Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We “AMES”?
Abstract
:1. Agri-Food By-Products as Raw Material for the Food/Nutraceutical Industry
1.1. Biowaste, a Contemporary Global Concern
1.2. State-of-Art on the Risk-Assessment of Biowaste
1.3. Tests for Genotoxic Risk-Assessment
1.3.1. The Ames Test
1.3.2. The In Vitro Micronucleus Test (MNvit)
1.3.3. Other Tests for Genotoxic Risk-Assessment
2. Genotoxic Risk-Assessment of Food Waste
2.1. Oil Biowaste
2.2. Tea Biowaste
2.3. Rice Biowaste
2.4. Fruit and Nuts Biowaste
2.5. Spice Biowaste
2.6. Winemaking Biowaste
2.7. Soybean Biowaste
2.8. Onion Biowaste
| Food (Waste By-Product) | Test Used | Experimental Model | Main Results | Ref. | |
|---|---|---|---|---|---|
| Genotoxic | Genoprotective | ||||
| Olive Oil (blossoms) | AMES | Salmonella Typhimurium | NO | YES | [46] |
| Olive Oil (Alperujo) | somatic mutation recombination test | Drosophila Melanogaster | NO | n.e. | [50] |
| Olive Oil (Raw olive mill waste water, Alperujo and olive brine) | AMES | Salmonella Typhimurium Escherichia coli | NO | n.e. | [48] |
| CAA | Mammalian cells | NO | n.e. | ||
| Olive Oil (Raw olive mill waste water) | AMES | Salmonella Typhimurium Escherichia coli | NO | n.e. | [49] |
| CAA | Mammalian cells | NO | n.e. | ||
| Palm Oil (black liquor waste) | MNvit | Mus musculus | NO | YES | [44] |
| Pecan Nut (shells) | MNvit | Rattus norvegicus | NO | YES | [71] |
| Tea (Flowers) | AMES | Salmonella Typhimurium | NO | n.e. | [53] |
| Tamarillo (pomace) | AMES | Salmonella Typhimurium | NO | n.e. | [67] |
| Saffron (anthers and tepals) | MNvit | Mammalian cells | NO | n.e. | [74] |
| Onion (by-product) | Comet assay | Rattus norvegicus | NO | n.e. | [79] |
| Soy beans (by-product) | Comet Assay | Mammalian cells | NO | YES | [80] |
| Apple (peel) | Comet assay | Mammalian cells | NO | YES | [63] |
| Apple (pomace) | AMES | Salmonella Typhimurium Escherichia Coli | NO | n.e. | [64] |
| Long-kong (peel) | Comet Assay | Mammalian cells | NO | YES | [68] |
| Hawthorn (leaf and bark) | MNvit | Murine model | YES | n.e. | [81] |
| Rice (husk) | AMES | Salmonella Typhimurium | NO | n.e. | [55,56] |
| MNvit | Rattus norvegicus | NO | n.e. | ||
| Juniper (post distillation water) | Comet assay | Mammalian cells | YES | n.e. | [51] |
| Avocado (Seed) | MNvit | Mus musculus | NO | YES | [65] |
| Mandarin (peel) | MNvit | Mus musculus | NO | n.e. | [58] |
| CAA | Mammalian cells | YES | YES | ||
| AMES | Salmonella Typhimurium Escherichia Coli | NO | n.e. | ||
| Citrus fuits (peels) | CAA | Mus musculus | NO | n.e. | [57] |
| Grapes (grape pomace) | AMES | Salmonella Typhimurium Escherichia Coli | NO | n.e. | [64] |
| Grapes (grape pomace) | Comet assay | Mammalian cells | NO | YES | [77] |
| Grapes (seeds) | MNvit | Mammalian cells | NO | YES | [76] |
| Pomegranade (peel) | CAA | Mus musculus | NO | YES | [69] |
2.9. Hawthorn Biowaste
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, K.; Millington, A.; Randall, N. Food and Feed Safety Vulnerabilities in the Circular Economy. EFS3 2022, 19, 7226E. [Google Scholar] [CrossRef]
- Otles, S.; Despoudi, S.; Bucatariu, C.; Kartal, C. Chapter 1—Food Waste Management, Valorization, and Sustainability in the Food Industry. In Food Waste Recovery; Galanakis, C.M., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 3–23. ISBN 978-0-12-800351-0. [Google Scholar]
- European Food Safety Authority (EFSA). A Systematic Procedure for the Identification of Emerging Chemical Risks in the Food and Feed Chain. EFS3 2014, 11, 547E. [Google Scholar] [CrossRef]
- Nayak, A. An Overview of the Recent Trends on the Waste Valorization Techniques for Food Wastes. J. Environ. Manag. 2019, 1, 352–370. [Google Scholar] [CrossRef]
- Guidance on Human Health Risk-Benefit Assessment of Foods. EFSA J. 2010, 8, 1673. [CrossRef]
- Kroyer, G.T. Impact of Food Processing on the Environment—An Overview. LWT—Food Sci. Technol. 1995, 28, 547–552. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Drivers of Emerging Risks and Their Interactions in the Domain of Biological Risks to Animal, Plant and Public Health: A Pilot Study. EFS3 2014, 11, 588E. [Google Scholar] [CrossRef] [Green Version]
- Anacleto, L.R.; Roberto, M.M.; Marin-Morales, M.A. Toxicological Effects of the Waste of the Sugarcane Industry, Used as Agricultural Fertilizer, on the Test System Allium Cepa. Chemosphere 2017, 173, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.; Savla, N.; Sonawane, J.M.; Sani, A.M.; Gupta, P.K.; Mathuriya, A.S.; Rai, A.K.; Jadhav, D.A.; Jung, S.P.; Prasad, R. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation 2021, 7, 169. [Google Scholar] [CrossRef]
