Exploiting the Crithmum maritimum L. Aqueous Extracts and Essential Oil as Potential Preservatives in Food, Feed, Pharmaceutical and Cosmetic Industries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extracts Preparation and Essential Oil Isolation
2.3. Chemical Composition
2.3.1. Nutritional Profile of Sea Fennel
2.3.2. Phytochemical Characterization
Phenolic Profile and Quantification of Chlorogenic Acid by High Pressure Chromatography Coupled to Photo Diode Array Detector (HPLC-PDA)
Analysis of the Essential Oil
2.4. Evaluation of Biological Activities
2.4.1. Antioxidant Activity
2,2-Diphenyl-1-Picrylhydrazyl Radical Assay (DPPH)
2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonate) Assay (pH = 7) (ABTS)
2.4.2. Antibacterial Activity
Disc-Diffusion Assay
Microdilution Assay
2.5. Statistical Analysis
3. Results
3.1. Nutritional Profile of Sea Fennel
3.2. Phenolic Profile of Aqueous Extracts from Sea Fennel
Quantification of Chlorogenic Acid
3.3. Sea Fennel’s Essential Oil Composition
3.4. Antioxidant Activity
3.5. Antibacterial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bozsik, N.; Cubillos, J.; Stalbek, B.; Vasa, L.; Magda, R. Food security management in developing countries: Influence of economic factors on their food availability and access. PLoS ONE 2022, 17, e0271696. [Google Scholar] [CrossRef] [PubMed]
- Zenobi, S.; Fiorentini, M.; Ledda, L.; Deligios, P.; Aquilanti, L.; Orsini, R. Crithmum maritimum L. Biomass Production in Mediterranean Environment. Agron 2022, 12, 926. [Google Scholar] [CrossRef]
- Ahmadi, F.; Mohammadkhani, N.; Servati, M. Halophytes play important role in phytoremediation of salt-affected soils in the bed of Urmia Lake, Iran. Sci. Rep. 2022, 121, 12223. [Google Scholar] [CrossRef]
- Rodrigues, M.; Custódio, L.; Mecha, D.; Zengin, G.; Cziáky, Z.; Sotkó, G.; Pereira, C. Nutritional and Phyto-Therapeutic Value of the Halophyte Cladium mariscus L. (Pohl.): A Special Focus on Seeds. Plants 2022, 11, 2910. [Google Scholar] [CrossRef]
- Hawas, U.; El-Kassem, L.; Shaher, F.; Al-Farawati, R.; Ghandourah, M. Phytochemical Compositions of Some Red Sea Halophyte Plants with Antioxidant and Anticancer Potentials. Molecules 2022, 27, 3415. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; He, F.; Morris, J.; MacGregor, G. Reducing daily salt intake in China by 1 g could prevent almost 9 million cardiovascular events by 2030: A modelling study. BMJ Nutr. Prev. Health 2022, 5, e000408. [Google Scholar] [CrossRef] [PubMed]
- Kenao, T.; Jerôme, C.S.; Paraiso, M.; Belo, M.; Sopoh, G.; Agueh, V. Dietary Sodium and Potassium Intakes and Salt Reduction Strategies: Systematic Review in Africa (2012–2022). Int. Arch. Public Health Community Med. 2022, 6, 082. [Google Scholar] [CrossRef]
- Cury, C.; Banin, V.; Reis, P.; Caramori, J.; Barretti, P.; de Andrade, L.; Martin, L. Association between urinary sodium excretion and hard outcomes in non-dialysis chronic kidney disease patients. BMC Nephrol. 2022, 23, 289. [Google Scholar] [CrossRef]
- Shi, H.; Su, X.; Li, C.; Guo, W.; Wang, L. Effect of a low-salt diet on chronic kidney disease outcomes: A systematic review and meta-analysis. BMJ Open 2022, 12, e050843. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef]
- Zafeiropoulou, V.; Tomou, E.-M.; Ioannidou, O.; Karioti, A.; Skaltsa, H. Sea fennel: Phytochemical analysis of Greek wild and cultivated Crithmum maritimum L. populations, based on HPLC-PDA-MS and NMR methods. J. Pharmacogn. Phytochem. 2020, 9, 998–1004. [Google Scholar]
