Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials of the Study
2.2. Layout and Design
2.3. Intercultural Practices
2.4. Reagents and Solvents
2.5. Estimation of Proximate Composition
2.6. Estimation of Mineral Composition
2.7. Carotenoids and Chlorophylls Determination
2.8. Determination of Betacyanins and Betaxanthins
2.9. Estimation of β-Carotene
2.10. Estimation of Ascorbic Acid
2.11. Extraction of Samples and Estimation of TP, AP, and TF
2.12. Statistical Analysis
3. Results and Discussion
3.1. Composition of Proximate
3.2. Mineral Elements
3.3. Bioactive Pigments
3.4. Bioactive Components and AP
3.5. Association Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rastogi, A.; Shukla, S. Amaranth: A New Millennium Crop of Nutraceutical Values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Das, S. Amaranths: The Crop of Great Prospect. In Amaranthus: A Promising Crop of Future; Springer: Singapore, 2016; pp. 13–48. [Google Scholar]
- Sreelathakumary, I.; Peter, K.V. Amaranth: Amaranthus spp. In Genetic Improvement of Vegetable Crops; Elsevier: Amsterdam, The Netherlands, 1993; pp. 315–323. [Google Scholar]
- Sauer, J.D. The Grain Amaranths and Their Relatives: A Revised Taxonomic and Geographic Survey. Ann. Missouri Bot. Gard. 1967, 54, 103. [Google Scholar] [CrossRef]
- Anu, R.; Mishra, B.K.; Mrinalini, S.; Ameena, S.; Rawli, P.; Nidhi, V.; Sudhir, S. Identification of Heterotic Crosses Based on Combining Ability in Vegetable Amaranthus (Amaranthus tricolor L.). Asian J. Agric. Res. 2015, 9, 84–94. [Google Scholar]
- Nguyen, D.C.; Tran, D.S.; Tran, T.T.H.; Ohsawa, R.; Yoshioka, Y. Genetic Diversity of Leafy Amaranth (Amaranthus tricolor L.) Resources in Vietnam. Breed. Sci. 2019, 69, 640–650. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Srivastava, A.; Singh, S.P. Genotypic Variability in Vegetable Amaranth (Amaranthus tricolor L for Foliage Yield and Its Contributing Traits over Successive Cuttings and Years. Euphytica 2006, 151, 103–110. [Google Scholar] [CrossRef]
- Guillet, D. Grain Amaranthus, History, and Nutrition. Kokopelli Seed Foundation. 2004. Available online: http://www.kokopelli-seed-foundation.com/amaranths.htm (accessed on 12 October 2021).
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic Variability for Nutrient, Antioxidant, Yield and Yield Contributing Traits in Vegetable Amaranth. J. Food Agric. Environ. 2014, 12, 168–174. Available online: https://www.wflpublisher.com/Abstract/5378 (accessed on 15 June 2022).
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability, heritability and genetic association in vegetable amaranth. Span. J. Agril. Res. 2015, 13, 0702. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability in Composition of Vitamins and Mineral Antioxidants in Vegetable Amaranth. Genetika 2015, 47, 85–96. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genetic Variation and Interrelationships among Antioxidant, Quality, and Agronomic Traits in Vegetable Amaranth. Turk. J. Agric. For. 2016, 40, 526–535. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic Diversity in Vegetable Amaranth for Antioxidant, Nutrient and Agronomic Traits. Indian J. Genet. Plant Breed. 2017, 77, 173–176. [Google Scholar] [CrossRef]
- Andini, R.; Yoshida, S.; Ohsawa, R. Variation in Protein Content and Amino Acids in the Leaves of Grain, Vegetable and Weedy Types of Amaranths. Agronomy 2013, 3, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Manólio Soares, R.A.; Mendonça, S.; de Castro, L.I.A.; Menezes, A.C.C.C.C.; Gomes Arêas, J.A. Major Peptides from Amaranth (Amaranthus cruentus) Protein Inhibit HMG-CoA Reductase Activity. Int. J. Mol. Sci. 2015, 16, 4150. [Google Scholar] [CrossRef] [Green Version]
- Písaríková, B.; Krácmar, S.; Herzig, I. Amino acid Contents and Biological Value of Protein Amaranth. Czech J. Anim. Sci. 2005, 50, 169–174. [Google Scholar] [CrossRef] [Green Version]
- López, D.N.; Galante, M.; Raimundo, G.; Spelzini, D.; Boeris, V. Functional Properties of Amaranth, Quinoa and Chia Proteins and the Biological Activities of Their Hydrolyzates. Food Res. Int. 2019, 116, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Srivastava, J.; Singh, N.; Singh, S.P. Mineral Profile and Variability in Vegetable Amaranth (Amaranthus tricolor). Plant Foods Hum. Nutr. 2006, 61, 23–28. [Google Scholar] [CrossRef]
- Chakrabarty, T.; Sarker, U.; Hasan, M.; Rahman, M.M. Variability in Mineral Compositions, Yield and Yield Contributing Traits of stem amaranth (Amaranthus lividus). Genetika 2018, 50, 995–1010. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive Value of Pseudocereals and Their Increasing Use as Functional Gluten-Free Ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Achigan-Dako, E.G.; Sogbohossou, O.E.D.; Maundu, P. Current Knowledge on Amaranthus spp.: Research Avenues for Improved Nutritional Value and Yield in Leafy Amaranths in Sub-Saharan Africa. Euphytica 2014, 197, 303–317. [Google Scholar] [CrossRef]
- Akin-Idowu, P.E.; Odunola, O.A.; Gbadegesin, M.A.; Ademoyegun, O.T.; Aduloju, A.O.; Olagunju, Y.O. Nutritional Evaluation of Five Species of Grain Amaranth—An Underutilized Crop. Int. J. Sci. 2017, 3, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Alegbejo, J. Nutritional Value and Utilization of Amaranthus (Amaranthus spp.)—A Review. Bayero J. Pure Appl. Sci. 2014, 6, 136. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Pandey, A.C.; Mishra, B.K. Diversity in Phenotypic and Nutritional Traits in Vegetable Amaranth (Amaranthus tricolor), A Nutritionally Underutilised Crop. J. Sci. Food Agric. 2010, 90, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Soriano-García, M.; Ilnamiqui Arias-Olguín, I.; Carrillo Montes, J.P.; Genaro Rosas Ramírez, D.; Mendoza Figueroa, J.S.; Flores-Valverde, E.; Rita Valladares-Rodríguez, M. Nutritional Functional Value and Therapeutic Utilization of Amaranth. J. Anal. Pharm. Res. 2018, 7, 596–600. [Google Scholar] [CrossRef] [Green Version]
