract modulates the antigen presentation function of mouse bone marrow-derived dendritic cells. Microbiol. Immunol. 2023, 67, 264–273. [Google Scholar] [CrossRef]
- Omvik, P. How smoking affects blood pressure. Blood Press. 1996, 5, 71–77. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef]
- Yuan, Y.M.; Luo, L.; Guo, Z.; Yang, M.; Ye, R.S.; Luo, C. Activation of renin–angiotensin–aldosterone system (RAAS) in the lung of smoking-induced pulmonary arterial hypertension (PAH) rats. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 249–253. [Google Scholar] [CrossRef]
- Jain, G.; Jaimes, E.A. Nicotine signaling and progression of chronic kidney disease in smokers. Biochem. Pharmacol. 2013, 86, 1215–1223. [Google Scholar] [CrossRef]
- Briganti, E.M.; Branley, P.; Chadban, S.J.; Shaw, J.E.; McNeil, J.J.; Welborn, T.A.; Atkins, R.C. Smoking is associated with renal impairment and proteinuria in the normal population: The AusDiab kidney study. Australian Diabetes, Obesity and Lifestyle Study. Am. J. Kidney Dis. 2002, 40, 704–712. [Google Scholar] [CrossRef]
- Chase, H.P.; Garg, S.K.; Marshall, G.; Berg, C.L.; Harris, S.; Jackson, W.E.; Hamman, R.E. Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA 1991, 265, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Kohagura, K.; Zamami, R.; Oshiro, N.; Shinzato, Y.; Uesugi, N. Heterogeneous afferent arteriolopathy: A key concept for understanding blood pressure-dependent renal damage. Hypertens. Res. 2024, 47, 3383–3396. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Burbank, A.D. Cardiovascular Toxicity of Nicotine: Implications for Electronic Cigarette Use. Trends Cardiovasc. Med. 2016, 26, 515–523. [Google Scholar] [CrossRef]
- Schweitzer, K.S.; Chen, S.X.; Law, S.; Van Demark, M.; Poirier, C.; Justice, M.J.; Hubbard, W.C.; Kim, E.S.; Lai, X.; Wang, M.; et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 309, L175–L187. [Google Scholar] [CrossRef]
- West, R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol. Health. 2017, 32, 1018–1036. [Google Scholar] [CrossRef]
- Noborisaka, Y. Smoking and chronic kidney disease in healthy populations. Nephrourol. Mon. 2013, 5, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Mann, J.F.; Pogue, J.; Dinneen, S.F.; Hallé, J.P.; Hoogwerf, B.; Joyce, C.; Rashkow, A.; Young, J.; Zinman, B.; et al. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. Diabetes Care 2000, 23, B35–B39. [Google Scholar]
- Hallan, S.I.; Orth, S.R. Smoking is a risk factor in the progression to kidney failure. Kidney Int. 2011, 80, 516–523. [Google Scholar] [CrossRef]
- Hua, P.; Feng, W.; Ji, S.; Raij, L.; Jaimes, E.A. Nicotine worsens the severity of nephropathy in diabetic mice: Implications for the progression of kidney disease in smokers. Am. J. Physiol. Ren. Physiol. 2010, 299, F732–F739. [Google Scholar] [CrossRef]
- Gorin, Y.; Block, K.; Hernandez, J.; Bhandari, B.; Wagner, B.; Barnes, J.L.; Abboud, H.E. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem. 2005, 280, 39616–39626. [Google Scholar] [CrossRef]
- Jaimes, E.A.; Tian, R.X.; Joshi, M.S.; Raij, L. Nicotine Augments Glomerular Injury in a Rat Model of Acute Nephritis. Am. J. Nephrol. 2009, 29, 319–326. [Google Scholar] [CrossRef]
- Arany, I.; Grifoni, S.; Clark, J.S.; Csongradi, E.; Maric, C.; Juncos, L.A. Chronic nicotine exposure exacerbates acute renal ischemic injury. Am. J. Physiol. Ren. Physiol. 2011, 301, F125–F133. [Google Scholar] [CrossRef]
- Arany, I.; Reed, D.K.; Grifoni, S.C.; Chandrashekar, K.; Booz, G.W.; Juncos, L.A. A novel U-STAT3-dependent mechanism mediates the deleterious effects of chronic nicotine exposure on renal injury. Am. J. Physiol. Ren. Physiol. 2012, 302, F722–F729. [Google Scholar] [CrossRef] [PubMed]