- Alves-Silva, J.; Guerra, I.; Gonçalves, M.; Cavaleiro, C.; Cruz, M.; Figueirinha, A.; Salgueiro, L. Chemical composition of Crithmum maritimum L. essential oil and hydrodistillation residual water by GC-MS and HPLC-DAD-MS/MS, and their biological activities. Ind. Crops Prod. 2020, 149, 112329. [Google Scholar] [CrossRef]
- Petropoulos, S.; Karkanis, A.; Martins, N.; Ferreira, I. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Piatti, D.; Angeloni, S.; Maggi, F.; Caprioli, G.; Ricciutelli, M.; Arnoldi, L.; Bosisio, S.; Mombelli, G.; Drenaggi, E.; Sagratini, G. Comprehensive characterization of phytochemicals in edible sea fennel (Crithmum maritimum L., Apiaceae) grown in central Italy. J. Food Compos. Anal. 2023, 115, 104884. [Google Scholar] [CrossRef]
- Maoloni, A.; Cardinali, F.; Milanović, V.; Osimani, A.; Verdenelli, M.; Coman, M.; Aquilanti, L. Exploratory Study for Probiotic Enrichment of a Sea Fennel (Crithmum maritimum L.) Preserve in Brine. Foods 2022, 11, 2219. [Google Scholar] [CrossRef] [PubMed]
- Nabet, N.; Boudries, H.; Chougui, N.; Loupassaki, S.; Souagui, S.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.; Madani, K.; Larbat, R. Biological activities and secondary compound composition from Crithmum maritimum aerial parts. Int. J. Food Prop. 2017, 20, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Pedreiro, S.; da Ressurreição, S.; Lopes, M.; Cruz, M.; Batista, T.; Figueirinha, A.; Ramos, F. Crepis vesicaria L. Subsp. taraxacifolia leaves: Nutritional profile, phenolic composition and biological properties. Int. J. Environ. Res. Public Health 2021, 18, 151. [Google Scholar] [CrossRef] [PubMed]
- Figueirinha, A.; Cruz, M.; Francisco, V.; Lopes, M.; Batista, M. Anti-Inflammatory Activity of Cymbopogon citratus Leaf Infusion in Lipopolysaccharide-Stimulated Dendritic Cells: Contribution of the Polyphenols. J. Med. Food. 2010, 13, 681–690. [Google Scholar] [CrossRef]
- Giordano, A.; Morales-Tapia, P.; Moncada-Basualto, M.; Pozo-Martínez, J.; Olea-Azar, C.; Nesic, A.; Cabrera-Barjas, G. Polyphenolic Composition and Antioxidant Activity (ORAC, EPR and Cellular) of Different Extracts of Argylia radiata Vitroplants and Natural Roots. Molecules 2022, 27, 610. [Google Scholar] [CrossRef]
- Couto, J.; Figueirinha, A.; Batista, M.; Paranhos, A.; Nunes, C.; Gonçalves, L.; Marto, J.; Fitas, M.; Pinto, P.; Ribeiro, H.; et al. Fragaria vesca L. Extract: A promising cosmetic ingredient with antioxidant properties. Antioxidants 2020, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Rosca, A.; Castro, J.; Sousa, L.; França, A.; Cavaleiro, C.; Salgueiro, L.; Cerca, N. Six Bacterial Vaginosis-Associated Species Can Form an In Vitro and Ex Vivo Polymicrobial Biofilm that Is Susceptible to Thymbra capitata Essential Oil. Front. Cell. Infect. Microbiol. 2022, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, O.; Donato, M.; Luxo, C.; Almeida, N.; Liberal, J.; Figueirinha, A.; Batista, M. Anti-Helicobacter pylori potential of Agrimonia eupatoria L. and Fragaria vesca. J. Funct. Foods 2018, 44, 299–303. [Google Scholar] [CrossRef]
- Liberal, J.; Francisco, V.; Costa, G.; Figueirinha, A.; Amaral, M.; Marques, C.; Girão, H.; Lopes, M.; Cruz, M.; Batista, M. Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. J. Ethnopharmacol. 2014, 158, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Francisco, V.; Figueirinha, A.; Costa, G.; Liberal, J.; Lopes, M.; García-Rodríguez, C.; Geraldes, C.; Cruz, M.; Batista, M. Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. J. Funct. Foods 2014, 10, 436–443. [Google Scholar] [CrossRef]
