Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use
Abstract
1. Introduction
2. Characteristics of Quince Plants, Their Biology, Cultivation and Culinary Use
3. Chemical Composition of Quince Fruits and Seeds
3.1. Phenolic Compounds
Compound | Species | Content | Ref. | |
---|---|---|---|---|
Apigenin | C. japonica | 19.66 | mg/100 g dm | [28] |
3-CQA (5-O-caffeoylquinic acid) neochlorogenic acid | P. sinensis | 5.00 | mg/100 g fm | [53] |
4-CQA (5-O-caffeoylquinic acid) cryptochlorogenic acid | P. sinensis | 1.20 | mg/100 g fm | [53] |
5-CQA (5-O-caffeoylquinic acid) chlorogenic acid | C. japonica | 818.55 | mg/100 g dm | [28] |
10.00 | mg/100 g fm ** | [62] | ||
12.17 | mg/100 g dm * | [72] | ||
C. speciosa | 182.00 | mg/100 g fm ** | [62] | |
C. thiberica | 117.00 | mg/100 g fm ** | [62] | |
C. cathayensis | 119.00 | mg/100 g fm ** | [62] | |
P. sinensis | 9.00 | mg/100 g fm ** | [62] | |
0.50 | mg/100 g fm | [53] | ||
(+)-Catechin | C. japonica | 15.75 | mg/100 g dm * | [72] |
Catechin | C. japonica | 121.12 | mg/100 g dm | [28] |
C. speciosa | 54.00 | mg/100 g fm ** | [62] | |
C. thiberica | 156.00 | mg/100 g fm ** | [62] | |
C. cathayensis | 113.00 | mg/100 g fm ** | [62] | |
P. sinensis | 5.00 | mg/100 g fm ** | [62] | |
2.90 | mg/100 g fm | [53] | ||
trans-Cinnamic acid | C. japonica | 18.72 | mg/100 g dm | [28] |
p-Coumaric acid | C. japonica | 5.72 | mg/100 g dm | [28] |
(–)-Epicatechin | C. japonica | 348.44 | mg/100 g dm * | [72] |
Epicatechin | C. japonica | 102.00 | mg/100 g fm ** | [62] |
C. speciosa | 235.00 | mg/100 g fm ** | [62] | |
P. sinensis | 54.00 | mg/100 g fm ** | [62] | |
11.90 | mg/100 g fm | [53] | ||
2,5-di-Hydroxybenzoic acid | C. japonica | 2.01 | mg/100 g dm | [28] |
4-Hyrdoxybenzoic acid | C. japonica | 1.92 | mg/100 g dm | [28] |
Ferulic acid | C. japonica | 2.17 | mg/100 g dm | [28] |
Isoquercitrin | C. japonica | 3.82 | mg/100 g dm | [72] |
Naringenin | C. japonica | 5.92 | mg/100 g dm | [28] |
Procyanidin B1 | C. speciosa | 83.00 | mg/100 g fm ** | [62] |
C. thiberica | 222.00 | mg/100 g fm ** | [62] | |
C. cathayensis | 145.00 | mg/100 g fm ** | [62] | |
P. sinensis | 13.00 | mg/100 g fm ** | [62] | |
9.80 | mg/100 g fm | [53] | ||
Procyanidin B2 | C. japonica | 98.00 | mg/100 g dm ** | [62] |
C. speciosa | 296.00 | mg/100 g fm ** | [62] | |
P. sinensis | 16.80 | mg/100 g fm | [53] | |
40.00 | mg/100 g fm ** | [62] | ||
Quercitin | C. japonica | 5.03 | mg/100 g dm | [28] |
Q-3-R (quercetin-3-O-rutinoside) rutin | C. japonica | 107.09 | mg/100 g dm | [28] |
5.40 | mg/100 g dm * | [72] | ||
Sinapic acid | C. japonica | 27.99 | mg/100 g dm * | [72] |
Syringic acid | C. japonica | 0.03 | mg/100 g dm | [28] |
Vanilic acid | C. japonica | 13.69 | mg/100 g dm | [28] |
3.2. Ascorbic Acid, Carotenoids, and Other Antioxidants
3.3. Minerals
3.4. Carboxylic Acids
3.5. Carbohydrates Including Fiber
4. Biological Activity of Quince Fruits
4.1. Antioxidant Properties
4.2. Anti-Inflammatory, Anti-Allergic, and Various Immunomodulatory Effects
4.3. Anticancer Activity
4.4. Cardioprotective Effects
4.5. Antidiabetic Activity
4.6. Antiviral and Antibacterial Activity
4.7. Other Health-Promoting Properties
5. Conclusions
6. Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Rop, O.; Balik, J.; Řezniček, V.; Jurikova, T.; Škardova, P.; Salaš, P.; Sochor, J.; Mlček, J.; Kramařova, D. Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech J. Food Sci. 2011, 29, 65–73. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The medical importance of Cydonia oblonga—A review. IOSR J. Pharm. 2016, 6, 87–99. [Google Scholar]
- Nahorska, A.; Dzwoniarska, M.; Thiem, B. Fruits of Japanese quince (Chaenomeles japonica Thunb. Lindl. ex Spach) as a sourcen of bioactive compounds. Post. Fitoter. 2014, 4, 239–246. (In Polish) [Google Scholar]
- Gao, R.; Xiong, S.; Zhang, T.; Deng, X.; Li, J.; Liao, M. Two new quinic acid derivatives from the fruits of Chaenomeles speciose. Biochem. Syst. Ecol. 2020, 93, e104167. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Ma, W.; Liu, J.; Tian, L.; Zhou, Y.; Shang, F.; Guo, P. Comparative Pollen Morphology of the Genus Chaenomeles Lindl. (Rosaceae): Diagnostic Features and Implications for Taxonomy. Diversity 2023, 15, 960. [Google Scholar] [CrossRef]
- Mabberley, D.J. The Plant Book, a Portable Dictionary of the Higher Plants, 4th ed.; Cambridge University Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Martins, R.C.; Seabra, R.M.; Ferreira, M.A. Principal component analysis as tool of characterization of quince (Cydonia oblonga Miller) jam. Food Chem. 2006, 94, 504–512. [Google Scholar] [CrossRef]
- Trigueros, L.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Sendra, E. Production of low-fat yogurt with quince (Cydonia oblonga Mill.) scalding water. LWT—Food Sci. Technol. 2011, 44, 1388–1395. [Google Scholar] [CrossRef]
- Wojdyło, A.; Teleszko, M.; Oszmiański, J. Antioxidant property and storage stability of quince juice phenolic compounds. Food Chem. 2014, 152, 261–270. [Google Scholar] [CrossRef]
- Mir, S.A.; Wani, S.M.; Wani, T.A.; Ahmad, M.; Gani, A.; Masoodi, F.A.; Nazir, A. Comparative Evaluation of the Proximate Composition and Antioxidant Properties of Processed Products of Quince (Cydonia oblonga). Int. J. Food Res. 2016, 23, 816–821. [Google Scholar] [CrossRef]
- De Almeida Lopes, M.M.; Guimarães Sanches, A.; de Souza, K.O.; de Oliveira Silva, E. Quince—Cydonia oblonga. In Exotic Fruits; Rodrigues, S., de Oliveira Silva, E., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 363–368. [Google Scholar] [CrossRef]
- Cascales, E.V.; García, J.M.R. Characteristics of the raw fruit, industrial pulp, and commercial jam elaborated with Spanish quince (Cydonia oblonga Miller). Emir. J. Food Agric. 2020, 32, 623–633. [Google Scholar] [CrossRef]
- Gheisari, H.R.; Abhari, K.H. Drying method effects on the antioxidant activity of quince (Cydonia oblonga Miller) tea. Acta Sci. Pol. Technol. Aliment. 2014, 13, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Barrachina, A.A.; Szychowski, P.J.; Vásquez, M.V.; Hernández, F.; Wojdyło, A. Technological aspects as the main impact on quality of quince liquors. Food Chem. 2015, 167, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, A.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT—Food Sci. Technol. 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Baranowska-Bosiacka, I.; Bosiacka, B.; Rast, J.; Gutowska, I.; Wolska, J.; Rębacz-Maron, E.; Dębia, K.; Janda, K.; Korbecki, J.; Chlubek, D. Macro- and Microelement Content and Other Properties of Chaenomeles japonica L. Fruit and Protective Effects of Its Aqueous Extract on Hepatocyte Metabolism. Biol. Trace Elem. Res. 2017, 178, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Nawirska-Olszańska, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Biesiada, A. Quality Assasment of pumpkin jams enriched with Japanese quince, Cornellian cherry and strawberries. Acta Sci. Pol. Technol. Aliment. 2010, 1, 40–48. (In Polish) [Google Scholar]
- Wojdyło, A.; Oszmiański, J.; Teleszko, M.; Sokół-Łętowska, A. Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. Int. J. Food Sci. Nutr. 2013, 64, 749–756. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Teleszko, M.; Samoticha, J. Sensory attributes and changes of physicochemical properties during storage of smoothies prepared from selected fruit. LWT—Food Sci Technol. 2016, 71, 102–109. [Google Scholar] [CrossRef]
- Seglina, D.; Krasnova, I.; Heidemane, G.; Ruisa, S. Influence of drying technology on the quality of dried candied Chaenomeles japonica during storage. Lat. J. Agron. 2009, 12, 113–118. [Google Scholar]