- Rezonzew, G.; Chumley, P.; Feng, W.; Hua, P.; Siegal, G.P.; Jaimes, E.A. Nicotine exposure and the progression of chronic kidney disease: Role of the α7-nicotinic acetylcholine receptor. Am. J. Physiol. Ren. Physiol. 2012, 303, F304–F312. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, E.X.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef]
- Medapalli, R.K.; He, J.C.; Klotman, P.E. HIV-associated nephropathy: Pathogenesis. Curr. Opin. Nephrol. Hypertens. 2011, 20, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Zarzecki, M.; Adamczak, M.; Wystrychowski, A.; Gross, M.L.; Ritz, E.; Więcek, A. Exposure of pregnant rats to cigarette-smoke condensate causes glomerular abnormalities in offspring. Kidney Blood Press. Res. 2012, 36, 162–171. [Google Scholar] [CrossRef]
- Susztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006, 55, 225–233. [Google Scholar] [CrossRef]
- Haslem, L.; Hays, J.M.; Hays, F.A. p66Shc in Cardiovascular Pathology. Cells 2022, 11, 1855. [Google Scholar] [CrossRef]
- Arany, I.; Hall, S.; Reed, D.K.; Reed, C.T.; Dixit, M. Nicotine Enhances High-Fat Diet-Induced Oxidative Stress in the Kidney. Nicotine Tob. Res. 2016, 18, 1628–1634. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H.; Qi, W.; Zhang, Y.; Li, J.; Li, Z.; Lin, Y.; Bai, X.; Liu, X.; Chen, X.; et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018, 9, 171. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Q.; Zhu, K.; Liu, Y.; Chen, L.; Guo, H.; Zhou, N.; Li, Y.; Shi, B. Cigarette smoke induces the pyroptosis of urothelial cells through ROS/NLRP3/caspase-1 signaling pathway. Neurourol. Urodyn. 2020, 39, 613–624. [Google Scholar] [CrossRef]
- Mayyas, F.; Alzoubi, K.H. Impact of cigarette smoking on kidney inflammation and fibrosis in diabetic rats. Inhal. Toxicol. 2019, 31, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Chaturvedi, P.; Datta, S.; Sinukumar, S.; Joshi, P.; Garg, A. Harmful effects of nicotine. Indian. J. Med. Paediatr. Oncol. 2015, 36, 24–31. [Google Scholar] [CrossRef]
- Kim, C.S.; Choi, J.S.; Joo, S.Y.; Bae, E.H.; Ma, S.K.; Lee, J.; Kim, S.W. Nicotine-Induced Apoptosis in Human Renal Proximal Tubular Epithelial Cells. PLoS ONE 2016, 11, e0152591. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Anderson, M.; Dryer, S.E. Sustained activation of N-methyl-D-aspartate receptors in podocytes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death. Mol. Pharmacol. 2012, 82, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liao, X.; Agarwal, M.K.; Barnes, L.; Auron, P.E.; Stark, G.R. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes. Dev. 2007, 21, 1396–1408. [Google Scholar] [CrossRef]
- Mercado, C.; Jaimes, E.A. Cigarette smoking as a risk factor for atherosclerosis and renal disease: Novel pathogenic insights. Curr. Hypertens. Rep. 2007, 9, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Hillege, H.L.; Janssen, W.M.; Bak, A.A.; Diercks, G.F.; Grobbee, D.E.; Crijns, H.J.; Van Gilst, W.H.; De Zeeuw, D.; De Jong, P.E. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J. Intern. Med. 2001, 249, 519–526. [Google Scholar] [CrossRef]
- Pinto-Sietsma, S.J.; Mulder, J.; Janssen, W.M.; Hillege, H.L.; de Zeeuw, D.; de Jong, P.E. Smoking is related to albuminuria and abnormal renal function in nondiabetic persons. Ann. Intern. Med. 2000, 133, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Dyck, R.F.; Naqshbandi Hayward, M.; Harris, S.B. Prevalence, determinants and co-morbidities of chronic kidney disease among First Nations adults with diabetes: Results from the CIRCLE study. BMC Nephrol. 2012, 13, 57. [Google Scholar] [CrossRef]
