SOD3 and IL-18 Predict the First Kidney Disease-Related Hospitalization or Death during the One-Year Follow-Up Period in Patients with End-Stage Renal Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Oxidative Stress, Inflammatory Cytokines, and SOD Activity Assays
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Total Hospitalization Events Prior to Study Initiation Was Positively Linearly Associated with Further First Kidney Disease-Related Hospitalization or Death
3.3. Various Biochemical Parameters Predict First Kidney Disease-Related Hospitalization or Death
3.4. Increased IL-18 Concentration Is Associated with a Higher Risk of Future Hospitalization or Death
3.5. Plasma logSOD3 Combined with Dialysis Clearance (Kt/V) as a New Predictor of First Kidney Disease-Related Hospitalization or Death
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manns, B.; Hemmelgarn, B.; Tonelli, M.; Au, F.; So, H.; Weaver, R.; Quinn, A.E.; Klarenbach, S.; Canadians Seeking Solutions and Innovations to Overcome Chronic Kidney Disease. The cost of care for people with chronic kidney disease. The cost of care for people with chronic kidney disease. Can. J. Kidney Health Dis. 2019, 6, 2054358119835521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrero, J.J.; Yilmaz, M.I.; Lindholm, B.; Stenvinkel, P. Cytokine dysregulation in chronic kidney disease: How can we treat it? Blood Purif. 2008, 26, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Landray, M.J.; Wheeler, D.C.; Lip, G.Y.; Newman, D.J.; Blann, A.D.; McGlynn, F.J.; Ball, S.; Townend, J.N.; Baigent, C. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: The chronic renal impairment in Birmingham (CRIB) study. Am. J. Kidney Dis. 2004, 43, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Grabulosa, C.C.; Manfredi, S.R.; Canziani, M.E.; Quinto, B.M.; Barbosa, R.B.; Rebello, J.F.; Batista, M.C.; Cendoroglo, M.; Dalboni, M.A. Chronic kidney disease induces inflammation by increasing Toll-like receptor-4, cytokine and cathelicidin expression in neutrophils and monocytes. Exp. Cell Res. 2018, 365, 157–162. [Google Scholar] [CrossRef]
- Zoccali, C.; Tripepi, G.; Mallamaci, F. Dissecting inflammation in ESRD: Do cytokines and C-reactive protein have a complementary prognostic value for mortality in dialysis patients? J. Am. Soc. Nephrol. 2006, 17 (Suppl. S3), S169–S173. [Google Scholar] [CrossRef] [Green Version]
- Gangemi, S.; Mallamace, A.; Minciullo, P.L.; Santoro, D.; Merendino, R.A.; Savica, V.; Bellinghieri, G. Involvement of interleukin-18 in patients on maintenance haemodialysis. Am. J. Nephrol. 2002, 22, 417–421. [Google Scholar] [CrossRef]
- Kimmel, P.L.; Phillips, T.M.; Simmens, S.J.; Peterson, R.A.; Weihs, K.L.; Alleyne, S.; Cruz, I.; Yanovski, J.A.; Veis, J.H. Immunologic function and survival in hemodialysis patients. Kidney Int. 1998, 54, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Fortuño, A.; Beloqui, O.; San José, G.; Moreno, M.U.; Zalba, G.; Díez, J. Increased phagocytic nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production in patients with early chronic kidney disease. Kidney Int. Suppl. 2005, 99, S71–S75. [Google Scholar] [CrossRef] [Green Version]