- Akubugwo, I.E.; Obasi, N.A.; Chinyere, G.C.; Ugbogu, A.E. Nutritional and Chemical Value of Amaranthus hybridus L. Leaves from Afikpo, Nigeria. Afr. J. Biotechnol. 2007, 6, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Ezenwa, M.I.; Ogbadoyi, E.O. Effect of Heading on Some Micronutrients, Anti-Nutrients and Toxic Substances in Amaranthus cruentus Grown in Minna, Niger State, Nigeria. J. Food Nutr. Res. 2011, 1, 147–154. [Google Scholar]
- Lobo, M.; Samman, N.; Castanheira, I. Characterisation of Nutrient Profile of Quinoa (Chenopodium quinoa), Amaranth (Amaranthus caudatus), and Purple Corn (Zea mays L.) Consumed in the North of Argentina: Proximates, Minerals and Trace Elements. Food Chem. 2014, 148, 420–426. [Google Scholar]
- Nyonje, W.A.; Schafleitner, R.; Abukutsa-Onyango, M.; Yang, R.-Y.; Makokha, A.; Owino, W. Precision phenotyping and association between morphological traits and nutritional content in Vegetable Amaranth (Amaranthus spp.). J. Agric. Food Res. 2021, 5, 100165. [Google Scholar] [CrossRef]
- Schafleitner, R.; Lin, Y.P.; Dinssa, F.; N’Danikou, S.; Finkers, R.; Minja, R.; Abukutsa-Onyango, M.; Nyonje, W.; Lin, C.Y.; Wu, T.H.; et al. The world vegetable center Amaranthus germplasm collection: Core collection development and evaluation of agronomic and nutritional traits. Crop Sci. 2022, 62, 1173–1187. [Google Scholar] [CrossRef]
- Srivastava, R. Nutritional Quality of Some Cultivated and Wild Species of Amaranthus L. Int. J. Pharm. Sci. Res. 2011, 2, 3152. [Google Scholar]
- Wesche-Ebeling, P.; Maiti, R.; García-Díaz, G.; González, D.I.; Sosa-Alvarado, F. Contributions to the Botany and Nutritional Value of Some Wild Amaranthus species (Amaranthaceae) of Nuevo Leon, Mexico. Econ. Bot. 1995, 49, 423–430. [Google Scholar] [CrossRef]
- Mekonnen, G.; Woldesenbet, M.; Teshale, T.; Biru, T. Amaranthus caudatus Production and Nutrition Contents for Food Security and Healthy Living in Menit Shasha, Menit Goldya and Maji Districts of Bench Maji Zone, South Western Ethiopia. Nutr. Food Sci. Int. J. 2018, 7, 10–19080. [Google Scholar]
- Mlakar, S.G.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Nutrition Value and Use of Grain Amaranth: Potential Future Application in Bread Making. Agriculturae 2009, 6, 43–53. [Google Scholar]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Suitability of Amaranthus species for Alleviating Human Dietary Deficiencies. S. Afr. J. Bot. 2018, 115, 65–73. [Google Scholar] [CrossRef]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Nutrients and Antinutrient Constituents of Amaranthus caudatus L. Cultivated on Different Soils. Saudi J. Biol. Sci. 2020, 27, 3570–3580. [Google Scholar] [CrossRef]
- Sokolova, D.; Shelenga, T.; Zvereva, O.; Solovieva, A. Comparative Characteristics of the Amino Acid Composition in Amaranth Accessions from the VIR Collection. Turk. J. Agric. For. 2021, 45, 6. [Google Scholar] [CrossRef]
- Sena, L.P.; Vanderjagt, D.J.; Rivera, C.; Tsin, A.T.; Muhamadu, I.; Mahamadou, O.; Glew, R.H. Analysis of Nutritional Components of Eight Famine Foods of the Republic of Niger. Plant Foods Hum. Nutr. 1998, 52, 17–30. [Google Scholar] [CrossRef]
- Mohil, P.; Jain, U. Quantitative Analysis of Minerals in Certain Species of Amaranthus. Indian J. Plant Sci. 2012, 1, 213–216. [Google Scholar]
- Mohammed, M.I.; Sharif, N. Mineral Consumption of Some Leafy Vegetables Consumed in Kano, Nigeria. J. Basic Appl. Sci. 2011, 19, 208–212. [Google Scholar]
- Mnkeni, A.P.; Masika, P.; Maphaha, M. Nutritional Quality of Vegetable and Seed from Different Accessions of Amaranthus in South Africa. Water Afr. 2007, 33, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Makobo, N.D.; Shoko, M.D.; Mtaita, T.A. Nutrient Content of Vegetable Amaranth (Amaranthus cruentus L.) at Different Harvesting Stages. World J. Agric. Sci. 2010, 6, 285–289. [Google Scholar]
- Amagloh, F.K.; Nyarko, E.S. Mineral Nutrient Content of Commonly Consumed Leafy Vegetables in Northern Ghana. Afr. J. Food Agric. Nutri. Dev. 2012, 12, 6397–6408. [Google Scholar] [CrossRef]
- Agea, J.G.; Kimondo, J.M.; Woiso, D.A.; Obaa, B.B.; Isubikalu, P.; Okullo, J.B.L.; Teklehaimanot, Z. Nutritionally Essential Macro and Micro Minerals Contents of Fifteen Selected Leafy Wild and Semi-Wild Food Plants (WSWFPs) from Bunyoro-Kitara Kingdom, Uganda. J. Nat. Prod. Plant Resour. 2014, 4, 35–42. [Google Scholar]
- Abe, S.G.; Willem, S.; Patrick, O.A. Genetic Diversity of Amaranthus spp. in South Africa. S. Afr. J. Sci. 2015, 32, 39–46. [Google Scholar]
- Kumar, A.; Lakshman, K.; Jayaveera, K.N.; Velmurugan, C.; Manoj, B.; Sridhar, S.M. Anthelmintic Activity of Methanol Extract of Amaranthus caudatus L. Internet J. Food Saf. 2010, 12, 127–129. [Google Scholar]
- Kumar, A.; Lakshman, K.; Jayaveera, K.N.; Nandeesh, R.; Manoj, B.; Ranganayakulu, D. Comparative in vitro Antihelminthic Activity of Three Plants from Amaranthaceae Family. Arch. Biol. Sci. 2010, 62, 185–189. [Google Scholar] [CrossRef]
- Reyad-ul-Ferdous, M.; Shahjahan, D.S.; Tanvir, S.; Mukti, M. Present Biological Status of Potential Medicinal Plant of Amaranthus viridis: A comprehensive review. Am. J. Clin. Exp. Med. 2015, 3, 12–17. [Google Scholar] [CrossRef] [Green Version]
- De Vita, D.; Messore, A.; Toniolo, C.; Frezza, C.; Scipione, L.; Bertea, C.M.; Micera, M.; Di Sarno, V.; Madia, V.N.; Pindinello, I.; et al. Towards A New Application of Amaranth Seed Oil as an Agent Against Candida albicans. Nat. Prod. Res. 2021, 35, 4621–4626. [Google Scholar] [CrossRef]
- Al-Mamun, M.A.; Husna, J.; Khatun, M.; Hasan, R.; Kamruzzaman, M.; Hoque, K.M.F.; Reza, M.A.; Ferdousi, Z. Assessment of Antioxidant, Anticancer and Antimicrobial Activity of Two Vegetable Species of Amaranthus in Bangladesh. BMC Complement. Altern. Med. 2016, 16, 157. [Google Scholar] [CrossRef] [Green Version]
- Moyer, T.B.; Heil, L.R.; Kirkpatrick, C.L.; Goldfarb, D.; Lefever, W.A.; Parsley, N.C.; Wommack, A.J.; Hicks, L.M. PepSAVI-MS Reveals a Proline-Rich Antimicrobial Peptide in Amaranthus tricolor. J. Nat. Prod. 2019, 82, 2744–2753. [Google Scholar] [CrossRef]