- Krasnova, I.; Seglina, D.; Pole, V. The effect of pre-treatment methods on the quality of dehydrated candied Japanese quince fruits during storage. J. Food Sci. Technol. 2018, 55, 4468–4476. [Google Scholar] [CrossRef]
- Antoniewska, A.; Rutkowska, J.; Martinez Pineda, M. Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chem. 2019, 286, 376–387. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Content of biactive compounds and antioxidant capacity of pumpkin puree enriched with Japanese quince Cornellian cherry, strawberry and apples. Acta Sci. Pol. Technol. Aliment. 2011, 10, 51–60. [Google Scholar] [PubMed]
- Hamauzu, Y.; Mizuno, Y. Non-extractable Procyanidins and Lignin are Important Factors in the Bile Acid Binding and Radical Scavenging Properties of Cell Wall Material in some Fruits. Plant Foods Hum. Nutr. 2011, 66, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Hamauzu, Y.; Takedachi, N.; Miyasaka, R.; Makabe, H. Heat treatment of Chinese quince polyphenols increases rat plasma levels of protocatechuic and vanillic acids. Food Chem. 2010, 118, 757–763. [Google Scholar] [CrossRef]
- Cheng, X.-C.; Guo, X.-R.; Qin, Z.; Wang, X.-D.; Liu, H.-M.; Liu, Y.-L. Structural features and antioxidant activities of Chinese quince (Chaenomeles sinensis) fruits lignin during auto-catalyzed ethanol organosolv pretreatment. Int. J. Biol. Macromol. 2020, 164, 4348–4358. [Google Scholar] [CrossRef] [PubMed]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. J. Food Comp. Anal. 2021, 102, e104065. [Google Scholar] [CrossRef]
- Byczkiewicz, S.; Szwajgier, D.; Kobus-Cisowska, J.; Szczepaniak, O.; Szulc, P. Comparative examination of bioactive phytochemicals in quince (Chaenomeles) fruits and their in vitro antioxidant activity. EJFA 2021, 3, 293–302. [Google Scholar] [CrossRef]
- Al-Zughbi, I.; Krayem, M. Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chem. 2022, 393, e133362. [Google Scholar] [CrossRef]
- Mierina, I.; Seržane, R.; Strele, M.; Moskaluka, J.; Seglina, D.; Jure, M. Extracts of Japanese quince seeds—Potential source of antioxidants. In Proceedings of 6th Baltic Conference on Food Science and Technology: Innovations for Food Science and Production; Latvia University of Agriculture: Jelgava, Latvia, 2011; p. 75. [Google Scholar]
- Mierina, I.; Seržane, R.; Strele, M.; Moskaļuka, J.; Ivdre, E.; Jure, M. Investigation of the oil and Meal of Japanese Quince (Chaenomeles japonica) Seeds. Proc. Latv. Acad. Sci. Sect. B 2013, 67, 405–410. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem. 2015, 170, 437–442. [Google Scholar] [CrossRef]
- Górnaś, P.; Siger, A.; Juhņeviča, K.; Lācis, G.; Šnē, E.; Segliņa, D. Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. Eur. J. Lipid Sci. Technol. 2014, 116, 563–570. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Bleive, U.; Kaldmäe, H.; Aluvee, A.; Rätsep, R.; Karp, K.; Maciel, L.S.; Herodes, K.; Rinken, T. Phytochemical characterization of oil and protein fractions isolated from Japanese quince (Chaenomeles japonica) wine by-product, LWT—Food Sci. Technol. 2023, 178, e114632. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Ferreres, F.; Domingues, A.L.; Seabra, R.M.; Ferreira, M.A. Phenolic Profile of Quince Fruit (Cydonia oblonga Miller) (Pulp and Peel). J. Agric. Food Chem. 2002, 50, 4615–4618. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Valentão, P.; Ferreres, F.; Seabra, R.M.; Ferreira, M.A. Quince (Cydonia oblonga Miller) Fruit (Pulp, Peel, and Seed) and Jam: Antioxidant Activity. J. Agric. Food Chem. 2004, 52, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial activity of tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Silva, B.M.; Silva, R.; Valentão, P.; Andrade, P.B.; Bastos, M.L. First report on Cydonia oblonga Miller anticancer potential: Differential antiproliferative effect against human kidney and colon cancer cells. J. Agric. Food Chem. 2010, 58, 3366–3370. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, B.T.; Mitić, S.S.; Stojanović, G.S.; Mitić, M.N.; Kostić, D.A.; Paunović, D.D.; Arsić, B.B.; Pavlović, A.N. Phenolic profiles and metal ions analyses of pulp and peel of fruits and seeds of quince (Cydonia oblonga Mill.). Food Chem. 2017, 232, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Sut, S.; Dall’Acqua, S.; Poloniato, G.; Maggi, F.; Malagoli, M. Preliminary evaluation of quince (Cydonia oblonga Mill.) fruit as extraction source of antioxidant phytoconstituents for nutraceutical and functional food applications. J. Sci. Food Agric. 2019, 99, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.S.; Silva, B.M.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol. 2009, 47, 1372–1377. [Google Scholar] [CrossRef]
- Alesiani, D.; Canini, A.; D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Mastellone, C.; Pacifico, S. Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chem. 2010, 118, 199–207. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Ferreres, F.; Seabra, R.M.; Beatriz, M.; Oliveira, P.P.; Ferreira, M.A. Composition of Quince (Cydonia oblonga Miller) seeds: Phenolics, organic acids and free amino acids. Nat. Prod. Res. 2005, 19, 275–281. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; Silva, B.M. Organic acids composition of Cydonia oblonga Miller leaf. Food Chem. 2008, 111, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.; Costa, R.M.; Magalhães, A.S.; Pereira, J.A.; Carvalho, M.; Valentão, P.; Andrade, P.B.; Silva, B.M. Targeted metabolites and biological activities of Cydonia oblonga Miller leaves. Food Res. Int. 2012, 46, 496–504. [Google Scholar] [CrossRef]
- Costa, R.M.; Magalhães, A.S.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M.; Silva, B.M. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 2009, 47, 860–865. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves, J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Ashrafi, H.; Ghabili, K.; Alihemmati, A.; Jouyban, A.; Shoja, M.M.; Aslanabadi, S.; Adl, F.H.; Ghavimi, H.; Hajhosseini, L. The effect of quince leaf (Cydonia oblonga Miller) decoction on testes in hypercholesterolemic rabbits: A pilot study. Afr. J. Tradit. Complement. Altern. Med. AJTCAM 2013, 10, 277–282. [Google Scholar] [CrossRef]
- Szychowski, P.J.; Lech, K.; Sendra-Nadal, E.; Hernández, F.; Figiel, A.; Wojdyło, A.; Carbonell-Barrachina, A.A. Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying metod. Food Chem. 2018, 255, 157–164. [Google Scholar] [CrossRef]
- Blanda, G.; Rodriguez-Roque, M.J.; Comandini, P.; Flores-Cordova, M.A.; Salas-Salazar, N.A.; Cruz-Alvarez, O.; Soto-Caballero, M.C. Phenolic profile and physicochemical characterization of quince (Cydonia oblonga Mill) fruits at different maturity index. Not. Bot. Horti. Agrobot. Cluj Napoca 2020, 48, 2306–2315. [Google Scholar] [CrossRef]
- De Bellis, R.; Chiarantini, L.; Potenza, L.; Gorassini, A.; Verardo, G.; De Marco, R.; Benayada, L.; Stocchi, V.; Albertini, M.C.; Fraternale, D. High Production of Secondary Metabolites and Biological Activities of C. oblonga Mill. Pulp Fruit Callus. J. Funct. Foods 2022, 94, 105133. [Google Scholar] [CrossRef]
- Andrade, P.B.; Carvalho, A.R.F.; Seabra, R.M.; Ferreira, M.A. A previous study of phenolic profiles of quince, pear, and apple purees by HPLC diode array detection for the evaluation of quince puree genuineness. J. Agric. Food Chem. 1998, 46, 968–972. [Google Scholar] [CrossRef]
- Hamauzu, Y.; Yasui, H.; Inno, T.; Kume, C.; Omanyuda, M. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J. Agric. Food Chem. 2005, 53, 928–934. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Gonçalves, A.C.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). Eur. Food Res. Technol. 2004, 218, 385–389. [Google Scholar] [CrossRef]