- Karamouzis, I.; Sarafidis, P.A.; Karamouzis, M.; Iliadis, S.; Haidich, A.B.; Sioulis, A.; Triantos, A.; Vavatsi-Christaki, N.; Grekas, D.M. Increase in oxidative stress but not in antioxidant capacity with advancing stages of chronic kidney disease. Am. J. Nephrol. 2008, 28, 397–404. [Google Scholar] [CrossRef]
- Sah, S.K.; Agrahari, G.; Kim, T.Y. Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells. Cell Biosci. 2020, 10, 22. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Tran, G.B.; Nguyen, C.T. Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases. J. Mol. Med. 2020, 98, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Canaud, B.; Eckardt, K.U.; Stenvinkel, P.; Wanner, C.; Zoccali, C. Oxidative stress in end-stage renal disease: An emerging threat to patient outcome. Nephrol. Dial. Transplant. 2003, 18, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P. New insights on inflammation in chronic kidney disease-genetic and non-genetic factors. Nephrol. Ther. 2006, 2, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.K.; Hsu, S.P.; Pai, M.F.; Peng, Y.S.; Ho, T.I.; Liu, S.H.; Hung, K.Y.; Tsai, T.J. Interleukin-18 is a strong predictor of hospitalization in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 2810–2815. [Google Scholar] [CrossRef] [Green Version]
- Tripepi, G.; Mallamaci, F.; Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: Searching for the best risk marker by multivariate modeling. J. Am. Soc. Nephrol. 2005, 16 (Suppl. S1), 83–88. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.W.; Shen, C.J.; Tung, Y.T.; Chen, H.L.; Chen, Y.H.; Chang, W.H.; Cheng, K.C.; Yang, S.H.; Chen, C.M. Extracellular superoxide dismutase ameliorates streptozotocin-induced rat diabetic nephropathy via inhibiting the ROS/ERK1/2 signaling. Life Sci. 2015, 135, 77–86. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, H.L.; Fan, H.C.; Tung, Y.T.; Kuo, C.W.; Tu, M.Y.; Chen, C.M. Anti-inflammatory, antioxidant, and antifibrotic effects of kefir peptides on salt-induced renal vascular damage and dysfunction in aged stroke-prone spontaneously hypertensive rats. Antioxidants 2020, 9, 790. [Google Scholar] [CrossRef]
- Tu, M.Y.; Han, K.Y.; Lan, Y.W.; Chang, K.Y.; Lai, C.W.; Staniczek, T.; Lai, C.Y.; Chong, K.Y.; Chen, C.M. Association of TGF-β1 and IL-10 Gene Polymorphisms with Osteoporosis in a Study of Taiwanese Osteoporotic Patients. Genes 2021, 12, 930. [Google Scholar] [CrossRef]
- Hung, Y.P.; Shao, Y.Y.; Hsu, C.; Hsu, C.H.; Lee, J.M.; Yang, M.H.; Chao, Y. The unique characteristic in peripheral immune cells in patients with advanced hepatocellular carcinoma. J. Formos Med. Assoc. 2021, 120, 1581–1590. [Google Scholar] [CrossRef]
- Hu, F.C. My.stepwise: Stepwise Variable Selection Procedures for Regression Analysis, Version 0.1.0. 2017. Available online: https://CRAN.R-project.org/package=My.stepwise (accessed on 10 March 2022).