- Zhang, Z.; Mei, N.; Chen, S.; Guo, L.; Guo, X. Chapter 62—Assessment of Genotoxic Effects of Selected Herbal Dietary Supplements**The Information in This Chapter Is Not a Formal Dissemination of Information by the US Food and Drug Administration and Does Not Represent Agency Position or Policy. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 883–892. ISBN 978-0-12-802147-7. [Google Scholar]
- Makris, D.P.; Şahin, S. Polyphenolic Antioxidants from Agri-Food Waste Biomass. Antioxidants 2019, 8, 624. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, M.D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.Z.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and In Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammerer, D.; Gajdoš Kljusurić, J.; Carle, R.; Schieber, A. Recovery of Anthocyanins from Grape Pomace Extracts (Vitis Vinifera L. Cv. Cabernet Mitos) Using a Polymeric Adsorber Resin. Eur. Food Res. Technol. 2005, 220, 431–437. [Google Scholar] [CrossRef]
- Birsan, R.I.; Wilde, P.; Waldron, K.W.; Rai, D.K. Recovery of Polyphenols from Brewer’s Spent Grains. Antioxidants 2019, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwingelstein, M.; Draye, M.; Besombes, J.-L.; Piot, C.; Chatel, G. Viticultural Wood Waste as a Source of Polyphenols of Interest: Opportunities and Perspectives through Conventional and Emerging Extraction Methods. Waste Manag. 2020, 102, 782–794. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Hussain, S.; Jõudu, I.; Bhat, R. Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability 2020, 12, 5401. [Google Scholar] [CrossRef]
- Martinez, V.; Mitjans, M.; Vinardell, M.P. Pharmacological applications of lignins and lignins related compounds: An overview. Curr. Organ. Chem. 2012, 16, 1863–1870. [Google Scholar] [CrossRef]
- Yusree, F.I.F.M.; Peter, A.P.; Mohd Nor, M.Z.; Show, P.L.; Mokhtar, M.N. Latest Advances in Protein-Recovery Technologies from Agricultural Waste. Foods 2021, 10, 2748. [Google Scholar] [CrossRef]
- Scurria, A.; Pagliaro, M.; Ciriminna, R. Natural Fish Oil from Fishery Biowaste via a Circular Economy Process. Biol. Life Sci. Forum 2021, 6, 41. [Google Scholar] [CrossRef]
- Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Peralbo-Molina, Á.; Luque de Castro, M.D. Potential of Residues from the Mediterranean Agriculture and Agrifood Industry. Trends Food Sci. Technol. 2013, 32, 16–24. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Afonso, A.; Matas, R.G.; Maggiore, A.; Merten, C.; Robinson, T. EFSA’s Activities on Emerging Risks in 2016. EFS3 2017, 14, 1336E. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, D.; Kasper, P.; Martus, H.-J.; Müller, L.; van Benthem, J.; Madia, F.; Corvi, R. Updated Recommended Lists of Genotoxic and Non-Genotoxic Chemicals for Assessment of the Performance of New or Improved Genotoxicity Tests. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis 2016, 795, 7–30. [Google Scholar] [CrossRef]
- Authority, E.F.S.; Committee, E.S. Guidance on Safety Assessment of Botanicals and Botanical Preparations Intended for Use as Ingredients in Food Supplements. EFSA J. 2009, 7, 1249. [Google Scholar] [CrossRef]
- Authority, E.F.S. Compendium of Botanicals Reported to Contain Naturally Occuring Substances of Possible Concern for Human Health When Used in Food and Food Supplements. EFSA J. 2012, 10, 2663. [Google Scholar] [CrossRef] [Green Version]
- Vettorazzi, A.; López de Cerain, A.; Sanz-Serrano, J.; Gil, A.G.; Azqueta, A. European Regulatory Framework and Safety Assessment of Food-Related Bioactive Compounds. Nutrients 2020, 12, 613. [Google Scholar] [CrossRef] [Green Version]
- EFSA Scientific Committee. Scientific Opinion on Genotoxicity Testing Strategies Applicable to Food and Feed Safety Assessment. EFSA J. 2011, 9, 69. [Google Scholar]
- EFSA Scientific Committee. Opinion of the Scientific Committee on a Request from EFSA Related to A Harmonised Approach for Risk Assessment of Substances Which Are Both Genotoxic and Carcinogenic. EFSA J. 2005, 3, 282. [Google Scholar]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2020; Available online: https://www.oecd-ilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test_9789264071247-en (accessed on 30 May 2022).
- OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2016; Available online: https://www.oecd-ilibrary.org/environment/test-no-487-in-vitro-mammalian-cell-micronucleus-test_9789264264861-en (accessed on 30 May 2022).
- European Chemicals Agency. Available online: https://Echa.Europa.Eu/-/Clarification-to-Degradation-and-Mutagenicity-Testing-under-Reach (accessed on 30 May 2022).
- UK Committee on Mutagenicity. Available online: https://Assets.Publishing.Service.Gov.Uk/Government/Uploads/System/Uploads/Attachment_data/File/1043249/Strategy-for-Genotoxicity-Testing-of-Chemicals-Guidance.pdf (accessed on 30 May 2022).
- US Environmental Protection Agency. Available online: https://www.Epa.Gov/Chemical-Research/Toxicity-Estimation-Software-Tool-Test (accessed on 30 May 2022).
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Vijay, U.; Gupta, S.; Mathur, P.; Suravajhala, P.; Bhatnagar, P. Microbial Mutagenicity Assay: Ames Test. Bio-Protocol 2018, 8, e2763. [Google Scholar] [CrossRef]
- More, S.; Bampidis, V.; Benford, D.; Boesten, J.; Bragard, C.; Halldorsson, T.; Hernandez-Jerez, A.; Hougaard-Bennekou, S.; Koutsoumanis, K.; Naegeli, H.; et al. Genotoxicity Assessment of Chemical Mixtures. EFSA J. 2019, 17, 5519. [Google Scholar]
- Kirsch-Volders, M.; Plas, G.; Elhajouji, A.; Lukamowicz, M.; Gonzalez, L.; Vande Loock, K.; Decordier, I. The In Vitro MN Assay in 2011: Origin and Fate, Biological Significance, Protocols, High Throughput Methodologies and Toxicological Relevance. Arch. Toxicol. 2011, 85, 873–899. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 489: In Vivo Mammalian Alkaline Comet Assay; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2016; Available online: https://www.oecd-ilibrary.org/environment/test-no-489-in-vivo-mammalian-alkaline-comet-assay_9789264264885-en. (accessed on 30 May 2022).
- OECD. Test No. 475: Mammalian Bone Marrow Chromosomal Aberration Test; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2016; Available online: https://www.oecd-ilibrary.org/environment/test-no-475-mammalian-bone-marrow-chromosomal-aberration-test_9789264264786-en. (accessed on 30 May 2022).
- OECD. Test No. 473: In Vitro Mammalian Chromosomal Aberration Test; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2016; Available online: https://www.oecd-ilibrary.org/environment/test-no-473-in-vitro-mammalian-chromosomal-aberration-test_9789264264649-en. (accessed on 30 May 2022).