- Matos, P.; Figueirinha, A.; Ferreira, I.; Cruz, M.; Batista, M. Acanthus mollis L. leaves as source of anti-inflammatory and antioxidant phytoconstituents. Nat. Prod. Res. 2019, 33, 1824–1827. [Google Scholar] [CrossRef] [PubMed]
- Borges, P.; Pedreiro, S.; Baptista, S.; Geraldes, C.; Batista, M.; Silva, M.; Figueirinha, A. Inhibition of α-glucosidase by flavonoids of Cymbopogon citratus (DC) Stapf. J. Ethnopharmacol. 2021, 280, 114470. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.; Ijaz, M.; Buabeid, M.; Kharaba, Z.; Yaseen, H.; Murtaza, G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Des. Devel. Ther. 2021, 15, 4713–4732. [Google Scholar] [CrossRef]
- Gasmi, A.; Mujawdiya, P.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; et al. Polyphenols in Metabolic Diseases. Molecules 2022, 27, 6280. [Google Scholar] [CrossRef]
- Pereira, C.; Barreira, L.; da Rosa Neng, N.; Nogueira, J.; Marques, C.; Santos, T.; Varela, J.; Custódio, L. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem. Toxicol. 2017, 107, 581–589. [Google Scholar] [CrossRef]
- Souid, A.; Della Croce, C.; Frassinetti, S.; Gabriele, M.; Pozzo, L.; Ciardi, M.; Abdelly, C.; Hamed, K.B.; Magné, C.; Longo, V. Nutraceutical Potential of Leaf Hydro-Ethanolic Extract of the Edible Halophyte Crithmum maritimum L. Molecules 2021, 26, 5380. [Google Scholar] [CrossRef]
- Anand, S.; Sati, N. Artificial Preservatives and Their Harmful Effects: Looking Toward Nature for Safer Alternatives. Int. J. Pharm. Sci. Res. IJPSR 2013, 4, 2496–2501. [Google Scholar]
- Chinyere, S. Analysis of Health Consequences of Preservatives on Agricultural Foods. Off. Publ. Direct Res. J. Agric. Food Sci. 2021, 9, 1–6. [Google Scholar]
- Halla, N.; Fernandes, I.; Heleno, S.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.; Ferreira, I.; Barreiro, M. Cosmetics Preservation: A Review on Present Strategies. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 1571. [Google Scholar] [CrossRef] [PubMed]
- Yim, E.; Nole, K.; Tosti, A. Contact dermatitis caused by preservatives. Dermatitis 2014, 25, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Attebäck, M.; Hedin, B.; Mattsson, S. Formulation Optimization of Extemporaneous Oral Liquids Containing Naloxone and Propranolol for Pediatric Use. Sci. Pharm. 2022, 90, 15. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.; Villar, C.; Lombó, F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.; Munekata, P.; Dominguez, R.; Pateiro, M.; Saraiva, J.; Franco, D. Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. Innov. Technol. Food Preserv. 2018, 53, 53–107. [Google Scholar]
- Bashir, A.; Lambert, P. Microbiological study of used cosmetic products: Highlighting possible impact on consumer health. J. Appl. Microbiol. 2020, 128, 598–605. [Google Scholar] [CrossRef]
- Union, P. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (recast) Text with EEA relevance. Off. J. Eur. Union 2009, 59, 342. [Google Scholar]
- Scientific Committee on Consumer Products (SCCP). The SCCP’s Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation; SCCP: Brussels, Belgium, 2018. [Google Scholar]
- Horwitz, W.; AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analysis Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Spectrom: Stamford, CT, USA, 2007. [Google Scholar]
- Linstrom, P.; Mallard, W. NIST Chemistry WebBook, NIST Stand. Ref. Database Number 69. Natl. Inst. Stand. Technol. 2019, 20899. Available online: https://webbook.nist.gov/chemistry/ (accessed on 23 November 2022).