- Baroni, M.V.; Fabani, M.P.; Adan, F.; Podio, N.S.; Wunderlin, D.A. Effect of geographical location, processing and simulated digestion on antioxidant characteristics of quince (Cydonia oblonga). Heliyon 2022, 8, e11435. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.A.; Romero, L.A.; Diaz, R.I. Quality and sensory attributes of apple and quince leathers made without preservatives and with enhanced antioxidant activity. LWT—Food Sci. Technol. 2015, 62, 996–1003. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic Composition, Antioxidant Activity, and Polyphenol Oxidase (PPO) Activity of Quince (Cydonia oblonga Miller) Varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Joshi, V.K.; Rana, J.C. Nutritional Composition and Processed Products of Quince (Cydonia oblonga). J. Asian Nat. Prod. Res. 2011, 2, 354–357. [Google Scholar]
- Urbanavičiūtė, I.; Viškelis, P. Biochemical Composition of Japanese Quince (Chaenomeles japonica) and Its Promising Value for Food, Cosmetic, and Pharmaceutical Industries. In Fruit Industry; Kahramanoğlu, İ., Wan, C., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Satora, P.; Sroka, P.; Pogoń, P.; Machalica, J. Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J. Food Sci. Technol. 2014, 51, 3934–3941. [Google Scholar] [CrossRef]
- Hamauzu, Y.; Inno, T.; Kume, C.; Irie, M.; Hiramatsu, K. Antioxidant and Antiulcerative Properties of Phenolics from Chinese Quince, Quince, and Apple Fruits. J. Agric. Food Chem. 2006, 54, 765–772. [Google Scholar] [CrossRef]
- Du, H.; Wu, J.; Li, H.; Zhong, P.-X.; Xu, Y.-J.; Li, C.-H.; Ji, K.-X.; Wang, L.-S. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem. 2013, 141, 4260–4268. [Google Scholar] [CrossRef]
- Huang, G.-H.; Xi, Z.-X.; Li, J.-L.; Chen, C.; Yang, G.-J.; Sun, L.; Chen, W.-S.; Zhu, H.-Y. Isolation of two new phenolic compounds from the fruit of Chaenomeles speciosa (Sweet) Nakai. Phytochem. Lett. 2013, 6, 526–530. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Lech, K.; Tkacz, K.; Nowicka, P. Influence of different drying methods on the quality of Japanese quince fruit. LWT—Food Sci. Technol. 2019, 114, e108416. [Google Scholar] [CrossRef]
- Lee, M.H.; Son, Y.K.; Han, Y.N. Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch. Pharm. Res. 2002, 25, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Kim, K.H.; Lee, K.R. Lignan glycosides from the twigs of Chaenomeles sinensis and their biological activities. J. Nat. Prod. 2015, 78, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Suh, W.S.; Park, K.J.; Kim, D.H.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Lee, K.R. A biphenyl derivative from the twigs of Chaenomeles speciosa. Bioorg. Chem. 2017, 72, 156–160. [Google Scholar] [CrossRef]
- Xie, X.; Cai, X.; Zhu, S.; Zou, G. Chemical composition and antimicrobial activity of essential oils of Chaenomeles speciosa from China. Food Chem. 2007, 100, 1312–1315. [Google Scholar] [CrossRef]
- Hellín, P.; Vila, R.; Jordán, M.J.; Laencina, J.; Rumpunen, K.; Ros, J.M. Characteristics and Composition of Chaenomeles Fruit Juice. In Japanese Quince—Potential Fruit Crop for Northern Europe. Department of Crop Science; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 127–139. [Google Scholar]
- Gardner, P.T.; White, T.A.C.; McPhail, D.B.; Duthie, G.G. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 2000, 68, 471–474. [Google Scholar] [CrossRef]
- Vila, R.; Granados, M.V.; Hellín, P.; Kauppinen, S.; Laencina, J.; Rumpunen, K.; Ros, J.M. Biochemical changes in chaenomeles fruits and fruit juice during ripening and storage. In Japanese Quince—Potential Fruit Crop for Northern Europe; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 159–168. [Google Scholar]
- Urbanavičiūtė, I.; Liaudanskas, M.; Bobinas, Č.; Šarkinas, A.; Rezgienė, A.; Viskelis, P. Japanese Quince (Chaenomeles japonica) as a Potential Source of Phenols: Optimization of the Extraction Parameters and Assessment of Antiradical and Antimicrobial Activities. Foods 2020, 9, 1132. [Google Scholar] [CrossRef]
- Osman, A. Chapter 49—Cold pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 541–546. [Google Scholar]
- Górnaś, P.; Siger, A.; Segliņa, D. Physicochemical characteristics of the cold-pressed Japanese quince seed oil: New promising unconventional bio-oil from by-products for the pharmaceutical and cosmetic industry. Ind. Crops Prod. 2013, 48, 178–182. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. UPLC/ESI-Q-TOF-MS analysis of (poly)phenols, tocols and amino acids in Chaenomeles leaves versus in vitro anti-enzyme activities. Ind. Crop. Prod. 2022, 181, e114829. [Google Scholar] [CrossRef]
- Marat, N.; Danowska-Oziewicz, M.; Narwojsz, A. Chaenomeles Species-Characteristics of Plant, Fruit and Processed Products: A Review. Plants 2022, 11, 3036. [Google Scholar] [CrossRef]
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables, 7th ed.; MedPharm: Stuttgart, Germany, 2008; pp. 743–1238. [Google Scholar]
- Zhang, H.; Geng, Y.L.; Wang, D.J.; Liu, J.H.; Wang, X.; Du, J.H.; Li, S.B. Research on nutrient components of different species of Chaenomeles speciosa Nakai. Shandong Sc. 2011, 24, 24–27. [Google Scholar]
- Bieniasz, M.; Dziedzic, E.; Kaczmarczyk, E. The effect of storage and processing on vitamin C content in Japanese quince fruit. Folia Hortic. 2017, 29, 83–93. [Google Scholar] [CrossRef]
- Hallmann, E.; Orpel, E.; Rembiałkowska, E. The content of biologically active compounds in some fruits from natural state. Veg. Crop Res. Bull. 2011, 75, 81–90. [Google Scholar] [CrossRef]
- Mezhenskij, V.L. Research, Cultivation and Processing of Japanese Quince, Chaenomeles spp. in Ukraine. Verksamhetsberättelse 1992–1994: Report; Balsgård-Deparment of Horticultural Plant Breeding, Swedish University of Agricultural Sciences: Uppsala, Sweden, 1996; pp. 193–195. [Google Scholar]
- Legua, P.; Serrano, M.; Melgarejo, P.; Valero, D.; Martínez, J.J.; Martínez, R.; Hernández, F. Quality parameters, biocompounds and antioxidant activity in fruits of nine quince (Cydonia oblonga Miller) accessions. Sci. Hortic. 2013, 154, 61–65. [Google Scholar] [CrossRef]
- Najman, K.; Adrian, S.; Hallmann, E.; Sadowska, A.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.). Agriculture 2023, 13, 446. [Google Scholar] [CrossRef]
- Najman, K.; Adrian, S.; Sadowska, A.; Świąder, K.; Hallmann, E.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products. Molecules 2023, 28, 3066. [Google Scholar] [CrossRef] [PubMed]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. Carotenoids, chlorophylls, vitamin E and amino acid profile in fruits of nineteen Chaenomeles cultivars. J. Food Comp. Anal. 2020, 93, e103608. [Google Scholar] [CrossRef]
- Zhang, R.; Li, S.; Zhu, Z.; He, J. Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trend. Food Sci. Technol. 2019, 91, 467–482. [Google Scholar] [CrossRef]
- Xu, N.Y.; Kim, J.S.; Kang, S.S.; Son, K.H.; Kim, H.P.; Chang, H.W.; Bae, K. A new acylated triterpene from the roots of Chaenomeles japonica. Chem. Pharm. Bull. 2002, 50, 1124–1125. [Google Scholar] [CrossRef]
- Lesińska, E. Zawartość składników mineralnych w owocach pigwowca. Zesz. Nauk. AR W Krakowie Rol. 1985, 25, 175–183. (In Polish) [Google Scholar]
- Watychowicz, K.; Janda, K.; Jakubczyk, K.; Wolska, J. Chaenomeles—Health Promoting Benefits. Rocz. Panstw. Zakl. Hig. 2017, 68, 217–227. [Google Scholar]
- Lesińska, E. Characteristics of sugars and acids in the fruits of East Asian quince. Die Nahrung 1987, 31, 763–765. [Google Scholar] [CrossRef]