- Van der Net, J.B.; Janssens, A.C.J.W.; Eijkemans, M.J.C.; Kastelein, J.J.P.; Sijbrands, E.J.G.; Steyerberg, E.W. Cox proportional hazards models have more statistical power than logistic regression models in cross-sectional genetic association studies. Eur. J. Hum. Genet. 2008, 16, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Ahmadi, S.F.; Streja, E.; Molnar, M.Z.; Flegal, K.M.; Gillen, D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Obesity paradox in end-stage kidney disease patients. Prog. Cardiovasc. Dis. 2014, 56, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, P.J.; O’Kelly, P.; Walshe, J.J.; Conlon, P.J. The importance of serum albumin and phosphorous as predictors of mortality in ESRD patients. Ren. Fail. 2008, 30, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Adachi, T.; Nakamura, M.; Yamada, H.; Futenma, A.; kato, K.; Hirano, K. Quantitative and qualitative changes of extracellular-superoxide dismutase in patients with various diseases. Clin. Chim. Acta 1994, 229, 123–131. [Google Scholar] [CrossRef]
- Goicoechea, M.; de Vinuesa, S.G.; Lahera, V.; Cachofeiro, V.; Gómez-Campderá, F.; Vega, A.; Abad, S.; Luño, J. Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17 (Suppl. S3), S231–S235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharshini, L.C.P.; Vishnupriya, S.; Sakthivel, K.M.; Rasmi, R.R. Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cell. Signal. 2020, 72, 109670. [Google Scholar] [CrossRef] [PubMed]
- Memon, R.A.; Staprans, I.; Noor, M.; Holleran, W.M.; Uchida, Y.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Infection and inflammation induce LDL oxidation in vivo. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1536–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raikou, V.; Kardalinos, V.; Kyriaki, D. Oxidized low-density lipoprotein serum concentrations and cardiovascular morbidity in end stage of renal disease. J. Cardiovasc. Dev. Dis. 2018, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Khoa, T.; Massy, Z.A.; De Bandt, J.P.; Kebede, M.; Salama, L.; Lambrey, G.; Witko-Sarsat, V.; DruÈeke, T.B.; Lacour, B. and Thévenin, M. Oxidative stress and haemodialysis: Role of inflammation and duration of dialysis treatment. Nephrol. Dial. Transplant. 2001, 16, 335–340. [Google Scholar] [CrossRef]
- Sangeetha Lakshmi, B.; Harini Devi, N.; Suchitra, M.M.; Srinivasa Rao, P.; Siva Kumar, V. Changes in the inflammatory and oxidative stress markers during a single hemodialysis session in patients with chronic kidney disease. Ren. Fail. 2018, 40, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Himmelfarb, J.; Stenvinkel, P.; Ikizler, T.A.; Hakim, R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002, 62, 1524–1538. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Stenvinkel, P.; Pillon, L.; Kopple, J.D. Inflammation and nutrition in renal insufficiency. Adv. Ren. Replace. Ther. 2003, 10, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Mezzano, D.; Pais, E.O.; Aranda, E.; Panes, O.; Downey, P.; Ortiz, M.; Tagle, R.; González, F.; Quiroga, T.; Caceres, M.S.; et al. Inflammation, not hyperhomocysteinemia, is related to oxidative stress and hemostatic and endothelial dysfunction in uremia. Kidney Int. 2001, 60, 1844–1850. [Google Scholar] [CrossRef] [Green Version]