- McLafferty, F. Wiley Registry of Mass Spectral Data 9th/NIST 08; Mass Spectral Libraly: Gaithersburg, MD, USA, 2009. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Carvalho, M.; Albano, H.; Teixeira, P. In Vitro Antimicrobial Activities of Various Essential Oils Against Pathogenic and Spoilage Microorganisms. J. Food Qual. Hazards Control 2018, 5, 41–48. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.; Roque, M.; Cavaleiro, C.; Ramos, F. Nutrient value of Salicornia ramosissima—A green extraction process for mineral analysis. J. Food Compos. Anal. 2021, 104, 104135. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Matías, L.; Pérez-Ramos, I.; Moreira, X.; Muñoz-Vallés, S.; Mancilla-Leytón, J.; Francisco, M.; García-González, A.; DeAndrés-Gil, C.; Martínez-Force, E.; et al. Differences in nutrient composition of sea fennel (Crithmum maritimum) grown in different habitats and optimally controlled growing conditions. J. Food Compos. Anal. 2022, 106, 104266. [Google Scholar] [CrossRef]
- Karkanis, A.; Polyzos, N.; Kompocholi, M.; Petropoulos, S. Rock Samphire, a Candidate Crop for Saline Agriculture: Cropping Practices, Chemical Composition and Health Effects. Appl. Sci. 2022, 12, 737. [Google Scholar] [CrossRef]
- Da Ressurreição, S.; Pedreiro, S.; Batista, M.; Figueirinha, A. Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol. Molecules 2022, 27, 7338. [Google Scholar] [CrossRef] [PubMed]
- Mekinić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M.; et al. Sea fennel (Crithmum maritimum L.): Phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J. Food Sci. Technol. 2016, 53, 3104. [Google Scholar] [CrossRef] [Green Version]
- Alemán, A.; Marín, D.; Taladrid, D.; Montero, P.; Gómez-Guillén, M.C. Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Res. Int. 2019, 119, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Rojas-González, A.; Figueroa-Hernández, C.; González-Rios, O.; Suárez-Quiroz, M.; González-Amaro, R.; Hernández-Estrada, Z.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.; Pérez-Jiménez, J.; Torres, J.; Agosin, E.; Pérez-Correa, J. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef] [PubMed]
- Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Zeljković, S.Ć. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 2021, 26, 1601. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Akgül, A.; Başcr, K.; Özck, T.; Tabanca, N. Essential oil composition of sea fennel (Crithmum maritimum) form Turkey. Nahr./Food 2001, 45, 353–356. [Google Scholar] [CrossRef]
- Kulisic-Bilusic, T.; Blažević, I.; Dejanović, B.; Miloš, M.; Pifat, G. Evaluation of the Antioxidant Activity of Essential Oils from Caper (Capparis spinosa) and Sea Fennel (Crithmum Maritimum) by Different Methods. J. Food Biochem. 2010, 34, 286–302. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.; Deans, S.; Dorman, H. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 2000, 66, 687–693. [Google Scholar] [CrossRef]
- Senatore, F.; Napolitano, F.; Ozcan, M. Composition and antibacterial activity of the essential oil from Crithmum maritimum L. (Apiaceae) growing wild in Turkey. Flavour Fragr. J. 2000, 15, 186–189. [Google Scholar] [CrossRef]
- Şanli, A.; Karadoğan, T. Geographical Impact on Essential Oil Composition of Endemic Kundmannia Anatolica Hub.-Mor. (Apiaceae). African J. Tradit. Complement. Altern. Med. 2017, 14, 131. [Google Scholar] [CrossRef]