- Rasheed, M.; Hussain, I.; Rafiq, S.; Hayat, I.; Qayyum, A.; Ishaq, S.; Awan, M.S. Chemical composition and antioxidant activity of quince fruit pulp collected from different locations. Int. J. Food Propert. 2018, 21, 2320–2327. [Google Scholar] [CrossRef]
- Hopur, H.; Asrorov, A.M.; Qingling, M.; Yili, A.; Ayupbek, A.; Nannan, P.; Aisa, H.A. HPLC Analysis of Polysaccharides in Quince (Cydonia Oblonga Mill. var. maliformis) Fruit and PTP1B Inhibitory Activity. Nat. Prod. J. 2011, 1, 146–150. [Google Scholar] [CrossRef]
- Ashraf, M.U.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals. Front. Pharmacol. 2016, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, A.; Nora, P.; Eva, S.B. A Review of Nutritional Value and Putative Health—Effects of Quince (Cydonia oblonga) Fruit. Int. J. Hortic. Sci. 2013, 3, 29–32. [Google Scholar] [CrossRef]
- Thomas, M.; Crépeau, M.J.C.; Rumpunen, K.; Thibault, J.-F. Dietary fibre and cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica). LWT—Food Sci. Technol. 2000, 33, 124–131. [Google Scholar] [CrossRef]
- Thomas, M.; Thibault, J.-F. Cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica): Extraction and preliminary characterisation. Carbohydr. Polym. 2002, 49, 345–355. [Google Scholar] [CrossRef]
- Thomas, M.; Guillemin, F.; Guillon, F.; Thibault, J.F. Pectins in the fruits of Japanese Quince (Chaenomeles japonica). Carbohyd. Polym. 2003, 53, 361–372. [Google Scholar] [CrossRef]
- Hellín, P.; Jordán, M.J.; Vila, R.; Gustafsson, M.; Göransson, E.; Ĺkesson, B.; Gröön, I.; Laencina, J.; Ros, J.M. Processing and products of Japanese quince (Chaenomeles japonica) fruits. In Japanese Quince—Potential Fruit Crop for Northern Europe; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 169–175. [Google Scholar]
- Qin, Z.; Liu, H.-M.; Lv, T.-T.; Wang, X.-D. Structure, rheological, thermal and antioxidant properties of cell wall polysaccharides from Chinese quince fruits. Int. J. Biol. Macromol. 2019, 147, 1146–1155. [Google Scholar] [CrossRef]
- Aliasl, F.; Toliyat, T.; Mohammadi, A.; Minaee, B.; Samadi, N.; Aliasl, J.; Sadeghpour, O. Medicinal Properties of Cydonia Oblonga Mill Fruit (Pulp and Peel) in Iranian Traditional Medicine and Modern Phytothrapy. Trad Integr. Med. 2016, 1, 122–128. [Google Scholar]
- Khoubnasabjafari, M.; Jouyban, A. A review of phytochemistry and bioactivity of quince (Cydonia oblonga Mill.). J. Med. Plant. Res. 2011, 5, 3577–3594. [Google Scholar] [CrossRef]
- Yang, G.; Fen, W.; Lei, C.; Xiao, W.; Sun, H. Study on determination of pentacyclic triterpenoids in Chaenomeles by HPLC-ELSD. J. Chromatogr. Sci. 2009, 47, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-J.; Jin, D.-N.; Zhou, Y.; Sang, X.-Y.; Zhu, Y.-Y.; He, Y.-J.; Xie, T.-Z.; Dai, Z.; Zhao, Y.-L.; Luo, X.-D. Bioactivity Ingredients of Chaenomeles speciosa against Microbes: Characterization by LC-MS and Activity Evaluation. J. Agric. Food Chem. 2021, 69, 4686–4696. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Zheng, H.; Fu, G.; Yin, M.; Jiang, L.; Zhao, Y.; Zha, L.; Chu, S.; Peng, H.; Huang, L. Integrated untargeted metabolome, full-length sequencing, and transcriptome analyses reveal insights into the fruit quality at different harvest times of Chaenomeles speciosa. Food Res. Int. 2023, 164, 112314. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.M.; Kim, D.H.; Subedi, L.; Khan, Z.; Choi, S.U.; Kim, S.Y.; Kim, C.S. Chemical constituents of Chaenomeles sinensis twigs and their biological activity. Beilstein J. Org. Chem. 2020, 16, 3078–3085. [Google Scholar] [CrossRef] [PubMed]
- Oku, H.; Ueda, Y.; Ishiguro, K. Antipruritic effects of the fruits of Chaenomeles sinensis. Biol. Pharm. Bull. 2003, 26, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, J.-S.; Yun, C.-Y.; Kim, D.-H.; Kim, I.S. Chinese quince (Chaenomeles sinensis) extract inhibits cell migration and cytokine release in HMC-1 cells. Food Sci. Biotechnol. 2013, 22, 501–506. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 1794427, Chlorogenic Acid; CID 5280633, Neochlorogenic Acid; CID 9798666, Cryptochlorogenic Acid; CID 64945, Ursolic Acid, and CID 10494, Oleanolic Acid. 2023. Available online: http://pubchem.ncbi.nlm.nih.gov (accessed on 21 December 2023).
- Baroni, M.V.; Gastaminza, J.; Podio, N.S.; Lingua, M.S.; Wunderlin, D.A.; Rovasio, J.L.; Dotti, R.; Rosso, J.C.; Ghione, S.; Ribotta, P.D. Changes in the antioxidant properties of quince fruit (Cydonia oblonga Miller) during jam production at industrial scale. J. Food Qual. 2018, 2018, e1460758. [Google Scholar] [CrossRef]
- Essafi-Benkhadir, K.; Refai, A.; Riahi, I.; Fattouch, S.; Karoui, H.; Essafi, M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition. Biochem. Biophys. Res. Commun. 2012, 418, 180–185. [Google Scholar] [CrossRef]
- García-Alonso, M.; de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J. Evaluation of the antioxidant properties of fruits. Food Chem. 2004, 84, 13–18. [Google Scholar] [CrossRef]
- Yildirim, A.; Oktay, M.; Bilaloglu, V. The antioxidant activity of the leaves of Cydonia vulgaris. Turk. J. Med. Sci. 2001, 31, 23–27. [Google Scholar]
- Pacifico, S.; Gallicchio, M.; Fiorentino, A.; Fischer, A.; Meyer, U.; Stintzing, F.C. Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chemical Toxicol. 2012, 50, 4130–4135. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Kim, B.J.; Kim, J.H.; Heo, M.Y.; Kim, H.P. Biological screening of 100 plant extracts for cosmetic use (I): Inhibitory activities of tyrosinase and DOPA auto-oxidation. Int. J. Cosmet. Sci. 1997, 19, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yu, X.; Mi, M.; Zhao, J.; Wang, J.; Zhang, T. Antioxidative property and antiatherosclerotic effects of the powder processed from Chaenomeles speciosa in APOE-/- mice. J. Food Biochem. 2010, 34, 535–548. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Liu, L. Skin-care functions of peptides prepared from Chinese quince seed protein: Sequences analysis, tyrosinase inhibition and molecular docking study. Ind. Crops Prod. 2020, 148, e112331. [Google Scholar] [CrossRef]
- Ma, B.; Wang, J.; Tong, J.; Zhou, G.; Chen, Y.; He, J.; Wang, Y. Protective effects of Chaenomeles thibetica extract against carbon tetrachloride-induced damage via the MAPK/Nrf2 pathway. Food Funct. 2016, 7, 1492–1500. [Google Scholar] [CrossRef]
- Sancheti, S.; Sancheti, S.; Bafna, M.; Seo, S.Y. Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats. Eur. Food Res. Technol. 2010, 231, 415–421. [Google Scholar] [CrossRef]
- Kawahara, T.; Iizuka, T. Inhibitory effect of hotwater extract of quince (Cydonia oblonga) on immunoglobulin E-dependent late-phase immune reactions of mast cells. Cytotechnology 2011, 63, 143–152. [Google Scholar] [CrossRef]
- Shinomiya, F.; Hamauzu, Y.; Kawahara, T. Anti-allergic effect of a hot-water extract of quince (Cydonia oblonga). Biosci. Biotechnol. Biochem. 2009, 73, 1773–1778. [Google Scholar] [CrossRef]
- Gründemann, C.; Papagiannopoulos, M.; Lamy, E.; Mersch-Sundermann, V.; Huber, R. Immunomodulatory properties of a lemon-quince preparation (Gencydo®) as an indicator of anti-allergic potency. Phytomedicine 2011, 18, 760–768. [Google Scholar] [CrossRef]