- Gracie, J.A.; Robertson, S.E.; McInnes, I.B. Interleukin-18. J. Leukoc. Biol. 2003, 73, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Granata, S.; Masola, V.; Zoratti, E.; Scupoli, M.T.; Baruzzi, A.; Messa, M.; Sallustio, F.; Gesualdo, L.; Lupo, A.; Zaza, G. NLRP3 inflammasome activation in dialyzed chronic kidney disease patients. PLoS ONE 2015, 10, e0122272. [Google Scholar] [CrossRef] [Green Version]
- Anders, H.J.; Muruve, D.A. The inflammasomes in kidney disease. J. Am. Soc. Nephrol. 2011, 22, 1007–1018. [Google Scholar] [CrossRef]
- Blankenberg, S.; Tiret, L.; Bickel, C.; Peetz, D.; Cambien, F.; Meyer, J.; Rupprecht, H.J. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 2002, 106, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Formanowicz, D.; Wanic-Kossowska, M.; Pawliczak, E.; Radom, M.; Formanowicz, P. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease--systems and clinical approach. Sci. Rep. 2015, 5, 18332. [Google Scholar] [CrossRef] [Green Version]
- Roy, N.; Rosas, S.E. IL-6 is associated with progression of coronary artery calcification and mortality in incident dialysis patients. Am. J. Nephrol. 2021, 52, 745–752. [Google Scholar] [CrossRef]
- Kamińska, J.; Stopiński, M.; Mucha, K.; Jędrzejczak, A.; Gołębiowski, M.; Niewczas, M.A.; Pączek, L.; Foroncewicz, B. IL 6 but not TNF is linked to coronary artery calcification in patients with chronic kidney disease. Cytokine 2019, 120, 9–14. [Google Scholar] [CrossRef]
- Karlsson, K.; Lindahl, U.; Marklund, S.L. Binding of human extracellular superoxide dismutase C to sulphated glycosaminoglycans. Biochem. J. 1988, 256, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Sandström, J.; Nilsson, P.; Karlsson, K.; Marklund, S.L. 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J. Biol. Chem. 1994, 269, 19163–19166. [Google Scholar] [CrossRef]
- Yamada, H.; Yamada, Y.; Adachi, T.; Goto, H.; Ogasawara, N.; Futenma, A.; Kitano, M.; Hirano, K.; Kato, K. Molecular analysis of extracellular-superoxide dismutase gene associated with high level in serum. Jpn. J. Hum. Genet. 1995, 40, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juul, K.; Tybjærg-Hansen, A.; Marklund, S.; Heegaard, N.H.; Steffensen, R.; Sillesen, H.; Jensen, G.; Nordestgaard, B.G. Genetically reduced antioxidative protection and increased ischemic heart disease risk: The Copenhagen City Heart Study. Circulation 2004, 109, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Ismail, M.; Imam, M.U.; Azmi, N.H.; Fathy, S.F.; Foo, J.B.; Abu Bakar, M.F. Mechanistic basis for protection of differentiated SH-SY5Y cells by oryzanol-rich fraction against hydrogen peroxide-induced neurotoxicity. BMC Complement. Altern. Med. 2014, 14, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Wei, L.; Fu, Q.Q.; You, H.; Yu, H.R. SOD3 Ameliorates Aβ(25-35)-Induced Oxidative Damage in SH-SY5Y Cells by Inhibiting the Mitochondrial Pathway. Cell Mol. Neurobiol. 