- Siracusa, L.; Kulisic-Bilusic, T.; Politeo, O.; Krause, I.; Dejanovic, B.; Ruberto, G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J. Agric. Food Chem. 2011, 59, 12453–12459. [Google Scholar] [CrossRef]
- Durmaz, L.; Kiziltas, H.; Guven, L.; Karagecili, H.; Alwasel, S.; Gulcin, İ. Antioxidant, Antidiabetic, Anticholinergic, and Antiglaucoma Effects of Magnofluorine. Molecules 2022, 27, 5902. [Google Scholar] [CrossRef]
- Weber, R. Adverse Reactions to the Antioxidants Butylated Hydroxyanisole and Butylated Hydroxytoluene. In Food Allergy: Adverse Reactions to Foods and Food Additives, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 393–401. [Google Scholar]
- Caleja, C.; Barros, L.; Antonio, A.; Beatriz, M.; Oliveira, P.; Ferreira, I. A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chem. 2017, 216, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 1396. [Google Scholar] [CrossRef]
- Pedreiro, S.; Figueirinha, A.; Silva, A.; Ramos, F. Bioactive Edible Films and Coatings Based in Gums and Starch: Phenolic Enrichment and Foods Application. Coatings 2021, 11, 1393. [Google Scholar] [CrossRef]
- Xue, N.; Liu, Y.; Jin, J.; Ji, M.; Chen, X. Chlorogenic Acid Prevents UVA-Induced Skin Photoaging through Regulating Collagen Metabolism and Apoptosis in Human Dermal Fibroblasts. Int. J. Mol. Sci. 2022, 23, 6941. [Google Scholar] [CrossRef] [PubMed]
- Neelakandan, M.; Manoharan, S.; Muralinaidu, R.; Thara, J. Tumor preventive and antioxidant efficacy of chlorogenic acid–loaded chitosan nanoparticles in experimental skin carcinogenesis. Naunyn. Schmiedebergs. Arch. Pharmacol. 2022, 1–14. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Su, M.; Liu, F.; Luo, Z.; Wu, H.; Zhang, X.; Wang, D.; Zhu, Y.; Sun, Z.; Xu, W.; Miao, Y. The Antibacterial Activity and Mechanism of Chlorogenic Acid Against Foodborne Pathogen Pseudomonas aeruginosa. Foodborne Pathog. Dis. 2019, 16, 823–830. Available online: https://home.liebertpub.com/fpd (accessed on 15 November 2022). [CrossRef]
- Sun, Z.; Zhang, X.; Wu, H.; Wang, H.; Bian, H.; Zhu, Y.; Xu, W.; Liu, F.; Wang, D.; Fu, L. Antibacterial activity and action mode of chlorogenic acid against Salmonella Enteritidis, a foodborne pathogen in chilled fresh chicken. World J. Microbiol. Biotechnol. 2020, 36, 24. [Google Scholar] [CrossRef]
- Martínez, G.; Regente, M.; Jacobi, S.; Del Rio, M.; Pinedo, M.; de la Canal, L. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Physiol. 2017, 140, 30–35. [Google Scholar] [CrossRef]
- Pitt, T.; McClure, J.; Parker, M.; Amézquita, A.; McClure, P. Bacillus cereus in personal care products: Risk to consumers. Int. J. Cosmet. Sci. 2015, 37, 165–174. [Google Scholar] [CrossRef]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: International and Indian perspective. J. Food Sci. Technol. 2015, 52, 2500–2511. [Google Scholar] [CrossRef] [Green Version]