- Chojnacka, K.; Owczarek, K.; Caban, M.; Caban, M.; Sosnowska, D.; Polka, D.; Koziołkiewicz, M.; Fichna, J.; Lewandowska, U. Japanese quince (Chaenomeles japonica) leaf phenol extract as modulator of the inflammatory response in lipopolysaccharide-triggered murine macrophage raw 264.7 cells. J. Physiol. Pharmacol. 2020, 71, 833–843. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.X.; Liu, A.L.; Wang, H.D.; Wang, Y.L.; Du, G.H. Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa. Molecules 2010, 15, 8507–8517. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.-B.; Yang, Q.; Sun, L.-N.; Chen, W.-S. Anti-Inflammatory and Analgesic Activities of Chaenomeles speciosa Fractions in Laboratory Animals. J. Med. Food. 2009, 12, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Strugała, P.; Cyboran-Mikołajczyk, S.; Dudra, A.; Mizgier, P.; Kucharska, A.Z.; Olejniczak, T.; Gabrielska, J. Biological activity of Japanese quince extract and its interactions with lipids, erythrocyte membrane, and human albumin. J. Membr. Biol. 2016, 249, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wei, W. Effects and mechanisms of glucosides of chaenomeles speciosa on collagen-induced arthritis in rats. Int. Immunopharmacol. 2003, 3, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.P.; Dai, M.; Wang, H.; Zhang, L.L.; Wei, W. Antinociceptive effect of glucosides of Chaenomeles speciosa. Chin. J. Pharmacol. Toxicol. 2005, 19, 169–174. [Google Scholar]
- Huang, D.; Jiang, S.; Du, Z.; Chen, Y.; Xue, D.; Wang, X.; Li, M.; Zhang, F.; Chen, W.; Sun, L. Analgesic and AntiArthritic Activities of Polysaccharides in Chaenomeles speciosa. Front. Pharmacol. 2022, 13, e744915. [Google Scholar] [CrossRef]
- Riahi-Chebbi, I.; Haoues, M.; Essafi, M.; Zakraoui, O.; Fattouch, S.; Karoui, H.; Essafi-Benkhadir, K. Quince peel polyphenolic extract blocks human colon adenocarcinoma LS174 cell growth and potentiates 5-fluorouracil efficacy. Cancer Cell Int. 2015, 16, e1. [Google Scholar] [CrossRef]
- Adiban, H.H.; Shirazi, F.; Gholami, S.; Kamalinejad, M.; Hosseini, S.H.; Noubarani, M.; Eskandari, M.R. Chemopreventive effect of quince (Cydonia oblonga Mill.) fruit extract on hepatocellular carcinoma induced by diethylnitrosamine in rats. Int. Pharm. Acta 2019, 2, e2. [Google Scholar] [CrossRef]
- Strek, M.; Gorlach, S.; Podsędek, A.; Sosnowska, D.; Koziołkiewicz, M.; Hrabec, Z.; Hrabec, E. Procyanidin oligomers from Japanese quince (Chaenomeles japonica) fruit inhibit activity of MMP-2 and MMP-9 metalloproteinases. J. Agric. Food Chem. 2007, 55, 6447–6452. [Google Scholar] [CrossRef]
- Lewandowska, U.; Szewczyk, K.; Owczarek, K.; Hrabec, Z.; Podsędek, A.; Koziołkiewicz, M.; Hrabec, E. Flavanols from Japanese quince (Chaenomeles japonica) fruit inhibit human prostate and breast cancer cell line invasiveness and cause favorable changes in Bax/Bcl-2 mRNA Ratio. Nutr. Cancer 2013, 65, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, K.; Hrabec, E.; Fichna, J.; Sosnowska, D.; Koziołkiewicz, M.; Szymański, J.; Lewandowska, U. Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochim. Pol. 2017, 64, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Zvikas, V.; Urbanaviciute, I.; Bernotiene, R.; Kulakauskiene, D.; Morkunaite, U.; Balion, Z.; Majiene, D.; Liaudanskas, M.; Viskelis, P.; Jekabsone, A.; et al. Investigation of Phenolic Composition and Anticancer Properties of Ethanolic Extracts of Japanese Quince Leaves. Foods 2020, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Sosnowska, D.; Polka, D.; Owczarek, K.; Gorlach-Lira, K.; Oliveira de Verasa, B.; Lewandowska, U. Comparison of phenolic compounds, antioxidant and cytotoxic activity of extracts prepared from Japanese quince (Chaenomeles japonica L.) leaves. J. Physiol. Pharmacol. 2020, 71, 213–222. [Google Scholar] [CrossRef]
- Gao, H.Y.; Wu, L.J.; Kuroyanagi, M.; Harada, K.; Kawahara, N.; Nakane, T.; Umehara, K.; Hirasawa, A.; Nakamura, Y. Antitumor-promoting constituents from Chaenomeles sinensis Koehne and their activities in JB6 mouse epidermal cells. Chem. Pharm. Bull. 2003, 51, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Abliz, A.; Aji, Q.; Abdusalam, E.; Sun, X.; Abdurahman, A.; Zhou, W.; Moore, N.; Umar, A. Effect of Cydonia oblonga Mill. Leaf extract on serum lipids and liver function in a rat model of hyperlipidaemia. J. Ethnopharmacol. 2014, 151, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Iskandar, G.; Aikemu, A.; Yiming, W.; Zhou, W.; Berké, B.; Begaud, B.; Moore, N. Effects of Cydonia oblonga Miller leaf and fruit flavonoids on blood lipids and anti-oxydant potential in hyperlipidemia rats. J. Ethnopharmacol. 2015, 169, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Abdusalam, E.; Abliz, P.; Reyim, N.; Tian, S.; Aji, Q.; Issak, M.; Iskandar, G.; Moore, N.; Umar, A. Effect of Cydonia oblonga Mill. fruit and leaf extracts on blood pressure and blood rheology in renal hypertensive rats. J. Ethnopharmacol. 2014, 152, 464–469. [Google Scholar] [CrossRef]
- Zhou, W.; Abdurahman, A.; Abdusalam, E.; Yiming, W.; Abliz, P.; Aji, Q.; Issak, M.; Iskandar, G.; Moore, N.; Umar, A. Effect of Cydonia oblonga Mill. Leaf extracts or captopril on blood pressure and related biomarkers in renal hypertensive rats. J. Ethnopharmacol. 2014, 153, 635–640. [Google Scholar] [CrossRef]
- Zhou, W.; Abdurahman, A.; Umar, A.; Iskander, G.; Abdusalam, E.; Berké, B.; Bégaud, B.; Moore, N. Effects of Cydonia oblonga Miller extracts on blood hemostasis, coagulation and fibrinolysis in mice, and experimental thrombosis in rats. J. Ethnopharmacol. 2014, 154, 163–169. [Google Scholar] [CrossRef]
- Abulizi, A.; Simayi, J.; Nuermaimaiti, M.; Han, M.; Hailati, S.; Talihati, Z.; Maihemuti, N.; Nuer, M.; Khan, N.; Abudurousuli, K.; et al. Quince extract resists atherosclerosis in rats by down-regulating the EGFR/PI3K/Akt/GSK-3β pathway. Biomed. Pharmacother. 2023, 160, 114330. [Google Scholar] [CrossRef]
- Gholami, S.; Hosseini, M.J.; Jafari, L.; Omidvar, F.; Kamalinejad, M.; Mashayekhi, V.; Hosseini, S.H.; Kardan, A.; Pourahmad, J.; Eskandari, M.R. Mitochondria as a Target for the Cardioprotective Effects of Cydonia oblonga Mill. and Ficus carica L. in Doxorubicin-Induced Cardiotoxicity. Drug Res. 2017, 67, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Hanan, E.; Hasan, N.; Zahiruddin, S.; Ahmad, S.; Sharma, V.; Ahmad, F.J. Metabolite profiling and Ameliorative effect of quince (Cydonia oblonga) leaves against doxorubicin induced cardiotoxicity in Wistar rats. Food Biosci. 2023, 53, 102691. [Google Scholar] [CrossRef]
- Lee, M.H.; Han, Y.N. A new in vitro tissue factor inhibitory triterpene from the fruits of Chaenomeles sinensis. Planta Med. 2003, 69, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Xie, L.; Xin, X.; Aisa, H. Anti-diabetic action of Cydonia oblonga seed extract: Improvement of glucose metabolism via activation of PI3K/AKT signaling pathway. J. Pharmacogn. Phytochem. 2016, 4, 7–13. [Google Scholar]
- Lee, H.S.; Jeon, Y.E.; Jung, J.I.; Kim, S.M.; Hong, S.H.; Lee, J.; Hwang, J.S.; Hwang, M.O.; Kwon, K.; Kim, E.J. Anti-obesity effect of Cydonia oblonga Miller extract in high-fat diet-induced obese C57BL/6 mice. J. Funct. Foods 2022, 89, e104945. [Google Scholar] [CrossRef]
- Aslan, M.; Orhan, N.; Orhan, D.D.; Ergun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J. Ethnopharmacol. 2010, 128, 384–389. [Google Scholar] [CrossRef]
- Zakłos-Szyda, M.; Pawlik, N. Japanese quince (Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP-activated protein kinase. Acta Biochim. Pol. 2018, 65, 67–78. [Google Scholar] [CrossRef]
- Sancheti, S.S.; Sancheti, S.; Seo, S. Chaemnomeles sinensis: A potent α- and β-glucosidase inhibitor. Am. J. Pharmacol. Toxicol. 2009, 4, 8–11. [Google Scholar] [CrossRef]
- Sancheti, S.; Sancheti, S.; Seo, S.Y. Antidiabetic and antiacetylcholinesterase effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne fruits in streptozotocin-induced diabetic rats. Exp. Toxicol. Pathol. 2013, 65, 55–60. [Google Scholar] [CrossRef]