- Lipkin, A.; Anisimova, V.; Nikonorova, A.; Babakov, A.; Krause, E.; Bienert, M.; Grishin, E.; Egorov, T. An Antimicrobial Peptide Ar-Amp from Amaranth (Amaranthus retroflexus L.) Seeds. Phytochemistry 2005, 66, 2426–2431. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Hanif, S.; Iftkhar, T. Phytochemical Profiling with Antioxidant and Antimicrobial Screening of Amaranthus viridis L. Leaf and Seed Extracts. Open J. Med. Microbiol. 2013, 3, 16–171. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, Y.; Bi, X.; Duo, K.; Sun, Q.; Yun, X.; Zhang, Y.; Fei, P.; Han, J. Antimicrobial Activity and Mechanism of Action of the Amaranthus tricolor Crude Extract Against Staphylococcus aureus and Potential Application in Cooked Meat. Foods 2020, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Toxicity and Antimicrobial Activities of Amaranthus caudatus L. (Amaranthaceae) Harvested from Formulated Soils at Different Growth Stages. J. Evid. Based Complement. Altern. Med. 2020, 25, 2515690X20971578. [Google Scholar] [CrossRef]
- Maiyo, Z.C.; Ngure, R.N.; Matasyoh, J.C.; Chepkorir, R. Phytochemical Constituents and Antimicrobial Activity of Leaf Extract of Three Amaranthus Plant Species. Afr. J. Biotechnol. 2010, 9, 3178–3182. [Google Scholar]
- Terzieva, S.; Velichkova, K.; Grozeva, N.; Valcheva, N.; Dinev, T. Antimicrobial Activity of Amaranthus spp. Extracts Against Some Mycotoxigenic Fungi. Bulg. J. Agric. Sci. 2019, 25, 120–123. [Google Scholar]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Micromorphological Assessment of Leaves of Amaranthus caudatus L. Cultivated on Formulated Soil Types. Appl. Ecol. Environ. Res. 2019, 17, 13593–13605. [Google Scholar] [CrossRef]
- Antiinflamatory Lin, B.F.; Chiang, B.L.; Lin, J.Y. Amaranthus spinosus Water Extract Directly Stimulates Proliferation of B Lymphocytes in vitro. Int. Immunopharmacol. 2005, 5, 711–722. [Google Scholar]
- Baral, M.; Chakraborty, S.; Chakraborty, P. Evaluation of Anthelmintic and Anti-Inflammatory Activity of Amaranthus spinosus L. Int. J. Curr. Pharm. Res. 2010, 2, 2–5. [Google Scholar]
- Olajide, O.; Ogunleye, B.; Erinle, T. Anti-inflammatory Properties of Amaranthus spinosus Leaf Extract. Pharm. Biol. 2004, 42, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Amornrit, W.; Santiyanont, R. Effect of Amaranthus on Advanced Glycation End-Products Induced Cytotoxicity and Proinflammatory Cytokine Gene Expression in SH-SY5Y Cells. Molecules 2015, 20, 17288. [Google Scholar] [CrossRef] [Green Version]
- House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. Variation in The Polyphenol Composition, Antioxidant, and Anticancer Activity Among Different Amaranthus Species. S. Afr. J. Bot. 2020, 135, 408–412. [Google Scholar] [CrossRef]
- Jin, Y.; Xuan, Y.; Chen, M.; Chen, J.; Jin, Y.; Piao, J.; Tao, J. Antioxidant, Anti-inflammatory and Anticancer Activities of Amaranthus viridis L. Extracts. Asian J. Chem. 2013, 25, 8901–8904. [Google Scholar] [CrossRef]
- Sani, H.A.; Rahmat, A.; Ismail, M.; Rosli, R.; Endrini, S. Potential Anticancer Effect of Red Spinach (Amaranthus gangeticus) Extract. Asia Pac. J. Clin. Nutr. 2004, 13, 396–400. [Google Scholar] [PubMed]
- Zeashan, H.; Amresh, G.; Singh, S.; Rao, C.V. Hepatoprotective Activity of Amaranthus spinosus in Experimental Animals. Food Chem. Toxicol. 2008, 46, 3417–3421. [Google Scholar] [CrossRef] [PubMed]
- Aneja, S.; Vats, M.; Aggarwal, S.; Sardana, S. Phytochemistry and Hepatoprotective Activity of Aqueous Extract of Amaranthus tricolor L. Roots. J. Ayurveda Integr. Med. 2013, 4, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Zeashan, H.; Amresh, G.; Singh, S.; Rao, C.V. Protective Effect of Amaranthus spinosus Against D-Galactosamine/Lipopolysaccharide-Induced Hepatic Failure. Pharm. Biol. 2010, 48, 1157–1163. [Google Scholar] [CrossRef]
- Zeashan, H.; Amresh, G.; Singh, S.; Rao, C.V. Hepatoprotective and Antioxidant Activity of Amaranthus spinosus Against CCl4 Induced Toxicity. J. Ethnopharmacol. 2009, 125, 364–366. [Google Scholar] [CrossRef]
- Allegra, M.; Tesoriere, L.; Livrea, M.A. Betanin Inhibits the Myeloperoxidase/Nitrite-Induced Oxidation of Human Low-Density Lipoproteins. Free Radic. Res. 2007, 41, 335–341. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Pandhare, R. Antihyperglycemic and Antihyperlipidaemic Activities of Amaranthus spinosus L. Extract on Alloxan Induced Diabetic Rats. Malays. J. Pharm. Sci. 2010, 8, 13–22. [Google Scholar]
- Clemente, A.; Desai, P. Evaluation of the Hematological, Hypoglycemic, Hypolipidemic and Antioxidant Properties of Amaranthus tricolor Leaf Extract in Rat. Trop. J. Pharm. Res. 2011, 10, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Fukui, R.; Jia, H.; Kato, H. Amaranth supplementation improves hepatic lipid dysmetabolism and modulates gut microbiota in mice fed a high-fat diet. Foods 2021, 10, 1259. [Google Scholar] [CrossRef]
- Krishnamurthy, G.; Lakshman, K.; Pruthvi, N.; Chandrika, P.U. Antihyperglicemic and Hypolipidemic Activity of Methanolic Extract of Amaranthus viridis Leaves in Experimental Diabetes. Indian J. Pharmacol. 2011, 43, 450–454. [Google Scholar]
- Girija, K.; Lakshman, K.; Udaya, C.; Sabhya Sachi, G.; Divya, T. Antidiabetic and Anti–cholesterolemic Activity of Methanol Extracts of Three Species of Amaranthus. Asian Pac. J. Trop. Biomed. 2011, 1, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Hilou, A.; Nacoulma, O.G.; Guiguemde, T.R. In vivo Antimalarial Activities of Extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in Mice. J. Ethnopharmacol. 2006, 103, 236–240. [Google Scholar] [CrossRef]
- Hsiao, L.W.; Tsay, G.J.; Mong, M.C.; Liu, W.H.; Yin, M.C. Aqueous Extract Prepared from Steamed Red Amaranth (Amaranthus gangeticus L.) Leaves Protected Human Lens Cells Against High Glucose Induced Glycative and Oxidative Stress. J. Food Sci. 2021, 86, 3686–3697. [Google Scholar] [CrossRef]
- Chang, Y.J.; Pong, L.Y.; Hassan, S.S.; Choo, W.S. Antiviral Activity of Betacyanins from Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius) Against Dengue Virus Type 2 (GenBank accession no. MH488959). Access Microbiol. 2020, 2, 1–6. [Google Scholar] [CrossRef]