- Kadariya, J.; Smith, T.; Thapaliya, D. Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. Biomed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Seok, Y.; Cho, T.; Rhee, M. Risk factors influencing contamination of customized cosmetics made on-the-spot: Evidence from the national pilot project for public health. Sci. Rep. 2020, 10, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, Z.; Ramzan, R.; Abdelazez, A.; Amjad, A.; Afzaal, M.; Zhang, S.; Pan, S. Assessment of the Antimicrobial Potentiality and Functionality of Lactobacillus plantarum Strains Isolated from the Conventional Inner Mongolian Fermented Cheese Against Foodborne Pathogens. Pathogens 2019, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Jo, C.; Myung, C.; Yoon, Y.; Ahn, B.; Min, J.; Seo, W.; Lee, D.; Kang, H.; Heo, Y.; Choi, H.; et al. The Effect of Lactobacillus plantarum Extracellular Vesicles from Korean Women in Their 20s on Skin Aging. Curr. Issues Mol. Biol. 2022, 44, 526–540. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Buzón-Durán, L.; Andrés-Juan, C.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Physicochemical characterization of Crithmum maritimum L. and daucus carota subsp. gummifer (syme) hook.fil. and their antimicrobial activity against apple tree and grapevine phytopathogens. Agronomy 2021, 11, 886. [Google Scholar] [CrossRef]
- D’agostino, G.; Giambra, B.; Palla, F.; Bruno, M.; Badalamenti, N. The Application of the Essential Oils of Thymus vulgaris L. and Crithmum maritimum L. as Biocidal on Two Tholu Bommalu Indian Leather Puppets. Plants 2021, 10, 1508. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Z.-W.; Yin, Z.-Q.; Wei, Q.; Jia, R.-Y.; Zhou, L.-J.; Xu, J.; Song, X.; Zhou, Y.; Du, Y.-H.; et al. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. Int. J. Clin. Exp. Med. 2014, 7, 1721–1727. [Google Scholar] [PubMed]
- Guimarães, A.; Meireles, L.; Lemos, M.; Guimarães, M.; Endringer, D.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahato, D.; Lee, K.; Kamle, M.; Devi, S.; Dewangan, K.; Kumar, P.; Kang, S. Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front. Microbiol. 2019, 10, 2266. [Google Scholar] [CrossRef] [Green Version]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Lourdes Bastos, M.; Bories, G.; Cocconcelli, P.; Flachowsky, G.; Gropp, J.; Kolar, B.; et al. Safety and efficacy of cumin tincture (Cuminum cyminum L.) when used as a sensory additive for all animal species. EFSA J. 2018, 16, e05273. [Google Scholar] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of BIOSTRONG® 510 (essential oil of thyme and star anise) for chickens and minor avian species for fattening and rearing to point of lay. EFSA J. 2016, 14, e04351. [Google Scholar]
- Jha, R.; Fouhse, J.; Tiwari, U.; Li, L.; Willing, B. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharmeen, J.; Mahomoodally, F.; Zengin, G.; Maggi, F.; Montesano, D.; Petrelli, R. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Ullah, H.; De Filippis, A.; Baldi, A.; Dacrema, M.; Esposito, C.; Garzarella, E.U.; Santarcangelo, C.; Tantipongpiradet, A.; Daglia, M. Beneficial Effects of Plant Extracts and Bioactive Food Components in Childhood Supplementation. Nutrients 2021, 13, 3157. [Google Scholar] [CrossRef]
Composition | Content |
---|---|
Moisture | 14.3 ± 0.2% |
Crude Protein | 8.0 ± 0.1% |
Crude Fiber | 34.3 ± 1.92% |
Lipids | 5.8 ± 0.1% |
Ash | 23.6 ± 4.8% |
Exp. RIa | Ref. RIa | Exp. RIb | Ref. RIb | Compound * | Percent in Sample (%) |
---|---|---|---|---|---|
922 | 922 | 1030 | 1028 | α-Thujene | 0.3 |
930 | 930 | 1030 | 1030 | α-Pinene | 1.8 |
943 | 943 | 1075 | 1073 | Camphene | t |
964 | 964 | 1124 | 1126 | Sabinene | 21.2 |
970 | 970 | 1118 | 1116 | β-Pinene | 0.3 |
980 | 980 | 1161 | 1162 | Myrcene | 1.4 |
982 | 983 | 1294 | 1291 | Octanal | t |
997 | 997 | 1171 | 1168 | α-Phellandrene | 0.8 |
