Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Botanical Material
2.2. Preparation of Botanical Material and Extraction of Essential Oils
2.3. Analysis of Chemical Profile of Essential Oil
2.4. ABTS•+ Radical Scavenging Assay
2.5. DPPH• Radical Scavenging Assay
2.6. Preliminary Toxicity
2.7. In silico analysis
2.8. Multivariate Analysis
3. Results and discussion
3.1. Chemical Composition
3.2. Multivariate Analyses
3.3. Antioxidant Capacity
3.4. Cytotoxic Activity of Essential Oils
3.5. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehman, R.; Hanif, M.A.; Mushtaq, Z.; Al-Sadi, A.M. Biosynthesis of essential oils in aromatic plants: A review. Food Rev. Int. 2016, 32, 117–160. [Google Scholar] [CrossRef]
- Ferreira, O.O.; Cruz, J.N.; de Moraes, Â.A.; de Jesus Pereira Franco, C.; Lima, R.R.; Anjos, T.O.; Siqueira, G.M.; Nascimento, L.D.; Cascaes, M.M.; de Oliveira, M.S.; et al. Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications. Molecules 2022, 27, 4373. [Google Scholar] [CrossRef] [PubMed]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of essential oils: A review on their interaction with food components. Front. Microbiol. 2015, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Tohidi, B.; Rahimmalek, M.; Trindade, H. Industrial Crops & Products Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Ind. Crop. Prod. 2019, 134, 89–99. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; da Cruz, J.N.; Almeida da Costa, W.; Silva, S.G.; Brito, M.d.P.; de Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; de Carvalho Junior, R.N. Chemical Composition, Antimicrobial Properties of Siparuna guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of its Major Chemical Constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef]
- Ferreira, O.O.; Neves da Cruz, J.; de Jesus Pereira Franco, C.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; de Aguiar Andrade, E.H. First report on yield and chemical composition of essential oil extracted from myrcia eximia DC (Myrtaceae) from the Brazilian Amazon. Molecules 2020, 25, 783. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.G.; de Oliveira, M.S.; Cruz, J.N.; da Costa, W.A.; da Silva, S.H.M.; Barreto Maia, A.A.; de Sousa, R.L.; Carvalho Junior, R.N.; de Aguiar Andrade, E.H. Supercritical CO2 extraction to obtain Lippia thymoides Mart. & Schauer (Verbenaceae) essential oil rich in thymol and evaluation of its antimicrobial activity. J. Supercrit. Fluids 2021, 168, 105064. [Google Scholar] [CrossRef]
- Carvalho, R.N.d.; Oliveira, M.S.d.M.S.d.; Silva, S.G.; Cruz, J.N.d.; Ortiz, E.; Costa, W.A.d.; Bezerra, F.W.F.; Cunha, V.M.B.; Cordeiro, R.M.; Neto, A.M.d.J.C.; et al. Supercritical CO2 Application in Essential Oil Extraction. In Materials Research Foundations; Inamuddin, R.M., Asiri, A.M., Eds.; Materials Research Foundations: Millersville PA, USA, 2019; Volume 54, pp. 1–28. [Google Scholar]
- Cascaes, M.M.; Dos, O.; Carneiro, S.; Diniz Do Nascimento, L.; Antônio Barbosa De Moraes, Â.; Santana De Oliveira, M.; Neves Cruz, J.; Skelding, G.M.; Guilhon, P.; Helena De Aguiar Andrade, E.; et al. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Biological Activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef]