- Amornrit, W.; Santiyanont, R. Neuroprotective Effect of Amaranthus lividus and Amaranthus tricolor and Their Effects on Gene Expression of RAGE During Oxidative Stress in SH-SY5Y Cells. Genet. Mol. Res. 2016, 15, gmr15027562. [Google Scholar] [CrossRef]
- Hussain, Z.; Amresh, G.; Singh, S.; Rao, C.V. Antidiarrheal and Antiulcer Activity of Amaranthus spinosus in Experimental Animals. Pharm. Biol. 2009, 47, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Prajitha, V.; Thoppil, J.E. Cytotoxic and Apoptotic Activities of Extract of Amaranthus spinosus L. in Allium cepa and Human Erythrocytes. Cytotechnology 2017, 69, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Kusumaningtyas, R.; Kobayashi, S.; Takeda, S. Mixed Species Gardens in Java and the Transmigration Areas of Sumatra, Indonesia: A Comparison. J. Tropical Agric. 2006, 44, 15–22. [Google Scholar]
- Vardhana, H. In vitro Antibacterial Activity of Amaranthus spinosus Root Extracts. Pharmacophore 2011, 2, 266–270. [Google Scholar]
- Kumar, A.; Lakshman, K.; Velmurugan, C.; Sridhar, S.M.; Gopisetty, S. Antidepressant Activity of Methanolic Extract of Amaranthus spinosus. Basic Clin. Neurosci. 2014, 5, 11–17. [Google Scholar]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Therapeutic uses of Amaranthus caudatus L. Trop. Biomed. 2019, 36, 1038–1053. [Google Scholar]
- Cai, Y.; Corke, H. Amaranthus Betacyanin Pigments Applied in Model Food Systems. J. Food Sci. 1999, 64, 869–873. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Identification and Distribution of Simple and Acylated Betacyanins in the Amaranthaceae. J. Agric. Food Chem. 2001, 49, 1971–1978. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. HPLC Characterization of Betalains from Plants in the Amaranthaceae. J. Chromatogr. Sci. 2005, 43, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Stintzing, F.C.; Carle, R. Betalains-Emerging Prospects for Food Scientists. Trends Food Sci. Technol. 2007, 18, 514–525. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Wu, H.; Huang, R.; Corke, H. Characterization and Quantification of Betacyanin Pigments from Diverse Amaranthus Species. J. Agric. Food Chem. 1998, 46, 2063–2070. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Characterization and Application of Betalain Pigments from Plants of the Amaranthaceae. Trends Food Sci. Technol. 2005, 16, 370–376. [Google Scholar] [CrossRef]
- Miguel, M.G. Betalains in Some Species of The Amaranthaceae Family: A Review. Antioxidants 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability in Total Antioxidant Capacity, Antioxidant Leaf Pigments and Foliage Yield of Vegetable Amaranth. J. Integr. Agric. 2018, 17, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Antioxidant Leaf Pigments and Variability in Vegetable Amaranth. Genetika 2018, 50, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Phenotypic Divergence in Vegetable Amaranth for Total Antioxidant Capacity, Antioxidant Profile, Dietary Fiber, Nutritional and Agronomic Traits. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 67–76. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellstrom, J.K.; Philava, J.M.; Mattila, P.H. Flavonoids and Other Phenolic Compounds in Andean Indigenous Grains: Quinoa (Chenopodium quinoa), Kaniwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Abderrabba, M. Chemical and Antioxidant Properties of Betalains. J. Agric. Food Chem. 2017, 65, 675–689. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Wagner, A.E.; Motafakkerazad, R.; Nakajima, Y.; Matsugo, S.; Rimbach, G. Free Radical Scavenging and Antioxidant Activity of Betanin: Electron Spin Resonance Spectroscopy Studies and Studies in Cultured Cells. Food Chem. Toxicol. 2014, 73, 119–126. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. The Role of Phenolic Hydroxy Groups in the Free Radical Scavenging Activity of Betalains. J. Nat. Prod. 2009, 72, 1142–1146. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Structural Implications on Color, Fluorescence, and Antiradical Activity in Betalains. Planta 2010, 232, 449–460. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Purification and Antiradical Properties of the Structural Unit of Betalains. J. Nat. Prod. 2012, 75, 1030–1036. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Biological Activities of Plant Pigments Betalains. Crit. Rev. Food Sci. Nutr. 2016, 56, 937–945. [Google Scholar] [CrossRef]
- Khan, M.I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Giridhar, P. Plant Betalains: Chemistry and Biochemistry. Phytochemistry 2015, 117, 267–295. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Functional Properties of Anthocyanins and Betalains in Plants, Food, and in Human Nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Taira, J.; Tsuchida, E.; Katoh, M.C.; Uehara, M.; Ogi, T. Antioxidant Capacity of Betacyanins as Radical Scavengers for Peroxyl Radical and Nitric Oxide. Food Chem. 2015, 166, 531–536. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of Phenolics, Betacyanins and Antioxidant Activities of The Seed, Leaf, Sprout, Flower and Stalk Extracts of Three Amaranthus species. J. Food Compos. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Raju, M.; Varakumar, S.; Lakshminarayana, R.; Krishnakantha, P.T.; Baskaran, V. Carotenoid Composition and Vitamin A Activity of Medicinally Important Green Leafy Vegetables. Food Chem. 2007, 101, 1598–1605. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant Activity of Betalains from Plants of The Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef]
- Sarker, U.; Lin, Y.P.; Oba, S.; Yoshioka, Y.; Ken, H. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiol. Biochem. 2022, 182, 104–123. [Google Scholar] [CrossRef] [PubMed]