1005 | 1005 | 1152 | 1152 | Δ3-Carene | t |
1010 | 1110 | 1187 | 1189 | α-Terpinene | 1.6 |
1011 | 1011 | 1275 | 1273 | p-Cymene | 4.2 |
1020 | 1020 | 1213 | 1214 | β-Phellandrene | 0.5 |
1025 | 1025 | 1235 | 1235 | Z-Ocimene | 4.2 |
1035 | 1035 | 1250 | 1253 | E-Ocimene | 0.2 |
1046 | 1046 | 1249 | 1251 | γ-Terpinene | 37.2 |
1050 | 1050 | 1459 | 1462 | E-Sabinene hydrate | 0.4 |
1076 | 1078 | 1288 | 1288 | α-Terpinolene | 0.6 |
1080 | 1081 | 1444 | 1445 | Z-Sabinene hydrate | 0.2 |
1108 | 1106 | 1555 | 1541 | cis-p-2-Menthen-1-ol | 0.3 |
1117 | 1117 | 1374 | 1371 | allo-Ocimene | 0.1 |
1123 | 1124 | n.d. | - | p-Menth-8-en-1-ol | 0.2 |
1158 | 1158 | 1597 | 1598 | Terpinene-4-ol | 6.4 |
1169 | 1169 | 1692 | 1692 | α-Terpineol | 0.4 |
1177 | 1177 | n.d. | - | cis-Piperitol | 0.1 |
1187 | 1187 | n.d. | - | trans-Piperitol | 0.3 |
1214 | 1214 | 1591 | 1591 | Thymyl methyl oxide | 16.4 |
1223 | 1223 | 1601 | 1601 | Carvacryl methyl oxide | 0.1 |
1264 | 1264 | 1574 | 1574 | Bornyl acetate | t |
1479 | 1481 | 1726 | 1726 | Bicyclogermacrene | 0.3 |
1516 | 1516 | 2221 | 2215 | Elemicine | t |
1553 | 1551 | 2113 | 2213 | Spathulenol | t |
1696 | 1696 | 2350 | 2350 | E,E-Farnesol | 0.1 |
Monoterpene hydrocarbons | 74.4 | ||||
Oxygen containing monoterpenes | 24.8 | ||||
Sesquiterpene hydrocarbons | 0.3 | ||||
Oxygen containing sesquiterpenes | 0.1 | ||||
Other compounds | t | ||||
Total identified | 99.6 |
IC50 (μg/mL) (DPPH) | IC50 (μg/mL) (ABTS) | |
---|---|---|
Infusion | 36.5 ± 1.4 * | 37.3 ± 2.6 ** |
Decoction | 44.7 ± 4.4 * | 38.4 ± 1.8 ** |
BHA | 4.5 ± 0.1 * | - |
Bacteria | Diameter of the Inhibition Halo (mm) |
---|---|
Escherichia coli | 8.2 ± 1.2 |
Staphylococcus aureus | 11.6 ± 1.5 |
Bacillus cereus | 9.4 ± 1.2 |
Lactobacillus plantarum | 18.2 ± 1.3 |
Bacteria | MIC (μL/mL) | MBC (μL/mL) |
---|---|---|
Escherichia coli | 45.6 ± 0.1 | 91.3 ± 0.3 |
Staphylococcus aureus | 22.8 ± 0.1 | 91.3 ± 0.3 |
Bacillus cereus | 11.4 ± 0.1 | w.e. * |
Lactobacillus plantarum | 11.4 ± 0.1 | 22.8 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedreiro, S.; Figueirinha, A.; Cavaleiro, C.; Cardoso, O.; Donato, M.M.; Salgueiro, L.; Ramos, F. Exploiting the Crithmum maritimum L. Aqueous Extracts and Essential Oil as Potential Preservatives in Food, Feed, Pharmaceutical and Cosmetic Industries. Antioxidants 2023, 12, 252. https://doi.org/10.3390/antiox12020252
Pedreiro S, Figueirinha A, Cavaleiro C, Cardoso O, Donato MM, Salgueiro L, Ramos F. Exploiting the Crithmum maritimum L. Aqueous Extracts and Essential Oil as Potential Preservatives in Food, Feed, Pharmaceutical and Cosmetic Industries. Antioxidants. 2023; 12(2):252. https://doi.org/10.3390/antiox12020252
Chicago/Turabian StylePedreiro, Sónia, Artur Figueirinha, Carlos Cavaleiro, Olga Cardoso, Maria Manuel Donato, Lígia Salgueiro, and Fernando Ramos. 2023. "Exploiting the Crithmum maritimum L. Aqueous Extracts and Essential Oil as Potential Preservatives in Food, Feed, Pharmaceutical and Cosmetic Industries" Antioxidants 12, no. 2: 252. https://doi.org/10.3390/antiox12020252
APA StylePedreiro, S., Figueirinha, A., Cavaleiro, C., Cardoso, O., Donato, M. M., Salgueiro, L., & Ramos, F. (2023). Exploiting the Crithmum maritimum L. Aqueous Extracts and Essential Oil as Potential Preservatives in Food, Feed, Pharmaceutical and Cosmetic Industries. Antioxidants, 12(2), 252. https://doi.org/10.3390/antiox12020252