- Alizadeh, H.; Rahnema, M.; Semnani, S.N.; Hajizadeh, N. Detection of compounds and antibacterial effect of quince (Cydonia oblonga Miller) extracts in vitro and in vivo. J. Biol. Active Prod. Nature 2013, 3, 303–309. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.B.; Singh, S. COVID-19: Environment concern and impact of Indian medicinal system. J. Environ. Chem. Eng. 2020, 8, 104–144. [Google Scholar] [CrossRef] [PubMed]
- Naeimi, M.; Kianifar, H.; Memariani, Z.; Kamalinejad, M.; Bijani, A.; Saghebi, R.; Gorji, N. Comparison of the efficacy of ranitidine and quince syrup on gastroesophageal reflux disease in children. BMC Complement. Med. Ther. 2019, 45, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Hashempur, M.H.; Mojibian, M.; Aliasl, F.; Bioos, S.; Nejatbakhsh, F. A comparative study of ranitidine and quince (Cydonia oblonga mill) sauce on gastroesophageal reflux disease (GERD) in pregnancy: A randomised, open-label, active-controlled clinical trial. J. Obstet. Gynaecol. 2018, 38, 899–905. [Google Scholar] [CrossRef]
- Zohalinezhad, M.E.; Imanieh, M.H.; Samani, S.M.; Mohagheghzadeh, A.; Dehghani, S.M.; Haghighat, M.; Akbarzadeh, A.R. Effects of Quince syrup on clinical symptoms of children with symptomatic gastroesophageal reflux disease: A double-blind randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2015, 21, 268–276. [Google Scholar] [CrossRef]
- Rahi, P.; Mirghafourvand, M.; Mohammad-Alizadeh-Charandabi, S.; Javadzadeh, Y.; Seidi, S. Comparison of the effect of mefenamic acid and quince on the level of menstrual bleeding and hemoglobin: A randomized controlled clinical trial. Eur. J. Integr. Med. 2016, 8, 67–72. [Google Scholar] [CrossRef]
- Din Ganaie, M.U.; Behl, T.; Nijhawan, P.; Sachdeva, M.; Khan, N. Investigation of anti-depressant effect of aqueous and ethanolic extract of Cydonia oblonga in rats. Obes. Med. 2020, 18, e100202. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Mandal, A.; Hossain, U.; Sil, P.C. Chapter 5.2—Antioxidants and cardiovascular diseases. In Antioxidants Effects in Health; Nabavi, S.M., Sanches Silva, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 613–640. [Google Scholar]
- Zekrumah, M.; Begua, P.B.; Razak, A.S.; Wahab, J.; Moffo, N.; Ivane, A.; Oman, M.H.; Elrashied, H.T.; Zou, X.; Zhang, D. Dietary polyphenols—Role in non-communicable chronic disease prevention, and interactions in food systems. An overview. Nutrition 2023, 112, e112034. [Google Scholar] [CrossRef]
- Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Piscopo, V.; Monaco, P. Spectroscopic identification and antioxidant activity of glucosylated carotenoid metabolites from Cydonia vulgaris fruits. J. Agric. Food Chem. 2006, 54, 9592–9597. [Google Scholar] [CrossRef]
- Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Piccolella, S.; Monaco, P. Isolation, structure elucidation, and evaluation of cydonioside A, an unusual terpenoid from the fruits of Cydonia vulgaris. Chem. Biodivers. 2007, 4, 973–979. [Google Scholar] [CrossRef]
- Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Piscopo, V.; Caputo, R.; Monaco, P. Isolation and structure elucidation of antioxidant polyphenols from quince (Cydonia vulgaris) peels. J. Agric. Food Chem. 2008, 56, 2660–2667. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.M.; Valentao, P.; Seabra, R.M.; Andrade, P.P. Quince (Cydonia oblonga Miller): An interesting source of bioactive compounds. In Food Chemistry Research Development; Papadopoulos, K.N., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 243–266. [Google Scholar]
- Devkota, H.P.; Dirar, A.I.; Hassan, M.M.; Logesh, R. Chapter 10—Cydonia oblonga Mill. In Himalayan Fruits and Berries, Bioactive Compounds, Uses and Nutraceutical Potential; Belwal, T., Bhatt, I., Devkota, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 91–99. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; Silva, B.M. Phenolic profile of Cydonia oblonga Miller leaves. J. Agric. Food Chem. 2007, 55, 7926–7930. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.E.; Frederiksen, H.; Struntze Krogholm, K.; Poulsen, L. Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol. Nutr. Food Res. 2005, 49, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Yamaguchi, M.; Shigeyama, K.; Sakaguchi, I. The Anti-Aging Potential of Extracts from Chaenomeles sinensis. Cosmetics 2019, 6, 21. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.-M.; Qin, G.-Y. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food Chem. 2017, 234, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.P.; Wang, Y.Q.; Shi, L.; Zhang, Z.K.; Dong, F.; Li, H.R.; Zhang, J.Y.; Man, Y.Q. Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology. Chin. J. Nat. Med. 2021, 19, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Han, L.Y.; Zhang, H.; Xin, H.L. Chaenomeles speciosa: A review of chemistry and pharmacology. Biomed. Rep. 2014, 2, 12–18. [Google Scholar] [CrossRef]
- Fallon, C.M.; Quach, A.; Lajczak-McGinley, N.; O’Toole, A.; Barrett, K.E.; Sheridan, H.; Keely, S.J. Pentacyclic triterpenes modulate farnesoid X receptor expression in colonic epithelial cells: Implications for colonic secretory function. J. Biol. Chem. 2022, 298, 102569. [Google Scholar] [CrossRef]
- Xie, X.; Zou, G.; Li, C. Antitumor and immunomodulatory activities of a water-soluble polysaccharide from Chaenomeles speciosa. Carbohydr. Polym. 2015, 132, 323–329. [Google Scholar] [CrossRef]
- Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer. 2021, 149, 165–183. [Google Scholar] [CrossRef]
- Shao, J.; Fang, Y.; Zhao, R.; Chen, F.; Yang, M.; Jiang, J.; Chen, Z.; Yuan, X.; Jia, L. Evolution from small molecule to nano-drug delivery systems—An emerging approach for cancer therapy of ursolic acid. Asian J. Pharm. Sci. 2020, 15, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Y.; Li, Y.; Tang, Y.T.; Ma, X.D.; Tang, Z.Y. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed. Pharmacother. 2022, 145, e112397. [Google Scholar] [CrossRef] [PubMed]
- Ooi, K.X.; Poo, C.L.; Subramaniam, M.; Cordell, G.A.; Lim, Y.M. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. Phytomedicine 2023, 110, e154631. [Google Scholar] [CrossRef] [PubMed]
- Villani, V.; Di Marco, G.; Iacovelli, F.; Pietrucci, D.; Canini, A.; Gismondi, A. Profile and potential bioactivity of the miRNome and metabolome expressed in Malva sylvestris L. leaf and flower. BMC Plant Biol. 2023, 23, 439. [Google Scholar] [CrossRef]
- Gezici, S.; Sekeroglu, N. Regulation of MicroRNAs by Natural Products and Bioactive Compounds Obtained from Common Medicinal Plants: Novel Strategy in Cancer Therapy. Indian J. Pharm. Educ. Res. 2017, 51, s483–s488. [Google Scholar] [CrossRef]
- Soyturk, A.; Sen, F.; Uncu, A.T.; Celik, I.; Uncu, A.O. De novo assembly and characterization of the first draft genome of quince (Cydonia oblonga Mill.). Sci. Rep. 2021, 11, 3818. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, M.; Li, D. Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol. Cell. Biochem. 2015, 400, 1–7. [Google Scholar] [CrossRef]
- The Lancet (editorial) Hypertension: Uncontrolled and conquering the world. Lancet 2007, 370, 539. [CrossRef]
- He, H.; Wei, Q.; Chang, J.; Yi, X.; Yu, X.; Luo, G.; Li, X.; Yang, W.; Long, Y. Exploring the hypoglycemic mechanism of chlorogenic acids from Pyrrosia petiolosa (Christ) Ching on type 2 diabetes mellitus based on network pharmacology and transcriptomics strategy. J. Ethnopharmacol. 2023, 322, 117580. [Google Scholar] [CrossRef]