- Pasko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, Total Polyphenols and Antioxidant Activity in Amaranth and Quinoa Seeds and Sprouts During Their Growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Asao, M.; Watanabe, K. Functional and Bioactive Properties of Quinoa and Amaranth. Food Sci. Technol. Res. 2010, 16, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Barba de la Rosa, A.P.; Fomsgaard, I.S.; Laursen, B.; Mortensen, A.G.; Olvera-Martínez, L.; Silva-Sánchez, C.; Mendoza-Herrera, A.; González-Castañeda, J.; De León-Rodrígueza, A. Amaranth (Amaranthus hypochondriacus) as an Alternative Crop for Sustainable Food Production: Phenolic Acids and Flavonoids with Potential Impact on Its Nutraceutical Quality. J. Cereal Sci. 2009, 49, 117–121. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Meineri, G.; Gai, F.; Longato, E.; Amarowicz, R. Antioxidative Activity and Phenolic Compounds of Pumpkin (Cucurbita Pepo) Seeds and Amaranth (Amaranthus caudatus) Grain Extracts. Nat. Prod. Res. 2017, 31, 2178–2182. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Kammerer, D.; Schieber, A.; Adama, H.; Nacoulma, O.G.; Carle, R. Betacyanins and Phenolic Compounds from Amaranthus spinosus L. and Boerhavia erecta L. Z. Naturforsch. C 2004, 59, 1–8. [Google Scholar] [CrossRef]
- Kalinova, J.; Dadakova, E. Rutin and Total Quercetin Content in Amaranth (Amaranthus spp.). Plant Foods Hum. Nutr. 2009, 64, 68–74. [Google Scholar] [CrossRef]
- Tang, Y.; Xiao, Y.; Tang, Z.; Jin, W.; Wang, Y.; Chen, H.; Yao, H.; Shan, Z.; Bu, T.; Wang, X. Extraction of Polysaccharides from Amaranthus hybridus L. by Hot Water and Analysis of Their Antioxidant Activity. Peer J. 2019, 7, e7149. [Google Scholar] [CrossRef] [Green Version]
- Ozsoy, N.; Yilmaz, T.; Kurt, O.; Can, A.; Yanardag, R. In vitro Antioxidant Activity of Amaranthus lividus L. Food Chem. 2009, 116, 867–872. [Google Scholar] [CrossRef]
- Okunlola, G.O.; Jimoh, M.A.; Olatunji, O.A.; Olowolaju, E.D. Comparative Study of The Phytochemical Contents of Cochorus olitorius and Amaranthus hybridus at Different Stages of Growth Comparative Study of The Phytochemical Contents. Ann. West Univ. Timis. Ser. Biol. 2017, 20, 43–48. [Google Scholar]
- Sarikurkcu, C.; Sahinler, S.S.; Tepe, B. Astragalus gymnolobus, A. leporinus var. hirsutus, and A. onobrychis: Phytochemical Analysis and Biological Activity. Ind. Crops Prod. 2020, 150, 112366. [Google Scholar] [CrossRef]
- Tatiya, A.U.; Surana, S.J.; Khope, S.D.; Gokhale, S.B.; Sutar, M.P. Phytochemical Investigation and Immunomodulatory Activity of Amaranthus spinosus L. Indian J. Pharm. Educ. Res. 2007, 444, 337–341. [Google Scholar]
- Pamela, E.A.I.; Olufemi, T.A.; Yemisi, O.O.; Aduloju, O.A.; Usifo, G.A. Phytochemical Content and Antioxidant Activity of Five Grain Amaranth Species. Am. J. Food Sci. Technol. 2017, 5, 249–255. [Google Scholar]
- Pasko, P.; Barton, H.; Fołta, M.; Gwiżdż, J. Evaluation of Antioxidant Activity of Amaranth Amaranthus cruentus Grain and by-Products Flour, Popping, Cereal. Rocz. Pa’nstwowego Zakładu Hig. 2007, 581, 35–40. [Google Scholar]
- Nsimba, R.Y.; Kikuzaki, H.; Konishi, Y. Antioxidant Activity of Various Extracts and Fractions of Chenopodium quinoa and Amaranthus spp. Seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Tang, Y.; Tsao, R. Phytochemicals in Quinoa and Amaranth Grains and Their Antioxidant, Anti-Inflammatory, and Potential Health Beneficial Effects: A Review. Mol. Nutr. Food Res. 2017, 61, 1600767. [Google Scholar] [CrossRef]
- Barku, V.Y.A.; Opoku-Boahen, Y.; Owusu-Ansah, E.; Mensah, E.F.; Barku, V.Y.A.; Opoku-Boahen, Y.; Owusu-Ansah, E.; Mensah, E.F. Antioxidant Activity and The Estimation of Total Phenolic and Flavonoid Contents of The Root Extract of Amaranthus spinosus. Asian J. Plant Sci. Res. 2013, 3, 69–74. [Google Scholar]
- Bulbul, I.J.; Nahar, L.; Ripa, F.A.; Haque, O. Antibacterial, Cytotoxic and Antioxidant Activity of Chloroform, N-Hexane and Ethyl Acetate Extract of Plant Amaranthus spinosus. Int. J. PharmTech Res. 2011, 33, 1675–1680. [Google Scholar]
- Kumar, B.S.A.; Lakshman, K.; Jayaveera, K.N.; Shekar, D.S.; Kumar, A.A.; Manoj, B. Antioxidant and Antipyretic Properties of Methanolic Extract of Amaranthus spinosus Leaves. Asian Pac. J. Trop. Med. 2010, 3, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Ishtiaq, S.; Ahmad, M.; Hanif, U.; Akbar, S.; Kamran, S.H. Phytochemical and in-vitro Antioxidant Evaluation of Different Fractions of Amaranthus graecizan subsp. Silvestris Vill. Brenan. Asian Pac. J. Trop. Biomed. 2014, 412, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Antioxidant and Phytochemical Activities of Amaranthus caudatus L. Harvested from Different Soils at Various Growth Stages. Sci. Rep. 2019, 9, 12965. [Google Scholar] [CrossRef]
- Karamac, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) During Plant Growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Kraujalis, P.; Venskutonis, P.R.; Kraujalienė, V.; Pukalskas, A. Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods Hum. Nutr. 2013, 68, 322–328. [Google Scholar] [CrossRef]
- Kumari, S.; Elancheran, R.; Devi, R. Phytochemical Screening, Antioxidant, Antityrosinase, And Antigenotoxic Potential of Amaranthus viridis Extract. Indian J. Pharmacol. 2018, 50, 130–138. [Google Scholar]
- Lopez-Mejía, O.A.; Lopez-Malo, A.; Palou, E. Antioxidant Capacity of Extracts from Amaranth Amaranthus hypochondriacus L. Seeds or Leaves. Ind. Crops Prod. 2014, 53, 55–59. [Google Scholar] [CrossRef]
- Lucero-Lopez, V.R.; Razzeto, G.S.; Gimenez, M.S.; Escudero, N.L. Antioxidant Properties of Amaranthus hypochondriacus Seeds and Their Effect on The Liver of Alcohol-Treated Rats. Plant Foods Hum. Nutr. 2011, 66, 157–162. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shukor, M.Y.; Shaharuddin, N.A.; Sabullah, M.K.; Ahmad, S.A. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as A Potential Treatment for Hypercholesterolemia. Evid. Based Complement. Altern. Med. 2016, 2016, 8090841. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Sicairos, E.S.; Milán-Noris, A.K.; Luna-Vital, D.A.; Milán-Carrillo, J.; Montoya-Rodríguez, A. Anti-Inflammatory and Antioxidant Effects of Peptides Released from Germinated Amaranth During In Vitro Simulated Gastrointestinal Digestion. Food Chem. 2021, 1, 128394. [Google Scholar] [CrossRef]
