Insight into the Antioxidant Activity of Ascorbic Acid-Containing Gelatin Nanoparticles in Simulated Chronic Wound Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Gelatin and AA Solutions
2.2.2. Preparation of GB(AA)binary Mixtures
2.2.3. Preparation of GB (AA)-GA NPs
2.2.4. Physicochemical Characterization of the GB(AA)-GA NPs
- Size and polydispersity
- 2.
- Loading Efficiency
2.2.5. In Vitro Assay with Erythrocytes
- Obtention and extraction of the erythrocytes
- 2.
- Hemolysis assay
- 3.
- Agglutination assay
- 4.
- Reversible antioxidant activity of NPs against peroxidation induced by AAPH
2.2.6. In Vitro Assay with Cell Cultures
- Cell cultures
- 2.
- Cell viability assays
- 3.
- Fluorescence microscopy
- 4.
- Protective antioxidant activity of NPs against oxidative stress induced by hydrogen peroxide
2.2.7. Statistical Analyses
3. Results
3.1. Physicochemical Characterization of GB (AA)-GA NPs
3.2. In Vitro Release from GB (AA)-GA NPs: Effect of the Alkalization of the Medium Mimicking Chronic Wounds Environment
3.3. Biological Characterization
3.3.1. Interaction with Erythrocytes
- Hemocompatibility studies with GB (AA)-GA NPs
- 2.
- Determination of the reversible capacity of GB (AA)-GA NPs against the peroxidation induced by AAPH
3.3.2. Interaction with Representative Skin Cell Lines
- Cell viability studies with GB (AA)-GA NPs
- 2.
- Protective capability of GB (AA)-GA NPs against oxidative stress induced by hydrogen peroxide
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Oliveira, X.; Fortuna, T.; de Araujo, Z.; Robeiro, A. Wound healing—A literature review. An. Bras. Dermatol. 2016, 91, 614–620. [Google Scholar]
- Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review. Syst. Rev. 2016, 5, 152. [Google Scholar] [CrossRef] [PubMed]
- Morton, L.M.; Phillips, T.J. Wound healing and treating wounds Differential diagnosis and evaluation of chronic wounds. J. Am. Acad. Dermatol. 2016, 74, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Wound Care Market. Report ID: GMI7515. 2023. Available online: https://www.gminsights.com/industry-analysis/wound-care-market (accessed on 11 January 2024).
- Amstrong, D.G.; Jude, E.B. The role of matrix metalloproteinases in wound healing. J. Am. Podiatr. Med. Assoc. 2002, 92, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutterdine, J.M.C. Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Linda, M. Nutritional Biochemistry and Metabolism with Clinical Applications, 2nd ed.; Appleton & Lange: East Norwalk, CT, USA, 1991. [Google Scholar]
- Pugliese, P.T. The skin’s antioxidant systems. Dermatol. Nurs. 1998, 10, 401–416. [Google Scholar] [PubMed]
- Eaglstein, W.H.; Davis, S.C.; Mehle, A.L.; Mertz, P.M. Optimal use of an occlusive dressing to enhance healing: Effect of delayed application and early removal on wound healing. Arch. Dermatol. 1988, 124, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Delafuente, J.C.; Prendergast, J.M.; Modigh, A. Immunologic modulation by vitamin C. Int. J. Immunopharmacol. 1986, 8, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Sheraz, M.; Khan, M.; Ahmed, S.; Kazi, S.; Ahmad, I. Stability and stabilization of ascorbic acid. Househ. Pers. Care Today 2015, 10, 20–25. [Google Scholar]
- Singh, R.; Lillard, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223. [Google Scholar] [CrossRef]