2017, 37, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Hasegawa, G.; Obayashi, H.; Adachi, T.; Hara, H.; Ohta, M.; Fukui, M.; Kitagawa, Y.; Park, H.; Nakamura, N.; et al. Serum extracellular superoxide dismutase in patients with type 2 diabetes: Relationship to the development of micro- and macrovascular complications. Diabetes Care. 2003, 26, 1246–1250. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.W.; Chen, H.L.; Tu, M.Y.; Chen, C.M. Serum and urinary SOD3 in patients with type 2 diabetes: Comparison with early chronic kidney disease patients and association with development of diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2019, 316, F32–F41. [Google Scholar] [CrossRef]
- Costa, N.A.; Gut, A.L.; Azevedo, P.S.; Tanni, S.E.; Cunha, N.B.; Magalhães, E.S.; Silva, G.B.; Polegato, B.F.; Zornoff, L.A.M.; de Paiva, S.A.R.; et al. Erythrocyte superoxide dismutase as a biomarker of septic acute kidney injury. Ann. Intensive Care 2016, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Gluba-Brzózka, A. Oxidative stress in ESRD patients on dialysis and the risk of cardiovascular diseases. Antioxidants 2020, 9, 1079. [Google Scholar] [CrossRef]
- Suvakov, S.; Damjanovic, T.; Stefanovic, A.; Pekmezovic, T.; Savic-Radojevic, A.; Pljesa-Ercegovac, M.; Matic, M.; Djukic, T.; Coric, V.; Jakovljevic, J.; et al. Glutathione S-transferase A1, M1, P1 and T1 null or low-activity genotypes are associated with enhanced oxidative damage among haemodialysis patients. Nephrol. Dial. Transplant. 2013, 28, 202–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraj, S.; Jialal, I. Alpha tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in normal volunteers and type 2 diabetic patients. Free Radic. Biol. Med. 2000, 29, 790–792. [Google Scholar] [CrossRef]
- Gupta, S.; Sodhi, S.; Mahajan, V. Correlation of antioxidants with lipid peroxidation and lipid profile in patients suffering from coronary artery disease. Expert Opin. Ther. Targets 2009, 13, 889–894. [Google Scholar] [CrossRef] [PubMed]
Variable 1 | All Patients | Without Kidney Disease-Related Hospitalization or Death = 0 | With First Kidney Disease-Related Hospitalization or Death ≥ 1 | p Value 1 |
---|---|---|---|---|
Number of subjects (n) | 161 (100%) | 112 (69.5%) | 49 (30.5%) | |
Age (years) | 59.11 ± 8.43 | 58.79 ± 8.77 | 59.82 ± 7.63 | 0.6602 |
Sex | 0.3249 | |||
Female | 76 (47.2%) | 50 (65.8%) | 26 (34.2%) | |
Male | 85 (52.8%) | 62 (72.9%) | 23 (27.1%) | |
Etiology of primary renal disease | ||||
Diabetes mellitus (DM) | 80 (49.7%) | 56 (70.0%) | 24 (30.0%) | 0.0037 |
Hypertension | 27 (16.8%) | 21 (77.8%) | 6 (22.2%) | 0.3093 |
Chronic glomerulonephritis | 46 (28.6%) | 31 (67.4%) | 15 (32.6%) | 0.7045 |
Others | 8 (5.0%) | 4 (50.0%) | 4 (50.0%) | 0.2173 |