- Bezerra, F.W.F.W.F.; De Oliveira, M.S.S.; Bezerra, P.N.N.; Cunha, V.M.B.M.B.; Silva, M.P.P.; da Costa, W.A.A.; Pinto, R.H.H.H.H.; Cordeiro, R.M.M.; Da Cruz, J.N.N.; Chaves Neto, A.M.J.M.J.; et al. Extraction of bioactive compounds. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–167. ISBN 9780128173886. [Google Scholar]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, L.D.; de Moraes, A.A.B.; da Costa, K.S.; Galúcio, J.M.P.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; Andrade, E.H.d.A.; de Faria, L.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Ramos Da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; De Jesus Pereira Franco, C.; Oliveira Dos Anjos, T.; Cascaes, M.M.; Almeida Da Costa, W.; Helena De Aguiar Andrade, E.; Santana De Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid.-Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, K.d.S.M.; Feitosa, B.d.S.; Cruz, J.N.; Ferreira, O.O.; Franco, C.d.J.P.; Cascaes, M.M.; Oliveira, M.S.d.; Andrade, E.H.d.A. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link var. circinnata. (Piperaceae) in Artemia salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef] [PubMed]
- Radulović, N.S.; Mladenović, M.Z.; Randjelovic, P.J.; Stojanović, N.M.; Dekić, M.S.; Blagojević, P.D. Toxic essential oils. Part IV: The essential oil of Achillea falcata L. as a source of biologically/pharmacologically active trans-sabinyl esters. Food Chem. Toxicol. 2015, 80, 114–129. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; Pereira da Silva, V.M.; Cantão Freitas, L.; Gomes Silva, S.; Nevez Cruz, J.; Aguiar Andrade, E.H. Extraction Yield, Chemical Composition, Preliminary Toxicity of Bignonia nocturna (Bignoniaceae) Essential Oil and in Silico Evaluation of the Interaction. Chem. Biodivers. 2021, 18, cbdv.202000982. [Google Scholar] [CrossRef]
- Tamokou, J.d.D.; Mbaveng, A.T.; Kuete, V. Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa: Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 207–237. ISBN 9780128094419. [Google Scholar]
- Maas, P.; Lobão, A.; Rainer, H. Annonaceae Juss. Available online: http://floradobrasil.jbrj.gov.br (accessed on 28 July 2022).
- Mendes, R.d.F.; Pinto, N.d.C.C.; da Silva, J.M.; da Silva, J.B.; Hermisdorf, R.C.d.S.; Fabri, R.L.; Chedier, L.M.; Scio, E. The essential oil from the fruits of the Brazilian spice Xylopia sericea A. St.-Hil. presents expressive in-vitro antibacterial and antioxidant activity. J. Pharm. Pharmacol. 2017, 69, 341–348. [Google Scholar] [CrossRef]
- de Sousa, O.V.; Del-Vechio-Vieira, G.; Santos, B.C.S.; Yamamoto, C.H.; Araújo, A.L.S.d.; de Araújo, A.d.A.; Pinto, M.A.d.; Rodarte, M.P.; Alves, M.S. In-vivo and vitro bioactivities of the essential oil of Duguetia lanceolata branches. Afr. J. Pharm. Pharmacol. 2016, 10, 298–310. [Google Scholar] [CrossRef]
- Costa, E.V.; Dutra, L.M.; Ramos De Jesus, H.C.; De Lima Nogueira, P.C.; De Souza Moraes, V.R.; Salvador, M.J.; De Holanda Cavalcanti, S.C.; La Corte Dos Santos, R.; Do Nacimento Prata, A.P. Chemical composition and antioxidant, antimicrobial, and larvicidal activities of the essential oils of Annona salzmannii and A. pickelii (Annonaceae). Nat. Prod. Commun. 2011, 6, 907–912. [Google Scholar] [CrossRef]