- Seyfoddin, A.; Masoomi, S.; Greene, C.A. Engineering Drug Delivery Systems, 1st ed.; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827. [Google Scholar] [CrossRef]
- Blum, A.P.; Kammeyr, J.K.; Rush, A.M.; Callmann, C.E.; Hahn, M.E.; Gianneschi, N.C. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 2015, 137, 2140–2154. [Google Scholar] [CrossRef]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef]
- Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control Release 2013, 172, 1075–1091. [Google Scholar] [CrossRef]
- Rehana, Y.; Mohsin, S.; Saeed Ahmad, K.; Roshan, A. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnol. Rev. 2017, 6, 191–207. [Google Scholar]
- Ye, J.; Xiao, Z.; Gao, L.; Zhang, J.; He, L.; Zhang, H.; Liu, Q.; Yang, G. Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications. Biomed. Mater. 2021, 16, 045026. [Google Scholar] [CrossRef]
- Morán, M.C.; Rosell, N.; Ruano, G.; Busquets, M.A.; Vinardell, M.P. Gelatin-based nanoparticles as DNA delivery systems: Synthesis, physicochemical and biocompatible characterization. Colloids Surf. B 2015, 134, 156–168. [Google Scholar] [CrossRef]
- Morán, M.C.; Forniés, I.; Ruano, G.; Busquets, M.A.; Vinardell, M.P. Efficient encapsulation and release of RNA molecules from gelatin-based nanoparticles. Colloids Surf. A 2017, 516, 226–237. [Google Scholar] [CrossRef]
- Morán, M.C.; Carazo, J.; Busquets, M.A. Dual responsive gelatin-based nanoparticles for enhanced 5-fluorouracil efficiency. Colloids Surf. B 2018, 172, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Ferriol, A.; Morán, M.C. Enhanced efficiency of gelatin 5-fluorouracil-containing nanoparticles against squamous cell carcinoma in simulated chronic wounds conditions. Mater. Sci. Eng. C 2021, 124, 112073. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.G.B. Gelatin. In Encyclopedia of Food Science and Technology, 2nd ed.; Francis, F.J., Ed.; John Wiley & Sons: New York, NY, USA, 2000; pp. 1183–1188. [Google Scholar]
- Zhou, J.; He, W.; Luo, G.; Wu, J. Mixed lymphocyte reaction induced by multiple alloantigens and the role for IL-10 in proliferation inhibition. Burn. Trauma 2014, 2, 24–28. [Google Scholar]
- Mitjans, M.; Ugartondo, V.; Martínez, V.; Touriño, S.; Torres, J.L.; Vinardell, M.P. Role of galloylation and polymerization in cytoprotective effects of polyphenolic fractions against hydrogen peroxide insult. J. Agric. Food Chem. 2011, 59, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Galani, J.H.Y.; Patel, J.S.; Patel, N.J.; Talati, J.G. Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. Antioxidants 2017, 6, 59. [Google Scholar] [CrossRef]
- VanderJagt, D.J.; Garry, P.J.; Hunt, W.C. Ascorbate in plasma as measured by liquid chromatography and by dichlorophenolindophenol colorimetry. Clin. Chem. 1986, 32, 1004–1006. [Google Scholar] [CrossRef] [PubMed]
- Cabello, C.M.; Bair, W.B.; Bause, A.S.; Wondrak, G.T. Antimelanoma activity of the redox dye DCPIP (2,6-dichlorophenolindophenol) is antagonized by NQO1. Biochem. Pharmacol. 2009, 78, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef]
- Williams, D.F. The language of biomaterials-based technologies. Regen. Eng. Transl. Med. 2019, 5, 53–60. [Google Scholar] [CrossRef]
- ISO 10993-4:2017; Biological Evaluation of Medical Devices—Part 4: Selection of Tests for Interactions with Blood. ISO: Geneva, Switzerland, 2017.