- Medoua, G.N.; Oldewage-Theron, W.H. Effect of Drying and Cooking on Nutritional Value and Antioxidant Capacity of Morogo (Amaranthus hybridus) A Traditional Leafy Vegetable Grown in South Africa. J. Food Sci. Technol. 2014, 51, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Tesoriere, L.; Allegra, M.; Gentile, C.; Livrea, M.A. Betacyanins as Phenol Antioxidants. Chemistry and Mechanistic Aspects of the Lipoperoxyl Radical-Scavenging Activity in Solution and Liposomes. Free Radic. Res. 2009, 43, 706–717. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Peña, J.; Kallio, H.; Salminen, S. Dietary Fiber and Other Functional Components in Two Varieties of Crude and Extruded Kiwicha (Amaranthus caudatus). J. Cereal Sci. 2009, 49, 219–224. [Google Scholar] [CrossRef]
- Jo, H.J.; Chung, K.H.; Yoon, J.A.; Lee, K.J.; Song, B.C.; An, J.H. Radical Scavenging Activities of Tannin Extracted from Amaranth (Amaranthus caudatus L.). J. Microbiol. Biotechnol. 2015, 25, 795–802. [Google Scholar] [CrossRef]
- Subhasree, B.; Baskar, R.; Laxmi Keerthana, R.; Lijina Susan, R.; Rajasekaran, P. Evaluation of Antioxidant Potential in Selected Green Leafy Vegetables. Food Chem. 2009, 115, 1213–1220. [Google Scholar] [CrossRef]
- Lacatusu, I.; Arsenie, K.L.V.; Badea, G.; Popa, O.; Oprea, O.; Badea, N. New Cosmetic Formulations with Broad Photoprotective and Antioxidative Activities Designed by Amaranth and Pumpkin Seed Oils Nanocarriers. Ind. Crops Prod. 2018, 123, 424–433. [Google Scholar] [CrossRef]
- Steffensen, S.K.; Pedersen, H.A.; Labouriau, R.; Mortensen, A.G.; Laursen, B.; de Troiani, R.M.; Noellemeyer, E.J.; Janovska, D.; Stavelikova, H.; Taberner, A.; et al. Variation of Polyphenols and Betaines in Aerial Parts of Young, Field-Grown Amaranthus genotypes. J. Agric. Food Chem. 2011, 59, 12073–12082. [Google Scholar] [CrossRef]
- Niveyro, S.L.; Mortensen, A.G.; Fomsgaard, I.S.; Salvo, A. Differences Among Five Amaranth Varieties (Amaranthus spp.) Regarding Secondary Metabolites and Foliar Herbivory by Chewing Insects in The Field. Arthropod-Plant Interact. 2013, 7, 235–245. [Google Scholar] [CrossRef]
- Amin, I.; Norazaidah, Y.; Hainida, K.I.E. Antioxidant Activity and Phenolic Content of Raw and Blanched Amaranthus species. Food Chem. 2006, 94, 47–52. [Google Scholar] [CrossRef]
- Bao, X.; Han, X.; Du, G.; Wei, C.; Zhu, X.; Ren, W.; Zeng, L.; Zhang, Y. Antioxidant Activities and Immunomodulatory Effects in Mice of Betalain In Vivo. Food Sci. 2019, 40, 196–201. [Google Scholar]
- Conforti, F.; Statti, G.; Loizzo, M.R.; Sacchetti, G.; Poli, F.; Menichini, F. In Vitro Antioxidant Effect and Inhibition of Alpha-Amylase of Two Varieties of Amaranthus caudatus Seeds. Biol. Pharm. Bull. 2005, 28, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Response of Nutrients, Minerals, Antioxidant Leaf Pigments, Vitamins, Polyphenol, Flavonoid and Antioxidant Activity in Selected Vegetable Amaranth under Four Soil Water Content. Food Chem. 2018, 252, 72–83. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought Stress Enhances Nutritional and Bioactive Compounds, Phenolic Acids and Antioxidant Capacity of Amaranthus Leafy Vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor. Appl. Biochem. Biotechnol. 2018, 186, 999–1016. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Catalase, Superoxide Dismutase and Ascorbate-Glutathione Cycle Enzymes Confer Drought Tolerance of A. tricolor. Sci. Rep. 2018, 8, 16496. [Google Scholar] [CrossRef] [Green Version]
- Jamalluddin, N.; Massawe, F.J.; Mayes, S.; Ho, W.K.; Singh, A.; Symonds, R.C. Physiological Screening for Drought Tolerance Traits in Vegetable Amaranth (Amaranthus tricolor) Germplasm. Agriculture 2021, 11, 994. [Google Scholar] [CrossRef]
- Liu, F.; Stützel, H. Biomass Partitioning, Specific Leaf Area, and Water Use Efficiency of Vegetable Amaranth (Amaranthus spp.) in Response to Drought Stress. Sci. Hortic. 2004, 102, 15–27. [Google Scholar] [CrossRef]
- Bello, Z.A.; Walker, S. Evaluating AquaCrop Model for Simulating Production of Amaranthus (Amaranthus cruentus) a Leafy Vegetable, Under Irrigation and Rainfed Conditions. Agric. For. Meteorol. 2017, 247, 300–310. [Google Scholar] [CrossRef]
- Sedibe, M.M.; Combrink, N.J.J.; Reinten, E.Y. Leaf Yield of Amaranthus hypochondriatus L. (Imbuya), Affected by Irrigation Systems and Water Quality. S. Afr. J. Plant Soil 2013, 22, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Sosnoskie, L.M.; Kichler, J.M.; Wallace, R.D.; Culpepper, A.S. Multiple Resistance in Palmer Amaranth to Glyphosate and Pyrithiobac Confirmed in Georgia. Weed Sci. 2011, 59, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Salinity Stress Enhances Color Parameters, Bioactive Leaf Pigments, Vitamins, Polyphenols, Flavonoids and Antioxidant Activity in Selected Amaranthus Leafy Vegetables. J. Sci. Food Agric. 2019, 99, 2275–2284. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Augmentation of Leaf Color Parameters, Pigments, Vitamins, Phenolic Acids, Flavonoids and Antioxidant Activity in Selected Amaranthus tricolor under Salinity Stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Oba, S. Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity in Amaranthus tricolor Leaves. PLoS ONE 2018, 13, 0206388. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. The Response of Salinity Stress-Induced A. tricolor to Growth, Anatomy, Physiology, Non-Enzymatic and Enzymatic Antioxidants. Front. Plant Sci. 2020, 11, 559876. [Google Scholar] [CrossRef]
- Omamt, E.N.; Hammes, P.S.; Robbertse, P.J. Differences in Salinity Tolerance for Growth and Water-Use Efficiency in Some Amaranth (Amaranthus spp.) Genotypes. N. Z. J. Crop Hortic. Sci. 2006, 34, 11–22. [Google Scholar] [CrossRef]
- FAO; IFAD; WFP. The State of Food Security in The World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. 2015. Available online: http://www.fao.org/3/a-i4646e.pdf (accessed on 3 March 2020).