- Maia, D.S.; Lopes, C.F.; Saldanha, A.A.; Silva, N.L.; Sartori, Â.L.B.; Carollo, C.A.; Sobral, M.G.; Alves, S.N.; Silva, D.B.; de Siqueira, J.M. Larvicidal effect from different Annonaceae species on Culex quinquefasciatus. Environ. Sci. Pollut. Res. 2020, 27, 36983–36993. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A.; Carreira, L.M.M.; Oliveira, J. Essential oil composition from duguetia species (annonaceae). J. Essent. Oil Res. 2006, 18, 60–63. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A.; Carla, A.; Silva, M.; Oliveira, J.; Carreira, L.M.M.; Araújo, J.S. Leaf volatile oils from four Brazilian Xylopia species. Flavour Fragr. J. 2005, 20, 474–477. [Google Scholar] [CrossRef]
- Ferraz, R.P.C.; Cardoso, G.M.B.; Da Silva, T.B.; Fontes, J.E.D.N.; Prata, A.P.D.N.; Carvalho, A.A.; Moraes, M.O.; Pessoa, C.; Costa, E.V.; Bezerra, D.P. Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae). Food Chem. 2013, 141, 542–547. [Google Scholar] [CrossRef]
- Nascimento, A.M.D.; Maia, T.D.S.; Soares, T.E.S.; Menezes, L.R.A.; Scher, R.; Costa, E.V.; Cavalcanti, S.C.H.; La Corte, R. Repellency and Larvicidal Activity of Essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes aegypti Linnaeus. Neotrop. Entomol. 2017, 46, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Alcântara, J.M.; De Lucena, J.M.V.M.; Facanali, R.; Marques, M.O.M.; Da Paz Lima, M. Chemical composition and bactericidal activity of the essential oils of four species of annonaceae growing in brazilian amazon. Nat. Prod. Commun. 2017, 12, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Agra, M.D.F.; Freitas, P.F.D.; Barbosa-filho, J.M. Divulgação Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Brazilian J. Pharmacogn. 2007, 17, 114–140. [Google Scholar] [CrossRef]
- Cascaes, M.M.; Silva, S.G.; Cruz, J.N.; Santana de Oliveira, M.; Oliveira, J.; Moraes, A.A.B.d.; Costa, F.A.M.d.; da Costa, K.S.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. First report on the Annona exsucca DC. Essential oil and in silico identification of potential biological targets of its major compounds. Nat. Prod. Res. 2021, 35, 4009–4012. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, L.D.; Silva, S.G.; Cascaes, M.M.; da Costa, K.S.; Figueiredo, P.L.B.; Costa, C.M.L.; Andrade, E.H.d.A.; de Faria, L.J.G. Drying effects on chemical composition and antioxidant activity of lippia thymoides essential oil, a natural source of thymol. Molecules 2021, 26, 2621. [Google Scholar] [CrossRef]
- Franco, C.d.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; Do Nascimento, L.D.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical composition and antioxidant activity of essential oils from eugenia patrisii vahl, e. Punicifolia (kunth) dc., and myrcia tomentosa (aubl.) dc., leaf of family myrtaceae. Molecules 2021, 26, 3292. [Google Scholar] [CrossRef]
- Ferreira, O.O.; da Silva, S.H.M.; de Oliveira, M.S.; Andrade, E.H.d.A. Chemical Composition and Antifungal Activity of Myrcia multiflora and Eugenia florida Essential Oils. Molecules 2021, 26, 7259. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 2007; Volume 8, ISBN 978-1932633214. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Rebelo, M.M.; Da Silva, J.K.R.; Andrade, E.H.A.; Maia, J.G.S. Antioxidant capacity and biological activity of essential oil and methanol extract of Hyptis crenata Pohl ex Benth. Rev. Bras. Farmacogn. 2009, 19, 230–235. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView, version 5; Semichem Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: In vitro and in silico assays. J. Biomol. Struct. Dyn. 2021, 1–10. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- dos Santos, K.L.B.; Cruz, J.N.; Silva, L.B.; Ramos, R.S.; Neto, M.F.A.; Lobato, C.C.; Ota, S.S.B.; Leite, F.H.A.; Borges, R.S.; da Silva, C.H.T.P.; et al. Identification of novel chemical entities for adenosine receptor type 2a using molecular modeling approaches. Molecules 2020, 25, 1245. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09. 2009. Available online: https://gaussian.com/g09citation/ (accessed on 28 July 2022).
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
- Pinto, V.d.S.; Araújo, J.S.C.; Silva, R.C.; da Costa, G.V.; Cruz, J.N.; Neto, M.F.D.A.; Campos, J.M.; Santos, C.B.R.; Leite, F.H.A.; Junior, M.C.S. In silico study to identify new antituberculosis molecules from natural sources by hierarchical virtual screening and molecular dynamics simulations. Pharmaceuticals 2019, 12, 36. [Google Scholar] [CrossRef]
- Castro, A.L.G.; Cruz, J.N.; Sodré, D.F.; Correa-Barbosa, J.; Azonsivo, R.; de Oliveira, M.S.; de Sousa Siqueira, J.E.; da Rocha Galucio, N.C.; de Oliveira Bahia, M.; Burbano, R.M.R.; et al. Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. using bioassays and in silico approaches. Arab. J. Chem. 2021, 14, 103084. [Google Scholar] [CrossRef]
- Cheung, J.; Gary, E.N.; Shiomi, K.; Rosenberry, T.L. Structures of human acetylcholinesterase bound to dihydrotanshinone i and territrem B show peripheral site flexibility. ACS Med. Chem. Lett. 2013, 4, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Huang, Q.; Cheng, Q.; Khan, S.; Yu, X. Seasonal variation in chemical compositions of essential oils extracted from lavandin flowers in the yun-gui plateau of china. Molecules 2021, 26, 5639. [Google Scholar] [CrossRef] [PubMed]
- Cantor, M.; Vlas, N.; Szekely, Z.; Jucan, D.; Zaharia, A. The influence of distillation time and the flowering phenophase on quantity and quality of the essential oil of Lavandula angustifolia cv. ‘Codreanca.’ Rom. Biotechnol. Lett. 2018, 23, 14146–14152. [Google Scholar]
- Méndez-Tovar, I.; Novak, J.; Sponza, S.; Herrero, B.; Asensio-S-Manzanera, M.C. Variability in essential oil composition of wild populations of Labiatae species collected in Spain. Ind. Crops Prod. 2016, 79, 18–28. [Google Scholar] [CrossRef]
- Nazar, E.D.; Peixoto, L.D.S.; Costa, J.S.; Helena, R.; Mour, V.; Maria, W.; Nascimento, O.; Maia, G.S.; Setzer, W.N.; Kelly, J.; et al. Seasonal Variability of a Caryophyllane Chemotype Essential Oil of Eugenia patrisii Vahl Occurring in the Brazilian Amazon. Molecules 2022, 27, 2417. [Google Scholar]
- Jing, C.L.; Huang, R.H.; Su, Y.; Li, Y.Q.; Zhang, C.S. Variation in chemical composition and biological activities of flos chrysanthemi indici essential oil under different extraction methods. Biomolecules 2019, 9, 518. [Google Scholar] [CrossRef]
- De Souza Araújo, C.; De Oliveira, A.P.; Lima, R.N.; Alves, P.B.; Diniz, T.C.; Da Silva Almeida, J.R.G. Chemical constituents and antioxidant activity of the essential oil from leaves of Annona vepretorum Mart. (Annonaceae). Pharmacogn. Mag. 2015, 11, 615–618. [Google Scholar] [CrossRef]
- Meira, C.S.; Guimarães, E.T.; MacEdo, T.S.; Da Silva, T.B.; Menezes, L.R.A.; Costa, E.V.; Soares, M.B.P. Chemical composition of essential oils from Annona vepretorum Mart. and Annona squamosa L. (Annonaceae) leaves and their antimalarial and trypanocidal activities. J. Essent. Oil Res. 2015, 27, 160–168. [Google Scholar] [CrossRef]