- Dobrovolskaia, M.A.; Clogston, J.D.; Neun, B.W.; Hall, J.B.; Patri, A.K.; McNeil, S.E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008, 8, 2180–2187. [Google Scholar] [CrossRef]
- Christine, V.; Ponchel, G. Polymer nanoparticles for nanomedicines. A guide for their design, preparation, and development. Anticancer. Res. 2017, 37, 1544. [Google Scholar]
- Edwards, C.J.; Fuller, J. Oxidative stress in erythrocytes. Comp. Haematol. Int. 1996, 6, 24–31. [Google Scholar] [CrossRef]
- Zou, C.G.; Agar, N.S.; Jones, G.L. Oxidative insult to human red blood cells induced by free radical initiator AAPH and its inhibition by a commercial antioxidant mixture. Life Sci. 2001, 69, 75–86. [Google Scholar] [CrossRef]
- Aslantürk, Ö.S. In vitro cytotoxicity and cell viability assays: Principles, advantages, and disadvantages. In Genotoxicity—A Predictable Risk to Our Actual World; IntechOpen: London, UK, 2018. [Google Scholar]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insight into their cellular reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef]
- McGahon, S.J.; Martin, R.P.; Bissonnette, A.; Mahboubi, Y.; Shi, R.J.; Mogil, W.K.; Nishioka, W.K.; Green, D.R. The end of the (cell) line: Methods for the study of apoptosis in vitro. Methods Cell Biol. 1995, 46, 153–185. [Google Scholar] [PubMed]
- Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent. Sci. 2017, 3, 163–175. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Kuroda, E.; Hirai, T.; Tsutsumi, Y.; Ishii, K.J. Allergic responses induced by the immunomodulatory effects of nanomaterials upon skin exposure. Front Immunol. 2017, 8, 169. [Google Scholar] [CrossRef]
- Klingelhoeffer, C.; Kämmerer, U.; Koospal, M.; Mühling, B.; Schneider, M.; Kapp, M.; Kübler, A.; Germer, C.T.; Otto, C. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress. BMC Complement. Altern. Med. 2012, 12, 61. [Google Scholar] [CrossRef]
- Morán, M.C.; Nogueira, D.R.; Vinardell, M.P.; Miguel, M.-G.; Lindman, B. Mixed protein–DNA gel particles for DNA delivery: Role of protein composition and preparation method on biocompatibility. Int. J. Pharm. 2013, 454, 192–203. [Google Scholar] [CrossRef]
- ECACC Handbook. Fundamental Techniques in Cell Culture Laboratory Handbook, 4th ed.; Sigma-Aldrich Co., Ltd.: St. Louis, MI, USA, 2018. [Google Scholar]
- Moisenovich, M.M.; Arkhipova, A.Y.; Orlova, A.A.; Drutskaya, M.S.; Volkova, S.V.; Zacharov, S.E.; Agapov, I.I.; Kirpichnikov, M.P. Composite scaffolds containing silk fibroin, gelatin, and hydroxyapatite for bone tissue regeneration and 3D cell culturing. Acta Naturae 2014, 6, 96–101. [Google Scholar] [CrossRef]
- Clothier, R.; Willshaw, A.; Cox, H.; Garle, M.; Bowler, H.; Combes, R. The use of human keratinocytes in the EU/COLIP international In Vitro phototoxicity test validation study and the ECVAM/COLIPA study on UV filter chemicals. Altern. Lab. Anim. 1999, 27, 247–259. [Google Scholar] [CrossRef]
- Brett, D.A. Review of collagen and collagen-based wound dressings. Wounds 2008, 20, 347–356. [Google Scholar]
- Naomi, R.; Bahari, H.; Ridzuan, P.M.; Othman, F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers 2021, 13, 2319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morán, M.d.C.; Porredon, C.; Gibert, C. Insight into the Antioxidant Activity of Ascorbic Acid-Containing Gelatin Nanoparticles in Simulated Chronic Wound Conditions. Antioxidants 2024, 13, 299. https://doi.org/10.3390/antiox13030299
Morán MdC, Porredon C, Gibert C. Insight into the Antioxidant Activity of Ascorbic Acid-Containing Gelatin Nanoparticles in Simulated Chronic Wound Conditions. Antioxidants. 2024; 13(3):299. https://doi.org/10.3390/antiox13030299
Chicago/Turabian StyleMorán, María del Carmen, Cristina Porredon, and Coloma Gibert. 2024. "Insight into the Antioxidant Activity of Ascorbic Acid-Containing Gelatin Nanoparticles in Simulated Chronic Wound Conditions" Antioxidants 13, no. 3: 299. https://doi.org/10.3390/antiox13030299
APA StyleMorán, M. d. C., Porredon, C., & Gibert, C. (2024). Insight into the Antioxidant Activity of Ascorbic Acid-Containing Gelatin Nanoparticles in Simulated Chronic Wound Conditions. Antioxidants, 13(3), 299. https://doi.org/10.3390/antiox13030299