- Tozawa, M.; Iseki, K.; Iseki, C.; Oshiro, S.; Ikemiya, Y.; Takishita, S. Influence of smoking and obesity on the development of proteinuria. Kidney Int. 2002, 62, 956–962. [Google Scholar] [CrossRef]
- Razani-Boroujerdi, S.; Boyd, R.T.; Dávila-García, M.I.; Nandi, J.S.; Mishra, N.C.; Singh, S.P.; Pena-Philippides, J.C.; Langley, R.; Sopori, M.L. T cells express alpha7-nicotinic acetylcholine receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response. J. Immunol. 2007, 179, 2889–2898. [Google Scholar] [CrossRef]
- Charpantier, E.; Wiesner, A.; Huh, K.H.; Ogier, R.; Hoda, J.C.; Allaman, G.; Raggenbass, M.; Feuerbach, D.; Bertrand, D.; Fuhrer, C. Alpha7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and Src-family kinases. J. Neurosci. 2005, 25, 9836–9849. [Google Scholar] [CrossRef]
- Provenzano, M.; Serra, R.; Michael, A.; Bolignano, D.; Coppolino, G.; Ielapi, N.; Serraino, G.F.; Mastroroberto, P.; Locatelli, F.; De Nicola, L.; et al. Smoking habit as a risk amplifier in chronic kidney disease patients. Sci. Rep. 2021, 11, 14778. [Google Scholar] [CrossRef]
- GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: A systematic analysis from the Global Burden of Disease Study 2019. Lancet Lond Engl. 2021, 397, 2337–2360. [Google Scholar] [CrossRef] [PubMed]
- Annareddy, S.; Ghewade, B.; Jadhav, U.; Wagh, P.; Sarkar, S. Unveiling the Long-Term Lung Consequences of Smoking and Tobacco Consumption: A Narrative Review. Cureus 2024, 16, e66415. [Google Scholar] [CrossRef]
- Cornelius, M.E.; Loretan, C.G.; Jamal, A.; Davis Lynn, B.C.; Mayer, M.; Alcantara, I.C.; Neff, L. Tobacco Product Use Among Adults—United States, 2021. Morb. Mortal. Wkly. Rep. 2023, 72, 475–483. [Google Scholar] [CrossRef] [PubMed]
Smoke-Related Factor | Potential Effects | Outcome | Glomerulopathy |
---|---|---|---|
Reactive oxygen species | Oxidative stress Aberrant glycosylation of IgA1 Epithelial cells loss Augmentation of pro-inflammatory cytokines | Stiffness of central vessels Rise in arterial pressure Tubular damage | IgA nephropathy Membranous nephropathy |
Excessive antibody production | Activation of innate immunity leading to antigen presentation, and those present in dental caries | Damage to podocytes and tubular cells Damage to vessels | Minimal change disease Membranous nephropathy IgA nephropathy |
Changes in vasculature | RAA system activation Renal arteriolar hyalinosis Renal atherosclerosis Elevated plasma endothelin levels | Endothelial dysfunction Vascular smooth muscle proliferation | IgA nephropathy Membranous nephropathy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzięgiel, M.; Maciejowska, A.; Misiak, M.; Lisowska, K.A. Nicotinism vs. Glomerulopathies—Smoking as a Risk Factor for Primary Glomerulopathies. Antioxidants 2025, 14, 1233. https://doi.org/10.3390/antiox14101233
Dzięgiel M, Maciejowska A, Misiak M, Lisowska KA. Nicotinism vs. Glomerulopathies—Smoking as a Risk Factor for Primary Glomerulopathies. Antioxidants. 2025; 14(10):1233. https://doi.org/10.3390/antiox14101233
Chicago/Turabian StyleDzięgiel, Magdalena, Aleksandra Maciejowska, Marek Misiak, and Katarzyna A. Lisowska. 2025. "Nicotinism vs. Glomerulopathies—Smoking as a Risk Factor for Primary Glomerulopathies" Antioxidants 14, no. 10: 1233. https://doi.org/10.3390/antiox14101233
APA StyleDzięgiel, M., Maciejowska, A., Misiak, M., & Lisowska, K. A. (2025). Nicotinism vs. Glomerulopathies—Smoking as a Risk Factor for Primary Glomerulopathies. Antioxidants, 14(10), 1233. https://doi.org/10.3390/antiox14101233