- Ribeiro, L.P.; Domingues, V.C.; Gonçalves, G.L.P.; Fernandes, J.B.; Glória, E.M.; Vendramim, J.D. Essential oil from Duguetia lanceolata St.-Hil. (Annonaceae): Suppression of spoilers of stored-grain. Food Biosci. 2020, 36, 100653. [Google Scholar] [CrossRef]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.d.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; Yilmaz, S.V.; Özdemir, Ö.; Koca, M.; Pınar, N.M.; Demirci, B.; Yıldırım, K.; Sytar, O.; Turkez, H.; Baser, K.H.C. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). J. Essent. Oil Res. 2020, 32, 512–525. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.J.; Wu, S.; Duan, M.; Wang, L. Antioxidant metabolites in primitive, wild, and cultivated citrus and their role in stress tolerance. Molecules 2021, 26, 5801. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, J.W.A.; Costa, A.R.; da Silva, M.A.P.; Rocha, M.I.; Boligon, A.A.; da Rocha, J.B.T.; Barros, L.M.; Kamdem, J.P. Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poiteau (LAMIACEAE) in Drosophila melanogaster and Artemia salina. S. Afr. J. Bot. 2017, 113, 437–442. [Google Scholar] [CrossRef]
- Braguini, W.L.; Alves, B.B.; Pires, N.V. Toxicity assessment of Lavandula officinalis extracts in Brine Shrimp (Artemia salina). Toxicol. Mech. Methods 2019, 29, 411–420. [Google Scholar] [CrossRef]
- Ramos, S.C.S.; De Oliveira, J.C.S.; Da Câmara, C.A.G.; Castelar, I.; Carvalho, A.F.F.U.; Lima-Filho, J.V. Antibacterial and cytotoxic properties of some plant crude extracts used in Northeastern folk medicine. Rev. Bras. Farmacogn. 2009, 19, 376–381. [Google Scholar] [CrossRef]
- Mirzaei, H.H.; Firuzi, O.; Baldwin, I.T.; Jassbi, A.R. Cytotoxic activities of different iranian solanaceae and lamiaceae plants and bioassay-guided study of an active extract from salvia lachnocalyx. Nat. Prod. Commun. 2017, 12, 1563–1566. [Google Scholar] [CrossRef]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. Β-Caryophyllene and Β-Caryophyllene Oxide—Natural Compounds of Anticancer and Analgesic Properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Fraternale, D.; Ricci, D.; Calcabrini, C.; Guescini, M.; Martinelli, C.; Sestili, P. Cytotoxic activity of essential oils of aerial parts and ripe fruits of echinophora spinosa (apiaceae). Nat. Prod. Commun. 2013, 8, 1645–1649. [Google Scholar] [CrossRef]
- Aydin, E.; Türkez, H.; Taşdemir, Ş. Anticancer and antioxidant properties of terpinolene in rat brain cells. Arh. Hig. Rada Toksikol. 2013, 64, 415–424. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Baghalpour, N.; Cho, W.C.; Sharifi-rad, J. Therapeutic Potential of α- and β-Pinene_A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Grecco, S.D.S.; Martins, E.G.A.; Girola, N.; De Figueiredo, C.R.; Matsuo, A.L.; Soares, M.G.; Bertoldo, B.D.C.; Sartorelli, P.; Lago, J.H.G. Chemical composition and in vitro cytotoxic effects of the essential oil from Nectandra leucantha leaves. Pharm. Biol. 2015, 53, 133–137. [Google Scholar] [CrossRef]
- Soares, B.V.; Morais, S.M.; Dos Santos Fontenelle, R.O.; Queiroz, V.A.; Vila-Nova, N.S.; Pereira, C.M.C.; Brito, E.S.; Neto, M.A.S.; Brito, E.H.S.; Cavalcante, C.S.P.; et al. Antifungal activity, toxicity and chemical composition of the essential oil of coriandrum sativum L. Fruits. Molecules 2012, 17, 8439–8448. [Google Scholar] [CrossRef]