Body mass index (kg/m2) | 23.67 ± 4.51 | 24.06 ± 4.69 | 22.77 ± 3.97 | 0.1368 |
WBC × 1000 (µL) | 6.67 ± 2.01 | 6.53 ± 2.01 | 7.00 ± 2.00 | 0.1343 |
RBC × 106 (µL) | 3.41 ± 0.58 | 3.48 ± 0.63 | 3.23 ± 0.39 | 0.0395 |
Hb (g/dL) | 10.00 ± 1.50 | 10.18 ± 1.61 | 9.57 ± 1.11 | 0.0395 |
Hct (%) | 30.92 ± 4.40 | 31.50 ± 4.72 | 29.62 ± 3.25 | 0.0235 |
MCV (fL) | 91.37 ± 6.72 | 91.05 ± 7.20 | 92.12 ± 5.45 | 0.8270 |
Platelet × 1000 (µL) | 219.87 ± 65.42 | 223.39 ± 65.18 | 211.82 ± 65.92 | 0.4817 |
Albumin (gm/dL) | 4.32 ± 0.52 | 4.37 ± 0.53 | 4.20 ± 0.50 | 0.0381 |
AST or GOT (IU/L) | 16.93 ± 6.36 | 16.69 ± 6.09 | 17.47 ± 6.98 | 0.6231 |
ALT or GPT (IU/L) | 14.97 ± 8.56 | 14.52 ± 8.59 | 16.00 ± 8.47 | 0.1424 |
Alkaline P (IU/L) | 70.75 ± 27.64 | 66.87 ± 22.71 | 81.92 ± 34.22 | 0.0050 |
Total protein (mg/dL) | 6.95 ± 0.70 | 6.95 ± 0.71 | 6.94 ± 0.70 | 0.9648 |
Cholesterol (mg/dL) | 159.33 ± 37.31 | 160.90 ± 36.35 | 155.73 ± 39.59 | 0.4669 |
Triglyceride (mg/dL) | 149.22 ± 101.03 | 149.58 ± 95.05 | 148.41 ± 114.58 | 0.5591 |
HbA1c (%) in DM | 6.97 ± 1.25 | 6.82 ± 1.19 | 7.30 ± 1.33 | 0.4761 |
Uric acid (mg/dL) | 6.53 ± 1.86 | 6.71 ± 1.84 | 6.11 ± 1.86 | 0.1352 |
Creatinine (mg/dL) | 10.10 ± 2.23 | 10.28 ± 2.11 | 9.67 ± 2.45 | 0.0481 |
BUN (mg/dL) | ||||
Before dialysis | 72.34 ± 16.72 | 71.64 ± 15.35 | 73.93 ±19.58 | 0.5418 |
After dialysis | 16.78 ± 5.70 | 16.74 ± 5.26 | 16.88 ± 6.64 | 0.7698 |
Na (mmol/L) | 136.94 ± 2.85 | 137.20 ± 2.86 | 136.33 ± 2.76 | 0.0630 |
K (mmol/L) | 4.61 ± 0.74 | 4.59 ± 0.72 | 4.67 ± 0.78 | 0.5926 |
Ca (mg/dL) | 9.12 ± 0.73 | 9.15 ± 0.71 | 9.05 ± 0.78 | 0.2962 |
P (mg/dL) | 5.241 ± 1.537 | 5.131 ± 1.448 | 5.493 ± 1.713 | 0.2009 |
Ca × P (mg2/dL2) | 47.79 ± 14.39 | 46.95 ± 13.70 | 49.711 ± 15.83 | 0.3097 |
Transferrin saturation (%) | 24.72 ± 10.56 | 25.46 ± 10.68 | 23.02 ± 10.17 | 0.1129 |
Ferritin (ng/mL) | 477.93 ± 763.61 | 452.41 ± 801.28 | 536.24 ± 673.77 | 0.5298 |
TIBC (µg/dL) | 254.14 ± 47.20 | 259.63 ± 49.16 | 241.59 ± 40.10 | 0.0250 |
Fe (µg/dL) | 64.42 ± 31.02 | 65.66 ± 33.40 | 55.02 ± 23.39 | 0.0431 |
I-PTH (pg/mL) | 288.56 ± 401.61 | 258.50 ± 276.38 | 357.27 ± 595.05 | 0.7243 |
Kt/Vurea | 1.59 ± 0.30 | 1.57 ± 0.29 | 1.61 ± 0.33 | 0.5615 |
hs-CRP (mg/dL) | 0.72 ± 1.33 | 0.65 ± 1.25 | 0.90 ± 1.49 | 0.1032 |
IL-2 (pg/mL) | 0.1763 ± 0.1737 | 0.1858 ± 0.1993 | 0.1548 ± 0.0901 | 0.8451 |
IL-6 (pg/mL) | 5.7237 ± 8.2317 | 5.1358 ± 8.3857 | 7.0675 ± 7.7850 | 0.0181 |
IL-18 (pg/mL) | 34.46 ± 25.87 | 34.35 ± 25.82 | 34.71 ± 26.24 | 0.8629 |
ROS (mmol/L) | 2102.3 ± 765.5 | 2127.4 ± 842.5 | 2044.9 ± 553.8 | 0.9224 |
Plasma SOD3 (ng/mL) | 260.52 ± 725.67 | 205.14 ± 480.47 | 387.12 ± 1094.51 | 0.1641 |
log(plasma SOD3) | 4.885 ± 0.740 | 4.832 ± 0.642 | 5.006 ± 0.924 | 0.1641 |
Hospitalization days 2 | 2.559 ± 4.251 | 1.973 ± 3.840 | 3.898 ± 4.849 | 0.0011 |
Hospitalization frequency 2 | 0.938 ± 1.676 | 0.598 ± 1.018 | 1.714 ± 2.466 | 0.0004 |
Kidney-related hospitalization frequency 2 | 0.901 ± 1.682 | 0.571 ± 1.011 | 1.653 ± 2.496 | 0.0014 |