- Von Grebmer, K.; Saltzman, A.; Birol, E.; Wiesmann, D.; Prasai, N.; Yin, S.; Yohannes, Y.; Menon, P.; Thompson, J.; Sonntag, A. 2014 Global Hunger Index: The Challenge of Hidden Hunger; Welthungerhilfe: Bonn, Germany; International Food Policy Research Institute, and Concern Worldwide: Washington, DC, USA; Dublin, Ireland, 2014. [Google Scholar]
- Afari-Sefa, V.; Tenkouano, A.; Ojiewo, C.O.; Keatinge, J.D.H.; Hughes, J.D.A. Vegetable Breeding in Africa: Constraints, Complexity, and Contributions Toward Achieving Food and Nutritional Security. Food Secur. 2011, 4, 115–127. [Google Scholar] [CrossRef]
- Grosso, G.; Bei, R.; Mistretta, A.; Marventano, S.; Calabrese, G.; Masuelli, L.; Giganti, M.; Modesti, A.; Galvano, F.; Gazzolo, D. Effects of Vitamin C on Health: A Review of Evidence. Front. Biosci. 2013, 18, 1017–1029. [Google Scholar]
- Isabelle, M.; Lee, B.L.; Lim, M.T.; Koh, W.P.; Huang, D.; Ong, C.N. Antioxidant Activity and Profiles of Common Fruits in Singapore. Food Chem. 2010, 123, 77–84. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Khan, A.A.; Javed, M.S.; Sajid, M.W. Green Leafy Vegetables: A health-promoting source. In Handbook of Fertility; Watson, R.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 205–220. [Google Scholar]
- Dusgupta, N.; De, B. Antioxidant Activity of Some Leafy Vegetables of India: A Comparative Study. Food Chem. 2007, 101, 471–474. [Google Scholar] [CrossRef]
- Steffensen, S.K.; Rinnan, A.; Mortensen, A.G.; Laursen, B.; Troiani, R.M.; Noellemeyer, E.J.; Janovská, D.; Dusekd, K.; Délano-Frier, J.P.; Tabernerf, A.; et al. Variations in the Polyphenol Content of Seeds of Field Grown Amaranthus Accessions. Food Chem. 2011, 129, 131–138. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Papanga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Diversity Rajan, S.; Markose, B.L. Horticultural Science Series-6. In Propagation of Horticultural Crops; Peter, K.M.V., Ed.; New India Publishing Agency: New Delhi, India, 2007; Volume 6, pp. 110–113. [Google Scholar]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Singh, S.P. Selection Response in Vegetable Amaranth (A. tricolor) for Different Foliage Cuttings. J. Appl. Hortic. 2004, 6, 43–44. [Google Scholar]
- Shukla, S.; Singh, S.P. A Study on Genetic Variability and Selection Parameters of Amaranth. Farm Sci. J. 2003, 12, 164–166. [Google Scholar]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Pandey, A.C.; Kumar, A.R.A. Genetic Interrelationship among Nutritional and Quantitative Traits in the Vegetable Amaranth. Crop Breed. Appl. Biotechnol. 2010, 10, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R. Assessment of Morphological Diversity of Selected Amaranthus Species. J. Glob. Biosci. 2015, 4, 3044–3048. [Google Scholar]
- Vyas, V.P.I.; Prajapati, B.H.; Patel, M.P.; Prajapati, R.R. Genetic Variability Study in Amaranthus (Amaranthus paniculatus L.). J. Farm. Sci. 2006, 15, 47–49. [Google Scholar]
- Wu, H.; Sun, M.; Yue, S.; Sun, H.; Cai, Y.; Huang, R.; Corke, H. Field Evaluation of an Amaranthus Genetic Resource Collection in China. Genet. Resour. Crop Evol. 2000, 47, 43–53. [Google Scholar] [CrossRef]
- Yadav, R.; Rana, J.C.; Ranjan, J.K. Analysis of Variability Parameters for Morphological and Agronomic Traits in Grain Amaranth (Amaranthus sp.) Genotypes. J. Veg. Sci. 2008, 35, 81–83. [Google Scholar]
- Rana, J.C.; Yadav, S.K.; Mandal, S.; Yadav, S. Genetic Divergence and Interrelationship Analysis in Grain Amaranth (Amaranthus hypochondriacus) Germplasm. Indian J. Genet. Plant Breed. 2005, 65, 99–102. [Google Scholar]
- Patial, M.; Chauhan, A.; Singh, K.P.; Sharma, D. Character Association and path Coefficient Analysis in Grain Amaranth (Amaranthus spp.). Int. J. Agric. Environ. Biotechnol. 2014, 7, 101–106. [Google Scholar] [CrossRef]
- Pamela, E.A.I.; Gbadegesin, M.A.; Orkpeh, U.; Ibitoye, D.O.; Odunola, O.A. Characterization of Grain Amaranth (Amaranthus spp.) Germplasm in South West Nigeria Using Morphological, Nutritional, and Random Amplified Polymorphic DNA (RAPD) Analysis. Resources 2016, 5, 6. [Google Scholar]
- Mandal, J.; Dhangrah, V.K. Screening Vegetable Amaranth under Summer Condition in Red and Lateritic Belt of West Bengal. Environ. Ecol. 2012, 30, 1430–1433. [Google Scholar]
- Mandal, J.; Dhangrah, V.K.; Chakravorty, S. Evaluation of Vegetable Amaranth under Hot Summer Growing Condition. HortFlora Res. Spectr. 2013, 2, 352–355. [Google Scholar]
- Khurana, D.S.; Singh, J.; Kaur, B. Genetic Variability, Correlation and Path Coefficient Analysis in Amaranthus. Veg. Sci. 2013, 36, 382–385. [Google Scholar]
- Hailu, A.F.; Lal, S.; Alameraw, S. Estimation of Association Characters in Amaranths Germplasm Accessions (Amaranthus spp.) under Mizan and Tepi Condtions, South West Ethiopia. Int. J. Res. 2015, 2, 1–25. [Google Scholar]
- Gerrano, A.S.; Rensburg, W.S.J.; Adebola, P.O. Agro-morphological Variability of Amaranthus Genotypes in South Africa. Acta Hort. 2014, 11, 183–187. [Google Scholar] [CrossRef]
- Anuja, S. Evaluation of Amaranthus Germplasm for Green Leaf Yield (Amaranthus spp.). Adv. Plant Sci. 2012, 25, 463–466. [Google Scholar]
- Anuja, S.; Mohideen, M.K. Genetic Diversity for Green Yield Characteristics in Vegetable Amaranthus (Amaranthus sp.). Plant Arch. 2006, 6, 615–617. [Google Scholar]
- Andini, R.; Yoshida, S.; Yoshida, Y.; Ohsawa, R. Amaranthus Genetic Resources in Indonesia: Morphological and Protein Content Assessment in Comparison with Worldwide Amaranths. Genet. Resour. Crop Evol. 2013, 60, 2115–2128. [Google Scholar] [CrossRef] [Green Version]
- Akaneme, F.I.; Ani, G.O. Morphological Assessment of Genetic Variability among Accessions of Amaranthus hybridus. World Appl. Sci. J. 2013, 28, 568–577. [Google Scholar]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Srivastava, A.; Singh, S.P. Estimates of Genetic Variability in Vegetable Amaranth (A. tricolor) over Different Cuttings. Hortic. Sci. 2005, 32, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Ahammed, A.U.; Rahman, M.M.; Mian, M.A.K. Genetic variability, heritability and correlation study in stem amaranth (Amaranthus tricolor). Bangladesh J. Plant Breed. Genet. 2012, 25, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Singh, S.P. Studies on Genetic Parameters in Vegetable Amaranth. J. Genet. Plant Breed. 2000, 54, 133–135. [Google Scholar]
- Sarker, U.; Oba, S. Nutritional and Bioactive Constituents and Scavenging Capacity of Radicals in Amaranthus hypochondriacus. Sci. Rep. 2020, 10, 19962. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutraceuticals, Phytochemicals, and Radical Quenching Ability of Selected Drought-Tolerant Advance Lines of Vegetable Amaranth. BMC Plant Biol. 2020, 20, 564. [Google Scholar] [CrossRef]