- Oliva, M.D.L.M.; Gallucci, N.; Zygadlo, J.A.; Demo, M.S. Cytotoxic activity of Argentinean essential oils on Artemia salina. Pharm. Biol. 2007, 45, 259–262. [Google Scholar] [CrossRef]
- Sharififar, F.; Assadipour, A.; Moshafi, M. Bioassay Screening of the Essential Oil and Various Extracts of Nigella sativa L. Seeds Using Brine Shrimp Toxicity Assay. Herb. Med. 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Do Nascimento, J.C.; David, J.M.; Barbosa, L.C.; De Paula, V.F.; Demuner, A.J.; David, J.P.; Conserva, L.M.; Ferreira, J.C.; Guimarães, E.F. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). Pest Manag. Sci. 2013, 69, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Sousa, O.V.; Del-Vechio-Vieira, G.; Alves, M.S.; Araújo, A.A.L.; Pinto, M.A.O.; Amaral, M.P.H.; Rodarte, M.P.; Kaplan, M.A.C. Chemical composition and biological activities of the essential oils from Duguetia lanceolata St. Hil. barks. Molecules 2012, 17, 11056–11066. [Google Scholar] [CrossRef]
- Galucio, N.C.d.R.; Moysés, D.d.A.; Pina, J.R.S.; Marinho, P.S.B.; Gomes Júnior, P.C.; Cruz, J.N.; Vale, V.V.; Khayat, A.S.; Marinho, A.M.d.R. Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. Arab. J. Chem. 2022, 15, 103589. [Google Scholar] [CrossRef]
- Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; et al. Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci. Rep. 2022, 12, 4706. [Google Scholar] [CrossRef]
- Costa, E.B.B.; Silva, R.C.C.; Espejo-Román, J.M.M.; Neto, M.F.d.A.F.d.A.; Cruz, J.N.N.; Leite, F.H.A.H.A.; Silva, C.H.T.P.H.T.P.; Pinheiro, J.C.C.; Macêdo, W.J.C.J.C.; Santos, C.B.R.B.R. Chemometric methods in antimalarial drug design from 1,2,4,5-tetraoxanes analogues. SAR QSAR Environ. Res. 2020, 31, 677–695. [Google Scholar] [CrossRef]
- Neto, R.d.A.M.M.; Santos, C.B.R.R.; Henriques, S.V.C.C.; Machado, L.d.O.; Cruz, J.N.; da Silva, C.H.T.d.P.T.d.P.; Federico, L.B.; Oliveira, E.H.C.d.C.d.; de Souza, M.P.C.C.; da Silva, P.N.B.B.; et al. Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2020, 40, 2204–2216. [Google Scholar] [CrossRef] [PubMed]
- da Silva Júnior, O.S.; Franco, C.d.J.P.; de Moraes, A.A.B.; Cruz, J.N.; da Costa, K.S.; do Nascimento, L.D.; Andrade, E.H.d.A. In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon 2021, 195, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Baek, I.; Choi, H.J.; Rhee, J.S. Inhibitory effects of biocides on hatching and acetylcholinesterase activity in the brine shrimp Artemia salina. Toxicol. Environ. Health Sci. 2015, 7, 303–308. [Google Scholar] [CrossRef]
DE | DR | XE | XF | ||||
Essential Oil Yield (%) | 1.76 | 0.08 | 0.27 | 1.50 | |||
RT | RIL | RIC | Constituents (%) | ||||
5.19 | 801 | 798 | Hexanal | 0.95 | |||
6.95 | 844 | 845 | Hex-(3E)-enol | 1.35 | |||
7.25 | 863 | 857 | Hexanol | 0.85 | |||
8.30 | 924 | 925 | α-Thujene | 4.89 | |||
11.17 | 932 | 932 | α-Pinene | 4.14 | 1.31 | 3.14 | 20.84 |
11.23 | 946 | 948 | Camphene | 2.72 | |||
11.98 | 969 | 974 | Sabinene | 17.08 | |||
12.32 | 974 | 974 | β-Pinene | 2.01 | 25.95 | ||
12.57 | 988 | 991 | Myrcene | 3.61 | |||
13.09 | 1002 | 1002 | α-Phellandrene | 1.27 | 1.73 | ||
13.56 | 1008 | 1011 | δ-3-Carene | 0.95 | |||
13.89 | 1014 | 1016 | α-Terpinene | 0.85 | |||