Covariate | Estimate | Standard Error | Wald z Test | p Value | Hazard Ratio | 95% Confidence Interval |
---|---|---|---|---|---|---|
Hospitalization frequency within 1 year before blood sampling | 0.3345 | 0.0741 | 4.5153 | <0.0001 | 1.3972 | 1.2084–1.6156 |
45.0 years < age ≤ 56.9 years | 1.2961 | 0.3834 | 3.3806 | 0.0007 | 3.6549 | 1.7240–7.7484 |
Body mass index ≤ 22.56 kg/m2 | 1.1039 | 0.3986 | 2.7694 | 0.0056 | 3.0158 | 1.3808–6.5870 |
Cholesterol ≤ 130.1 mg/dL or > 209.4 mg/dL | 0.9246 | 0.3500 | 2.6413 | 0.0083 | 2.5207 | 1.2693–5.0059 |
Na ≤ 139.52 mmol/L | 1.5014 | 0.5811 | 2.5839 | 0.0098 | 4.4879 | 1.4370–14.0165 |
ALT ≤ 6.0 U/L or ALT > 15.3 U/L | 1.2440 | 0.3175 | 3.9181 | <0.0001 | 3.4695 | 1.8621–6.4643 |
Platelet ≤ 115.44 × 103/μL | 1.2076 | 0.5549 | 2.1764 | 0.0295 | 3.3456 | 1.1276–9.9261 |
Phosphate ≤ 3.47 mg/dL or > 6.25 mg/dL | 0.9543 | 0.3209 | 2.9741 | 0.0029 | 2.5969 | 1.3846–4.8707 |
Alkaline phosphate > 64.31 U/L | 1.3197 | 0.3835 | 3.4410 | 0.0006 | 3.7422 | 1.7648–7.9355 |
TIBC (µg/dL) | −0.0125 | 0.0041 | −3.0321 | 0.0024 | 0.9876 | 0.9797–0.9956 |
Transferrin saturation < 24.96% or > 51.27% | 1.2766 | 0.3846 | 3.3198 | 0.0009 | 3.5846 | 1.6869–7.6169 |
hs-CRP > 2.21 mg/L | 1.1040 | 0.5873 | 1.8799 | 0.0601 * | 3.0163 | 0.9541–9.5362 |
IL-18 > 69.05 pg/mL | 1.2166 | 0.5010 | 2.4283 | 0.0152 | 3.3757 | 1.2644–9.0122 |
log(SOD3) ≤ 4.72 and 1.11 < Kt/V ≤ 1.87 | −1.2982 | 0.4485 | −2.8946 | 0.0038 | 0.2730 | 0.1133–0.6576 |
log(SOD3) > 4.72 and 1.11 < Kt/V ≤ 1.87 | −0.7395 | 0.4638 | −1.5946 | 0.1108 * | 0.4773 | 0.1923–1.1847 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-H.; Chen, Y.-H.; Ko, C.-H.; Kuo, C.-W.; Yen, C.-C.; Chen, W.; Chong, K.-Y.; Chen, C.-M. SOD3 and IL-18 Predict the First Kidney Disease-Related Hospitalization or Death during the One-Year Follow-Up Period in Patients with End-Stage Renal Disease. Antioxidants 2022, 11, 1198. https://doi.org/10.3390/antiox11061198
Liu Y-H, Chen Y-H, Ko C-H, Kuo C-W, Yen C-C, Chen W, Chong K-Y, Chen C-M. SOD3 and IL-18 Predict the First Kidney Disease-Related Hospitalization or Death during the One-Year Follow-Up Period in Patients with End-Stage Renal Disease. Antioxidants. 2022; 11(6):1198. https://doi.org/10.3390/antiox11061198
Chicago/Turabian StyleLiu, Yu-Hsien, Yu-Hsuan Chen, Chi-Hua Ko, Chia-Wen Kuo, Chih-Ching Yen, Wei Chen, Kowit-Yu Chong, and Chuan-Mu Chen. 2022. "SOD3 and IL-18 Predict the First Kidney Disease-Related Hospitalization or Death during the One-Year Follow-Up Period in Patients with End-Stage Renal Disease" Antioxidants 11, no. 6: 1198. https://doi.org/10.3390/antiox11061198
APA StyleLiu, Y.-H., Chen, Y.-H., Ko, C.-H., Kuo, C.-W., Yen, C.-C., Chen, W., Chong, K.-Y., & Chen, C.-M. (2022). SOD3 and IL-18 Predict the First Kidney Disease-Related Hospitalization or Death during the One-Year Follow-Up Period in Patients with End-Stage Renal Disease. Antioxidants, 11(6), 1198. https://doi.org/10.3390/antiox11061198