- Sarker, U.; Hossain, M.N.; Iqbal, M.A.; Oba, S. Bioactive Components and Radical Scavenging Activity in Selected Advance Lines of Salt-Tolerant Vegetable Amaranth. Front. Nutr. 2020, 7, 587257. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Antioxidant Constituents of Three Selected Red and Green Color Amaranthus Leafy Vegetable. Sci. Rep. 2019, 9, 18233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Oba, S. Leaf Pigmentation, Its Profiles and Radical Scavenging Activity in Selected Amaranthus tricolor Leafy Vegetables. Sci. Rep. 2020, 10, 18617. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Color Attributes, Betacyanin, and Carotenoid Profiles, Bioactive Components, and Radical Quenching Capacity in Selected Amaranthus gangeticus Leafy Vegetables. Sci. Rep. 2021, 11, 11559. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Aguilar, D.M.; Grusak, M.A. Minerals, Vitamin C, Phenolics, Flavonoids and Antioxidant Activity of Amaranthus Leafy Vegetables. J. Food Compos. Anal. 2017, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Phenolic Profiles and Antioxidant Activities in Selected Drought-Tolerant Leafy Vegetable Amaranth. Sci. Rep. 2020, 10, 18287. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Polyphenol and Flavonoid Profiles and Radical Scavenging Activity in Selected Leafy Vegetable Amaranthus gangeticus. BMC Plant Biol. 2020, 20, 499. [Google Scholar] [CrossRef]
- Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic Acids, flavonoids and Total Antioxidant Capacity of Selected Leafy Vegetables. J. Funct. Foods 2012, 4, 979–987. [Google Scholar] [CrossRef]
- Azad, A.K.; Sarker, U.; Ercisli, S.; Assouguem, A.; Ullah, R.; Almeer, R.; Sayed, A.A.; Peluso, I. Evaluation of Combining Ability and Heterosis of Popular Restorer and Male Sterile Lines for the Development of Superior Rice Hybrids. Agronomy 2022, 12, 965. [Google Scholar] [CrossRef]
- Prodhan, M.M.; Sarker, U.; Hoque, M.A.; Biswas, M.S.; Ercisli, S.; Assouguem, A.; Ullah, R.; Almutairi, M.H.; Mohamed, H.R.H.; Najda, A. Foliar Application of GA3 Stimulates Seed Production in Cauliflower. Agronomy 2022, 12, 1394. [Google Scholar] [CrossRef]
- Sarker, U.; Azam, M.G.; Talukder, M.Z.A. Genetic Variation in Mineral Profiles, Yield Contributing Agronomic Traits, and Foliage Yield of Stem Amaranth. Genetika 2022, 54, 91–108. [Google Scholar] [CrossRef]
- Sun, H.; Mu, T.; Xi, L.; Zhang, M.; Chen, J. Sweet Potato (Ipomoea batatas L.) Leaves as Nutritional and Functional Foods. Food Chem. 2014, 156, 380–389. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Protein, Dietary Fiber, Minerals, Antioxidant Pigments and Phytochemicals, and Antioxidant Activity in Selected Red Morph Amaranthus Leafy Vegetable. PLoS ONE 2019, 14, 0222517. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and Antioxidant Components and Antioxidant Capacity in Green Morph Amaranthus Leafy Vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutraceuticals, Antioxidant Pigments, and Phytochemicals in the Leaves of Amaranthus spinosus and Amaranthus viridis Weedy Species. Sci Rep. 2019, 9, 20413. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S.; Daramy, M.A. Nutrients, Minerals, Antioxidant Pigments and Phytochemicals, and Antioxidant Capacity of the Leaves of stem amaranth. Sci. Rep. 2020, 10, 3892. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Nutrients, Minerals, Pigments, Phytochemical, and Radical Scavenging Activity in Amaranthus blitum Leafy Vegetable. Sci. Rep. 2020, 10, 3868. [Google Scholar] [CrossRef] [Green Version]
- Madruga, M.S.; Camara, F.S. The Chemical Composition of “Multimistura” as A Food Supplement. Food Chem. 2000, 68, 41–44. [Google Scholar] [CrossRef]
- Shahidi, F.; Chavan, U.D.; Bal, A.K.; McKenzie, D.B. Chemical Composition of Beach Pea (Lathyrus maritimus L.) Plant Parts. Food Chem. 1999, 64, 39–44. [Google Scholar] [CrossRef]
- Khanam, U.K.S.; Oba, S. Bioactive Substances in Leaves of Two Amaranth Species, Amaranthus lividus, and A. hypochondriacus. Can. J. Plant. Sci. 2013, 93, 47–58. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of Salinity and Salinity-Induced Augmented Bioactive Compounds in Purslane (Portulaca oleracea L.) for Possible Economical Use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.N.; Sarker, U.; Raihan, M.S.; Al-Huqail, A.A.; Siddiqui, M.H.; Oba, S. Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules 2022, 27, 1821. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S.; Ercisli, S.; Assouguem, A.; Alotaibi, A.; Ullah, R. Bioactive Phytochemicals and Quenching Activity of Radicals in Selected Drought-Resistant Amaranthus tricolor Vegetable Amaranth. Antioxidants 2022, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Rabbani, M.G.; Oba, S.; Eldehna, W.M.; Al-Rashood, S.T.; Mostafa, N.M.; Eldahshan, O.A. Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species. Molecules 2022, 27, 2899. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S.; Alsanie, W.F.; Gaber, A. Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth. Antioxidants 2022, 11, 1089. [Google Scholar] [CrossRef]
Characters | Chb | Chab | B | Bn | Bl | βC | AsA | TP | TF | AP | AP |
---|---|---|---|---|---|---|---|---|---|---|---|
Cha | 0.92 ** | 0.98 ** | 0.94 ** | 0.95 ** | 0.92 ** | −0.82 * | −0.024 | 0.98 ** | 0.87 * | 0.84 * | 0.83 * |
Chb | 0.95 ** | 0.93 ** | 0.92 ** | 0.96 ** | −0.71 | −0.023 | 0.81 * | 0.85 * | 0.85 * | 0.87 * | |
Chab | 0.82 * | 0.84 * | 0.93 ** | −0.85 * | −0.022 | 0.86 * | 0.88 * | 0.86 * | 0.86 * | ||
B | 0.97 ** | 0.98 ** | −0.81 * | −0.124 | 0.85 * | 0.82 * | 0.98 ** | 0.98 ** | |||
Bn | 0.97 ** | −0.87 ** | −0.135 | 0.83 * | 0.81 * | 0.85 * | 0.92 ** | ||||
Bl | −0.94 ** | −0.118 | 0.95 ** | 0.86 * | 0.97 ** | 0.95 ** | |||||
βC | 0.77 * | 0.96 ** | 0.94 ** | 0.92 ** | 0.97 ** | ||||||
AsA | 0.86 * | 0.95 ** | 0.97 ** | 0.82 * | |||||||
TP | 0.95 ** | 0.98 ** | 0.98 ** | ||||||||
TF | 0.87 * | 0.99 ** | |||||||||
AP (DPPH) | 0.96 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, U.; Iqbal, M.A.; Hossain, M.N.; Oba, S.; Ercisli, S.; Muresan, C.C.; Marc, R.A. Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus). Antioxidants 2022, 11, 1206. https://doi.org/10.3390/antiox11061206
Sarker U, Iqbal MA, Hossain MN, Oba S, Ercisli S, Muresan CC, Marc RA. Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus). Antioxidants. 2022; 11(6):1206. https://doi.org/10.3390/antiox11061206
Chicago/Turabian StyleSarker, Umakanta, Md. Asif Iqbal, Md. Nazmul Hossain, Shinya Oba, Sezai Ercisli, Crina Carmen Muresan, and Romina Alina Marc. 2022. "Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus)" Antioxidants 11, no. 6: 1206. https://doi.org/10.3390/antiox11061206
APA StyleSarker, U., Iqbal, M. A., Hossain, M. N., Oba, S., Ercisli, S., Muresan, C. C., & Marc, R. A. (2022). Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus). Antioxidants, 11(6), 1206. https://doi.org/10.3390/antiox11061206