- Vinardell, M.; Mitjans, M. Lignins and Their Derivatives with Beneficial Effects on Human Health. Int. J. Mol. Sci. 2017, 18, 1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, P.; Rozman, H.D.; Bhat, R. Genoprotective Effects of Lignin Isolated from Oil Palm Black Liquor Waste. Environ. Toxicol. Pharmacol. 2013, 36, 135–141. [Google Scholar] [CrossRef]
- Rufino-Palomares, E.E.; Pérez-Jiménez, A.; García-Salguero, L.; Mokhtari, K.; Fernando, J.; Reyes-Zurita, F.J.; Peragón-Sánchez, J.; Lupiáñez, J.A. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea Europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. Molecules 2022, 27, 2341. [Google Scholar] [CrossRef] [PubMed]
- Kouka, P.; Tekos, F.; Valta, K.; Mavros, P.; Veskoukis, A.; Angelis, A.; Skaltsounis, A.-L.; Kouretas, D. Olive Tree Blossom Polyphenolic Extracts Exert Antioxidant and Antimutagenic Activities In Vitro and in Various Cell Lines. Oncol. Rep. 2019, 42, 2814–2825. [Google Scholar] [CrossRef] [PubMed]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef]
- Pierantozzi, P.; Zampini, C.; Torres, M.; Isla, M.I.; Verdenelli, R.A.; Meriles, J.M.; Maestri, D. Physico-Chemical and Toxicological Assessment of Liquid Wastes from Olive Processing-Related Industries: Assessment of Liquid Wastes from Olive Processing-Related Industries. J. Sci. Food Agric. 2012, 92, 216–223. [Google Scholar] [CrossRef]
- Auñon-Calles, D.; Giordano, E.; Bohnenberger, S.; Visioli, F. Hydroxytyrosol Is Not Genotoxic In Vitro. Pharmacol. Res. 2013, 74, 87–93. [Google Scholar] [CrossRef]
- Anter, J. Evaluation of Potential Antigenotoxic, Cytotoxic and Proapoptotic Effects of the Olive Oil by-Product “Alperujo”, Hydroxytyrosol, Tyrosol and Verbascoside. Mutat. Res. 2014, 772, 25–33. [Google Scholar] [CrossRef]
- Vasilijević, B.; Knežević-Vukčević, J.; Mitić-Ćulafić, D.; Orčić, D.; Francišković, M.; Srdic-Rajic, T.; Jovanović, M.; Nikolić, B. Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem Toxicol. 2018, 112, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, G.; Sun, Y.; Zeng, X.; Ye, H. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review. Food Res. Int. 2020, 137, 109584. [Google Scholar] [CrossRef]
- Li, B.; Jin, Y.; Xu, Y.; Wu, Y.; Xu, J.; Tu, Y. Safety Evaluation of Tea (Camellia sinensis (L.) O. Kuntze) Flower Extract: Assessment of Mutagenicity, and Acute and Subchronic Toxicity in Rats. J. Ethnopharmacol. 2011, 133, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Murtey, M.D.; Seeni, A. The Phytochemical Analysis and Pharmacological Potentials of Husk and Straw as Paddy Waste Products. J. Sci. Food Agric. 2020, 100, 4347–4352. [Google Scholar] [CrossRef] [PubMed]
- Chariyakornkul, A.; Punvittayagul, C.; Taya, S.; Wongpoomchai, R. Inhibitory effect of purple rice husk extract on AFB1-induced micronucleus formation in rat liver through modulation of xenobiotic metabolizing enzymes. BMC Complement Altern Med. 2019, 3, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punvittayagul, C.; Sringarm, K.; Chaiyasut, C.; Wongpoomchai, R. Mutagenicity and Antimutagenicity of Hydrophilic and Lipophilic Extracts of Thai Northern Purple Rice. Asian Pac. J. Cancer Prev. 2014, 15, 9517–9522. [Google Scholar] [CrossRef] [Green Version]
- Kawthar, A.E. Diab In Vitro Studies on Phytochemical Content, Antioxidant, Anticancer, Immunomodulatory, and Antigenotoxic Activities of Lemon, Grapefruit, and Mandarin Citrus Peels. Asian Pac. J. Cancer Prev. 2016, 17, 7. [Google Scholar] [CrossRef]
- Nakajima, A.; Nemoto, K.; Ohizumi, Y. An evaluation of the genotoxicity and subchronic toxicity of the peel extract of Ponkan cultivar ’Ohta ponkan’ (Citrus reticulata Blanco) that is rich in nobiletin and tangeretin with anti-dementia activity. Regul. Toxicol. Pharmacol. 2020, 114, 104670. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A Comprehensive Analysis of the Composition, Health Benefits, and Safety of Apple Pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Riccio, G.; Maisto, M.; Bottone, S.; Badolati, N.; Rossi, G.; Tenore, G.; Stornaiuolo, M.; Novellino, E. WNT Inhibitory Activity of Malus Pumila Miller cv. Annurca and Malus Domestica cv. Limoncella Apple Extracts on Human Colon-Rectal Cells Carrying Familial Adenomatous Polyposis Mutations. Nutrients 2017, 9, 1262. [Google Scholar] [CrossRef] [Green Version]