14.02 | 1020 | 1022 | p-Cymene | 0.65 | 0.54 | 0.44 | |
14.32 | 1024 | 1027 | Limonene | 3.00 | |||
14.79 | 1025 | 1029 | β-Phellandrene | 39.12 | 2.60 | ||
14.90 | 1026 | 1031 | 1,8-Cineole | 3.36 | 1.00 | ||
14.99 | 1032 | 1043 | (Z)-β-Ocimene | 0.44 | |||
15.02 | 1054 | 1055 | γ-Terpinene | 1.00 | 1.40 | ||
15.13 | 1065 | 1068 | cis-Hydrate sabinene | 0.17 | |||
15.74 | 1086 | 1084 | Terpinolene | 11.17 | 0.39 | ||
15.87 | 1095 | 1099 | Linalool | 0.30 | 1.74 | ||
16.07 | 1112 | 1118 | trans-Thujone | 0.09 | |||
16.15 | 1114 | 1119 | endo-Fenchol | 0.33 | |||
16.48 | 1118 | 1123 | cis-p-Ment-2-en-1-ol | 0.08 | |||
16.89 | 1122 | 1126 | α-Campholenal | 0.38 | 0.14 | ||
17.32 | 1135 | 1140 | trans-Pinocarveol | 4.46 | 0.36 | ||
17.54 | 1137 | 1149 | cis-Verbenol | 0.49 | 0.15 | ||
17.76 | 1154 | 1156 | Sabina ketone | 0.27 | |||
17.94 | 1160 | 1162 | Pinocarvone | 2.35 | 0.16 | ||
17.98 | 1166 | 1168 | p-Mentha-1,5-dien-8-ol | 1.26 | 0.11 | ||
18.03 | 1167 | 1169 | Umbellulone | 0.04 | |||
18.09 | 1174 | 1180 | Terpinen-4-ol | 1.16 | 1.06 | ||
18.51 | 1179 | 1186 | p-Cymen-8-ol | 3.36 | 0.71 | ||
18.74 | 1186 | 1194 | α -Terpineol | 0.97 | |||
18.82 | 1195 | 1196 | Myrtenal | 3.24 | |||
18.91 | 1204 | 1207 | Verbenone | 1.62 | 0.1 | ||
19.13 | 1215 | 1218 | trans-Carveol | 0.33 | |||
19.22 | 1239 | 1243 | Carvone | 0.23 | |||
19.38 | 1249 | 1248 | Geraniol | 0.39 | |||
19.53 | 1335 | 1335 | δ-Elemene | 2.32 | 4.41 | ||
19.68 | 1345 | 1345 | α-Cubebene | 0.74 | 0.08 | ||
19.95 | 1373 | 1367 | α-Ylangene | 1.35 | |||
20.37 | 1374 | 1368 | Isoledene | 0.02 | |||
20.90 | 1374 | 1374 | α-Copaene | 0.25 | 1.07 | 0.25 | |
21.56 | 1379 | 1378 | Geranyl acetate | 1.38 | |||
22.02 | 1387 | 1381 | β-Bourbonene | 0.93 | |||
22.95 | 1389 | 1389 | β-Elemene | 0.74 | 0.49 | 3.10 | 0.54 |
23.68 | 1409 | 1405 | α-Gurjunene | 0.11 | 0.06 | ||
23.82 | 1417 | 1422 | (E)-Caryophyllene | 2.98 | 1.56 | 0.93 | 0.03 |
24.17 | 1419 | 1416 | β-Ylangene | 0.72 | |||
25.04 | 1434 | 1429 | γ-Elemene | 0.19 | 0.39 | ||
25.26 | 1439 | 1439 | Aromadendrene | 0.75 | 0.39 | ||
26.13 | 1442 | 1442 | 6,9-Guaiadiene | 0.06 | |||
26.58 | 1451 | 1450 | trans-Muurola-3,5-diene | 0.38 | |||
26.81 | 1452 | 1452 | α-Humulene | 0.73 | 1.40 | 0.35 | 0.10 |
27.05 | 1458 | 1456 | allo-Aromadendrene | 0.11 | |||
27.19 | 1464 | 1465 | (E)-9-epi-caryophyllene | 0.26 | |||
27.81 | 1471 | 1470 | Dauca-5,8-diene | 0.29 | |||
27.98 | 1478 | 1484 | γ -Muurolene | 3.06 | |||
28.10 | 1484 | 1492 | Germacrene D | 1.24 | 1.34 | 1.08 | 3.26 |
28.18 | 1489 | 1487 | β-Selinene | 1.61 | |||
28.29 | 1493 | 1494 | epi-Cubebol | 0.91 | |||
28.33 | 1495 | 1490 | γ-Amorphene | 0.67 | |||
28.52 | 1496 | 1489 | Viridiflorene | 0.56 | |||
28.61 | 1500 | 1497 | Bicyclogermacrene | 0.21 | 7.85 | ||
28.91 | 1500 | 1498 | α-Muurolene | 0.95 | |||
29.03 | 1513 | 1513 | γ-Cadinene | 2.67 | 0.13 | ||
29.17 | 1514 | 1513 | Cubebol | 0.68 | 0.05 | ||
29.57 | 1522 | 1520 | δ-Cadinene | 1.61 | 0.38 | ||
29.98 | 1528 | 1520 | cis-Calamenene | 2.06 | 4.01 | 0.48 | |
30.06 | 1533 | 1531 | trans-Cadina-1,4-diene | 0.16 | 0.01 | ||
30.24 | 1533 | 1534 | 10-epi-Cubebol | 0.09 | |||
30.39 | 1537 | 1536 | α-Cadinene | 0.24 | |||
30.58 | 1539 | 1540 | α-Copaen-11-ol | 0.04 | |||
30.67 | 1544 | 1540 | α-Calacorene | 1.47 | |||
30.83 | 1548 | 1548 | Elemol | 0.06 | |||
31.57 | 1564 | 1561 | β-Calacorene | 0.65 | |||