- Loza-Rodríguez, H.; Estrada-Soto, S.; Alarcón-Aguilar, F.J.; Huang, F.; Aquino-Jarquín, G.; Fortis-Barrera, Á.; Giacoman-Martínez, A.; Almanza-Pérez, J.C. Oleanolic acid induces a dual agonist action on PPARγ/α and GLUT4 translocation: A pentacyclic triterpene for dyslipidemia and type 2 diabetes. Eur. J. Pharmacol. 2020, 883, 173252. [Google Scholar] [CrossRef]
- Sawai, R.; Kuroda, K.; Shibata, T.; Gomyou, R.; Osawa, K.; Shimizu, K. Anti-influenza virus activity of Chaenomeles sinensis. J. Ethnopharmacol. 2008, 118, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Sawai-Kuroda, R.; Kikuchi, S.; Shimizu, Y.K.; Sasaki, Y.; Kuroda, K.; Tanaka, T.; Yamamoto, T.; Sakurai, K.; Shimizu, K. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro. J. Ethnopharmacol. 2013, 146, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Karar, M.G.E.; Pletzer, D.; Jaiswal, R.; Weingart, H.; Kuhnert, N. Identification, characterization, isolation and activity against Escherichia coli of quince (Cydonia oblonga) fruit polyphenols. Food Res. Int. 2014, 65, 121–129. [Google Scholar] [CrossRef]
- Armet, A.M.; Deehan, E.C.; O’Sullivan, A.F.; Mota, J.F.; Field, C.J.; Prado, C.M.; Lucey, A.J.; Walter, J. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe 2022, 30, 764–785. [Google Scholar] [CrossRef]
- Hamauzu, Y.; Kishida, H.; Yamazaki, N. Gastroprotective property of Pseudocydonia sinensis fruit jelly on the ethanol-induced gastric lesions in rats. J. Funct. Foods 2018, 48, 275–282. [Google Scholar] [CrossRef]
- Schloss, J.; Steel, A. Quince fruit compared to Vitamin B6 for treatment of nausea and vomiting in Pregnancy. Adv. Integr. Med. 2017, 4, 80–81. [Google Scholar] [CrossRef]
Pulp Compound | Main Extractant | Content | Ref. | |
---|---|---|---|---|
3-CQA (3-O-caffeoylquinic acid) neochlorogenic acid | Acetone | 5.68 | mg/100 g fm | [37] |
10.89 | mg/100 g fm | [39] | ||
Methanol | 68.46 | mg/100 g dm | [36] | |
50.00 | mg/100 g fm | [38] | ||
100.00 | mg/100 g fm | [41] | ||
252.00 | mg/100 g fm | [52] | ||
Water:acetone | 14.10 | mg/100 g fm | [53] | |
Water:methanol | 2.87 | mg/100 g fm | [35] | |
9.46 | mg/100 g fm | [54] | ||
4-CQA (4-O-caffeoylquinic acid) cryptochlorogenic acid | Acetone | 2.29 | mg/100 g fm | [39] |
Acidified methanol | 7.97 | mg/100 g dm | [36] | |
3.01 | mg/100 g fm | [55] | ||
Water:acetone | 1.50 | mg/100 g fm | [53] | |
Water:methanol | 0.47 | mg/100 g fm | [35] | |
0.85 | mg/100 g fm | [54] | ||
5-CQA (5-O-caffeoylquinic acid) chlorogenic acid | Acetone | 15.57 | mg/100 g fm | [37] |
15.72 | mg/100 g fm | [39] | ||
Acidified methanol | 12.83 | mg/100 g fm | [55] | |
Methanol | 64.88 | mg/100 g dm | [36] | |
67.00 | mg/100 g fm | [38] | ||
142.00 | mg/100 g fm | [41] | ||
Water:acetone | 12.30 | mg/100 g fm | [53] | |
Water:ethanol | 14.53 | mg/100 g fm | [40] | |
Water:methanol | 8.54 | mg/100 g fm | [35] | |
9.00 | mg/100 g fm | [54] | ||
3,5-di-CQA (3,5-di-O-caffeoylquinic acid) | Acetone | 13.96 | mg/100 g fm | [39] |
Methanol | 5.63 | mg/100 g dm | [36] | |
7.00 | mg/100 g fm | [41] | ||
Water:methanol | 0.53 | mg/100 g fm | [35] | |
0.93 | mg/100 g fm | [54] | ||
3-p-Coumaroylquinic acid | Acidified methanol | 0.44 | mg/100 g fm | [55] |
5-p-Coumaroylquinic acid | Acidified methanol | 2.27 | mg/100 g fm | [55] |
p-Coumaroylquinic acid | Acetone | 1.21 | mg/100 g fm | [39] |
(+)-Catechin | Acetone | 7.20 | mg/100 g fm | [37] |
Acidified methanol | 0.06 | mg/100 g fm | [55] | |
(−)-Catechin | Acetone | 0.18 | mg/100 g fm | [37] |
Catechin | Water:ethanol | 0.02 | mg/100 g fm | [40] |
(−)-Epicatechin | Acidified methanol | 2.25 | mg/100 g fm | [55] |
Epicatechin | Water:ethanol | 0.11 | mg/100 g fm | [40] |
Kaempferol rutinoside | Acidified methanol | 0.08 | mg/100 g fm | [55] |
Kaempferol hexoside | Acidified methanol | 0.38 | mg/100 g fm | [55] |
Phloridzin | Water:ethanol | <0.01 | mg/100 g fm | [40] |
Procyanidin B1 | Methanol | 2.00 | mg/100 g fm | [52] |
Water:ethanol | 6.52 | mg/100 g fm | [40] | |
Procyanidin B2 | Water:acetone | 1.40 | mg/100 g fm | [53] |
Quercetin | Acidified methanol | 0.37 | mg/100 g fm | [55] |
Q-3-Gal (quercetin-3-O-galactoside) hyperin | Acidified methanol | 5.64 | mg/100 g fm | [55] |
Water:methanol | 0.06 | mg/100 g fm | [35] | |
0.25 | mg/100 g fm | [54] | ||
Q-3-G (quercetin-3-O-glucoside) | Methanol | 2.00 | mg/100 g fm | [52] |
Q-3-R (quercetin-3-O-rutinoside) rutin | Acetone | 9.05 | mg/100 g fm | [37] |
0.51 | mg/100 g fm | [39] | ||
Acidified methanol | 2.27 | mg/100 g fm | [55] | |
Methanol | 3.30 | mg/100 g dm | [36] | |
2.00 | mg/100g fm | [41] | ||
146.00 | mg/100 g fm | [52] | ||
Water:ethanol | 0.005 | mg/100 g fm | [40] | |
Water:methanol | 0.53 | mg/100 g fm | [35] | |
0.33 | mg/100 g fm | [54] |
Peel Compound | Main Extractant | Content | Ref. | |
---|---|---|---|---|
3-CQA (3-O-caffeoylquinic acid) neochlorogenic acid | Acetone | 3.94 | mg/100 g fm | [37] |
26.46 | mg/100 g fm | [39] | ||
Methanol | 196.64 | mg/100 g dm | [36] | |
114.00 | mg/100 g fm | [38] | ||
128.00 | mg/100 g fm | [41] | ||
Water:methanol | 5.55 | mg/100 g fm | [35] | |
20.99 | mg/100 g fm | [54] | ||
4-CQA (4-O-caffeoylquinic acid) cryptochlorogenic acid | Acetone | 0.51 | mg/100 g fm | [37] |
4.82 | mg/100 g fm | [39] | ||
Methanol | 17.44 | mg/100 g dm | [36] | |
18.00 | mg/100 g fm | [38] | ||
Water:methanol | 0.93 | mg/100 g fm | [35] | |
1.92 | mg/100 g fm | [54] | ||
5-CQA (5-O-caffeoylquinic acid) chlorogenic acid | Acetone | 12.85 | mg/100 g fm | [37] |
36.76 | mg/100 g fm | [39] | ||
Methanol | 182.94 | mg/100 g dm | [36] | |
165.00 | mg/100 g fm | [38] | ||
184.00 | mg/100 g fm | [41] | ||
Water:ethanol | 41.13 | mg/100 g fm | [40] | |
Water:methanol | 17.95 | mg/100 g fm | [35] | |
27.98 | mg/100 g fm | [54] | ||
3,5-di-CQA (3,5-O-dicaffeoylquinic acid) | Acetone | 13.96 | mg/100 g fm | [39] |
Methanol | 9.87 | mg/100 g dm | [36] | |
13.00 | mg/100 g fm | [41] | ||
Water:methanol | 1.63 | mg/100 g fm | [35] | |
2.43 | mg/100 g fm | [54] | ||
(+)-Catechin | Acetone | 5.07 | mg/100 g fm | [37] |
(–)-Catechin | Acetone | 0.10 | mg/100 g fm | [37] |
Catechin | Acetone | 3.40 | mg/100 g fm | [39] |
Water:ethanol | 0.20 | mg/100 g fm | [40] | |
4-p-Coumaroylquinic acid | Water:ethanol | 0.11 | mg/100 g fm | [40] |
p-Coumaroylquinic acid | Acetone | 1.39 | mg/100 g fm | [39] |
Epicatechin | Water:ethanol | 3.50 | mg/100 g fm | [40] |
Kaempferol | Acetone | 12.60 | mg/100 g fm | [40] |
K-3-G (kaempferol-3-O-glucoside) | Acetone | 10.65 | mg/100 g fm | [37] |
2.48 | mg/100 g fm | [39] | ||
Methanol | 8.88 | mg/100 g dm | [36] | |
55.00 | mg/100 g fm | [38] | ||
34.00 | mg/100 g fm | [41] | ||
Water:methanol | 3.54 | mg/100 g fm | [35] | |
2.58 | mg/100 g fm | [54] | ||
K-3-Gly (kaempferol-3-O-glycoside | Water:methanol | 3.22 | mg/100 g fm | [54] |
Methanol | 14.00 | mg/100 g fm | [38] | |
25.00 | mg/100 g fm | [41] | ||
Kaempferol glycoside | Methanol | 11.22 | mg/100 g dm | [36] |
Kaempferol glycoside acylated with p-coumaric acid A1 | Water:methanol | 1.84 | mg/100 g fm | [54] |
Kaempferol glycoside acylated with p-coumaric acid A1 | Methanol | 5.38 | mg/100 g dm | [36] |
Kaempferol glycoside acylated with p-coumaric acid A2 | Water:methanol | 3.45 | mg/100 g fm | [54] |
Kaempferol glycoside acylated with p-coumaric acid A2 | Methanol | 10.95 | mg/100 g dm | [36] |
Kaempferol glycoside acylated with p-coumaric acid | Methanol | 24.00 | mg/100 g fm | [38] |
5.00 | mg/100 g fm | [41] | ||
K-3-R (kaempferol-3-O-rutinoside) | Acetone | 3.96 | mg/100 g fm | [37] |
1.13 | mg/100 g fm | [39] | ||
Methanol | 15.22 | mg/100 g dm | [36] | |
2.10 | mg/100 g fm | [41] | ||
Water:methanol | 6.11 | mg/100 g fm | [35] | |
5.10 | mg/100 g fm | [54] | ||
Quercetin | Acetone | 7.01 | mg/100 g fm | [37] |
Q-3-Gal (quercetin-3-O-galactoside) hyperin | Acetone | 12.40 | mg/100 g fm | [37] |
4.46 | mg/100 g fm | [39] | ||
Methanol | 49.12 | mg/100 g dm | [36] | |
329.00 | mg/100 g fm | [38] | ||
Water:methanol | 10.08 | mg/100 g fm | [35] | |
6.07 | mg/100 g fm | [54] | ||
Q-3-G (quercetin-3-O-glucoside) isoquercitrin | Acetone | 9.23 | mg/100 g fm | [37] |
Quercetin glycoside acylated with p-coumaric acid A1 | Methanol | 16.69 | mg/100 g dm | [36] |
Quercetin glycoside acylated with p-coumaric acid A2 | Methanol | 6.57 | mg/100 g dm | [36] |
Quercetin glycoside acylated with p-coumaric acid | Acetone | 5.92 | mg/100 g fm | [37] |
Methanol | 22.00 | mg/100 g fm | [38] | |
11.00 | mg/100 g fm | [41] | ||
Water:methanol | 5.20 | mg/100 g fm | [54] | |
1.77 | mg/100 g fm | [54] | ||
Quercetin glycosides acylated with p-coumaric acid | Methanol | 4.00 | mg/100 g fm | [41] |
Q-3-R (quercetin-3-O-rutinoside) rutin | Acetone | 47.21 | mg/100 g fm | [37] |
17.59 | mg/100 g fm | [39] | ||
Methanol | 177.78 | mg/100 g dm | [36] | |
329.00 | mg/100 g fm | [38] | ||
Water:ethanol | 0.93 | mg/100 g fm | [40] | |
Water:methanol | 51.73 | mg/100 g fm | [35] | |
74.08 | mg/100 g fm | [54] | ||
Phloridzin | Water:ethanol | >0.01 | mg/100 g fm | [40] |
Procyanidin B1 | Water:ethanol | 11.02 | mg/100 g fm | [40] |
Seed Compound | Content | Ref. | |
---|---|---|---|
3-CQA (3-O-caffeoylquinic acid) neochlorogenic acid | 2.40 | mg/100 g dm | [36] |
1.00 | mg/100 g fm | [38] | |
1.00 | mg/100 g fm | [41] | |
4-CQA (4-O-caffeoylquinic acid) cryptochlorogenic acid | 2.76 | mg/100 g dm | [36] |
5-CQA (5-O-caffeoylquinic acid) chlorogenic acid | 5.44 | mg/100 g dm | [36] |
6.00 | mg/100 g fm | [38] | |
5.00 | mg/100 g fm | [41] | |
3,5-di-CQA (3,5-di-O-caffeoylquinic acid) | 2.99 | mg/100 g dm | [36] |
6-C-Glucosyl-8-C-pentosyl chrysoeriol | 1.61 | mg/100 g dm | [36] |
5.00 | mg/100 g fm | [38] | |
6.00 | mg/100 g fm | [41] | |
6-C-Pentosyl-8-C-glucosyl chrysoeriol | 2.18 | mg/100 g dm | [36] |
10.00 | mg/100 g fm | [38] | |
3.00 | mg/100 g fm | [41] | |
Isoschaftoside | 1.71 | mg/100 g dm | [36] |
8.00 | gm/100 g fm | [41] | |
Lucenin-2 | 1.02 | mg/100 g dm | [36] |
3.00 | mg/100 g fm | [38] | |
3.00 | mg/100 g fm | [41] | |
Schaftoside | 1.14 | mg/100 g dm | [36] |
5.00 | mg/100 g fm | [38] | |
6.00 | mg/100 g fm | [41] | |
Stellarin-2 | 2.76 | mg/100 g dm | [36] |
15.00 | mg/100 g fm | [38] | |
8.00 | mg/100 g fm | [41] | |
Vicenin-2 | 1.46 | mg/100 g dm | [36] |
7.00 | mg/100 g fm | [38] |
Activity | Species | Details | Ref. |
---|---|---|---|
Antioxidative | C. oblonga | prevention of hematotoxic stress | [44] |
in vitro effects | [46,55,56,109,110,111,112,113] | ||
C. japonica | in vitro effects | [16,59,62] | |
C. speciosa | in vitro effects | [62,114] | |
increase in GSH-Px activity and antioxidant capacity in mice serum | [115] | ||
in vitro activity of two peptides RHAKF and NNRYE | [116] | ||
C. thiberica | in vitro effects | [62] | |
in vitro effects, increased CAT, SOD, and GSH content in rat serum | [117] | ||
P. sinensis | in vitro effects | [62] | |
increase in SOD, GSH, and CAT levels in rat serum | [118] | ||
Anti-inflammatory Immuno-modulatory | C. oblonga | inhibition of NF-κ98980B and p38MAPK, and Akt activation | [110] |
IgE-dependent late-phase immune reaction modulation in vitro | [119] | ||
suppressing IgE production in type I allergy | [120] | ||
various anti-histamine effects | [121] | ||
C. japonica | reduction in the expression of IL-1β, IL-6, TNF-α, COX-2, iNOS, NF-κB p65, and p-NF-κB p65 in RAW264.7 cells | [122] | |
C. speciosa | inhibition of TNF-α production in RAW264.7 cells | [123] | |
anti-inflammatory effects by standard tests in mice/rats | [124] | ||
inhibition of COX-1 and COX-2 activities | [125] | ||
reduction in lymphocyte proliferation, and IL-1, IL-2, and TNF-α production in peritoneal macrophages and synoviocytes | [126] | ||
reduction in PGE2 and TNF-α concentration in synoviocytes | [127] | ||
inhibition of TNF- α, IL-1β, and COX-2; JNK and ERK1/2 phosphorylation in NR8383 cells | [128] | ||
P. sinensis | inhibition of scratching induced by serotonin, platelet-activating factor, and prostaglandin E2 | [106] | |
inhibition of TNF-α expression by blocking ERK, p38(MAPK), and JNK activation in HMC-1 cells | [107] | ||
Anticancer | C. oblonga | inhibitory activity toward human colon cancer cells | [38] |
cytotoxic effects on HepG2, A549, and HeLa cells | [113] | ||
apoptosis of colon cancer LS174 cells | [129] | ||
reduced liver damage in hepatocellular carcinoma | [130] | ||
C. japonica | activation of MMP-2 and MMP-9 secreted by leukemia HL-60 cells | [131] | |
change in Bax/Bcl-2 ratio in DU145 prostate cancer cells; inhibition of MDA-MB-231 breast cancer cells | [132] | ||
COX-2 and MMP-9 inhibition, NF-κB expression, anti-metastatic activities towards SW-480 colon cancer cells | [133] | ||
reducing HROG36 glioma cell viability | [134] | ||
cytotoxic effect on SW-480 and HT-29 colon cancer cells | [135] | ||
C. speciosa | inhibition of sarcoma 180 cells by promoting secretion of IL-2, TNF-α, and IFN-γ in serum | [68] | |
C. thiberica | protective effect on chronic hepatic damage via the MAPK/Nrf2 pathway | [117] | |
P. sinensis | cytotoxic effect on human anaplastic large cell lymphoma JB6 cells | [136] | |
Cardio-protective | C. oblonga | lipid profile, blood serum parameter improvement | [137,138] |
essential and renovascular hypertension reduction | [139] | ||
renal hypertension reduction | [140] | ||
anti-thromboxane effect | [141] | ||
improving the degree of aortic injury and hemodynamic indicators | [142] | ||
DOX-induced cardiotoxicity alleviation | [143,144] | ||
C. speciosa | reduction in relative atherosclerotic plaque area of aortic sinus and aortic arch | [115] | |
P. sinensis | increase in thromboplastin (TF) inhibitory activity | [145] | |
Antidiabetic | C. oblonga | inhibition of tyrosine phosphatase activity | [112] |
activating PI3K/AKT insulin signaling in vitro | [146] | ||
multifactorial anti-obesity effects | [147] | ||
blood glucose level reduction | [148] | ||
C. japonica | elevation of gluconeogenesis through modulation of PEPCK, PTP1B, FOXO1, and GLUT2/4 expression | [149] | |
P. sinensis | hypoglycemic effect, modulation of lipid metabolism | [118] | |
α- and β-galactosidase inhibitory activities | [150] | ||
inhibition of glucose transporter, α- and β-glucosidase, and amylase | [151] | ||
Antibacterial Antiviral Antifungal | C. oblonga | against: S. aureus, P. aeruginosa, E. coli, and yeast C. albicans | [37] |
against E. aerogenes and E. coli | [152] | ||
against SARS-CoV-2 virus | [153] | ||
C. japonica | mainly against E. faccalis, B. subtilis, and S. aureus | [72] | |
Other | C. oblonga | treatment of gastroesophageal reflux (GARD) | [154,155,156] |
reducing menstrual bleeding and increasing hemoglobin levels | [157] | ||
antidepressant activity | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostecka-Gugała, A. Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants 2024, 13, 71. https://doi.org/10.3390/antiox13010071
Kostecka-Gugała A. Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants. 2024; 13(1):71. https://doi.org/10.3390/antiox13010071
Chicago/Turabian StyleKostecka-Gugała, Anna. 2024. "Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use" Antioxidants 13, no. 1: 71. https://doi.org/10.3390/antiox13010071
APA StyleKostecka-Gugała, A. (2024). Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants, 13(1), 71. https://doi.org/10.3390/antiox13010071