31.97 | 1577 | 1579 | Spathulenol | 1.87 | 22.22 | 5.65 | 2.18 |
32.28 | 1582 | 1583 | Caryophyllene oxide | 2.49 | 12.21 | 5.63 | 0.18 |
32.51 | 1590 | 1589 | Globulol | 1.10 | |||
32.62 | 1592 | 1593 | Viridiflorol | 0.61 | 0.54 | ||
32.76 | 1595 | 1594 | Cubeban-11-ol | 0.23 | |||
32.85 | 1596 | 1596 | Fokienol | 2.48 | |||
32.92 | 1600 | 1604 | Rosifoliol | 0.23 | |||
33.09 | 1602 | 1601 | Ledol | 0.10 | |||
33.25 | 1608 | 1609 | Humulene Epoxide II | 0.21 | 11.86 | 1.41 | |
33.81 | 1630 | 1630 | Muurola-4,10(14)-dien-1-β-ol | 4.70 | |||
34.18 | 1638 | 1643 | epi-α-Cadinol | 0.09 | |||
34.36 | 1639 | 1657 | Allo-Aromadendrene Epoxide | 10.20 | 0.02 | ||
34.45 | 1639 | 1661 | Caryophylla-4(12),8(13)-dien-5-α-ol | 1.36 | |||
34.51 | 1640 | 1664 | epi-α-Muurolol | 0.12 | |||
34.71 | 1644 | 1669 | α-Muurolol | 0.83 | |||
34.84 | 1645 | 1672 | Cubenol | 2.57 | 0.68 | ||
34.89 | 1648 | 1678 | cis-Guaia-3,9-dien-11-ol | 0.54 | |||
34.93 | 1652 | 1681 | α-Cadinol | 3.45 | 0.30 | ||
35.49 | 1668 | 1684 | trans-Calamenen-10-ol | 0.30 | |||
35.62 | 1668 | 1692 | 14-Hydroxy-9-epi-(E)-caryophyllene | 1.00 | |||
35.94 | 1676 | 1694 | Mustakone | 3.36 | |||
36.28 | 1685 | 1695 | Germacra-4(15),5,10(14)-trien-1-α-ol | 0.76 | 1.40 | 0.04 | |
39.41 | 1767 | 1768 | 14-oxi-α-Muurolene | 0.48 | |||
59.61 | 2400 | 2408 | Tetracosane | 0.02 | |||
62.38 | 2500 | 2512 | Pentacosane | 0.02 | |||
Monoterpenes hydrocarbon Oxygenated monoterpenes Sesquiterpenes hydrocarbon Oxygenated sesquiterpenes Others class | 78.99 | 1.80 | 8.41 | 62.53 | |||
4.52 | 0 | 19.45 | 6.17 | ||||
8.32 | 8.50 | 27.42 | 19.05 | ||||
4.57 | 71.76 | 22.99 | 5.03 | ||||
- | - | 3.42 | 2.30 | ||||
Total | 96.4 | 82.06 | 81.69 | 95.08 |
Essential Oil | LC50 (µg·mL−1) |
---|---|
Duguetia echinophora | 28.00 ± 0.30 |
Duguetia riparia | 310.80 ± 0.70 |
Xylopia emarginata | 26.72 ± 0.17 |
Xylopia frutescens | 54.36 ± 0.20 |
Positive control (K2Cr2O7) | 50.00 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascaes, M.M.; De Moraes, Â.A.B.; Cruz, J.N.; Franco, C.d.J.P.; E Silva, R.C.; Nascimento, L.D.d.; Ferreira, O.O.; Anjos, T.O.d.; de Oliveira, M.S.; Guilhon, G.M.S.P.; et al. Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon. Antioxidants 2022, 11, 1709. https://doi.org/10.3390/antiox11091709
Cascaes MM, De Moraes ÂAB, Cruz JN, Franco CdJP, E Silva RC, Nascimento LDd, Ferreira OO, Anjos TOd, de Oliveira MS, Guilhon GMSP, et al. Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon. Antioxidants. 2022; 11(9):1709. https://doi.org/10.3390/antiox11091709
Chicago/Turabian StyleCascaes, Márcia Moraes, Ângelo Antônio Barbosa De Moraes, Jorddy Neves Cruz, Celeste de Jesus Pereira Franco, Renan Campos E Silva, Lidiane Diniz do Nascimento, Oberdan Oliveira Ferreira, Tainá Oliveira dos Anjos, Mozaniel Santana de Oliveira, Giselle Maria Skelding Pinheiro Guilhon, and et al. 2022. "Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon" Antioxidants 11, no. 9: 1709. https://doi.org/10.3390/antiox11091709
APA StyleCascaes, M. M., De Moraes, Â. A. B., Cruz, J. N., Franco, C. d. J. P., E Silva, R. C., Nascimento, L. D. d., Ferreira, O. O., Anjos, T. O. d., de Oliveira, M. S., Guilhon, G. M. S. P., & Andrade, E. H. d. A. (2022). Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon. Antioxidants, 11(9), 1709. https://doi.org/10.3390/antiox11091709