- Sommella, E.; Badolati, N.; Riccio, G.; Salviati, E.; Bottone, S.; Dentice, M.; Campiglia, P.; Tenore, G.C.; Stornaiuolo, M.; Novellino, E. A Boost in Mitochondrial Activity Underpins the Cholesterol-Lowering Effect of Annurca Apple Polyphenols on Hepatic Cells. Nutrients 2019, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badolati, N.; Sommella, E.; Riccio, G.; Salviati, E.; Heintz, D.; Bottone, S.; Di Cicco, E.; Dentice, M.; Tenore, G.; Campiglia, P.; et al. Annurca Apple Polyphenols Ignite Keratin Production in Hair Follicles by Inhibiting the Pentose Phosphate Pathway and Amino Acid Oxidation. Nutrients 2018, 10, 1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, M.J.; Gill, C.I.R.; O’ Brien, G.; Rao, J.R.; McRoberts, W.C.; Hughes, P.; McEntee, R.; Rowland, I.R. Anti-Cancer Properties of Phenolics from Apple Waste on Colon Carcinogenesis In Vitro. Food Chem. Toxicol. 2007, 45, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Badolati, N.; Masselli, R.; Maisto, M.; Di Minno, A.; Tenore, G.C.; Stornaiuolo, M.; Novellino, E. Genotoxicity Assessment of Three Nutraceuticals Containing Natural Antioxidants Extracted from Agri-Food Waste Biomasses. Foods 2020, 9, 1461. [Google Scholar] [CrossRef]
- Tabeshpour, J.; Razavi, B.M.; Hosseinzadeh, H. Effects of Avocado (Persea americana) on Metabolic Syndrome: A Comprehensive Systematic Review: Avocado and Metabolic Syndrome. Phytother. Res. 2017, 31, 819–837. [Google Scholar] [CrossRef]
- Padilla-Camberos, E.; Martínez-Velázquez, M.; Flores-Fernández, J.M.; Villanueva-Rodríguez, S. Acute Toxicity and Genotoxic Activity of Avocado Seed Extract (Persea americana Mill., c.v. Hass). Sci. World J. 2013, 2013, 245828. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, R.M.; Cardozo, M.L.; Zampini, I.C.; Isla, M.I. Evaluation of Antioxidant Activity and Genotoxicity of Alcoholic and Aqueous Beverages and Pomace Derived from Ripe Fruits of Cyphomandra Betacea Sendt. J. Agric. Food Chem. 2010, 58, 331–337. [Google Scholar] [CrossRef]
- Klungsupya, P.; Suthepakul, N.; Muangman, T.; Rerk-Am, U.; Thongdon-A, J. Determination of Free Radical Scavenging, Antioxidative DNA Damage Activities and Phytochemical Components of Active Fractions from Lansium domesticum Corr. Fruit. Nutrients 2015, 7, 6852–6873. [Google Scholar] [CrossRef] [Green Version]
- Uluman, E.; Aksu Kiliçle, P. The investigation of the possible antigenotoxic in vivo effects of pomegranate(Punica granatum L.) peel extract on mitomycin-C genotoxicity. Turk. J. Vet. Anim. Sci. 2020, 44, 382–390. [Google Scholar] [CrossRef]
- Kureck, I.; de Brito, P.P.; Toaldo, I.M.; de Oliveira Brisola, M.V.; Bordignon-Luiz, M.T.; Barreto, P.L.M.; Block, J.M. Chemical Characterization and Release of Polyphenols from Pecan Nut Shell [Carya Illinoinensis (Wangenh) C. Koch] in Zein Microparticles for Bioactive Applications. Plant Foods Hum. Nutr. 2018, 73, 137–145. [Google Scholar] [CrossRef]
- Müller, L.G.; Pase, C.S.; Reckziegel, P.; Barcelos, R.C.S.; Boufleur, N.; Prado, A.C.P.; Fett, R.; Block, J.M.; Pavanato, M.A.; Bauermann, L.F.; et al. Hepatoprotective Effects of Pecan Nut Shells on Ethanol-Induced Liver Damage. Exp. Toxicol. Pathol. 2013, 65, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Rigi, H.; Mohtashami, L.; Asnaashari, M.; Emami, A.S.; Tayarani-Najaran, Z. Dermoprotective Effects of Saffron: A Mini Review. Curr. Pharm. Des. 2021, 27, 4693–4698. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Razavi, B.M.; Hosseinzadeh, H. Saffron (Crocus sativus) Petal as a New Pharmacological Target: A Review. Iran. J. Basic Med. Sci. 2018, 21, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Chichiriccò, G. Crocus Sativus By-Products as Sources of Bioactive Extracts: Pharmacological and Toxicological Focus on Anthers. Food Chem. Toxicol. 2019, 8, 7–14. [Google Scholar] [CrossRef]
- Badolati, N.; Masselli, R.; Sommella, E.; Sagliocchi, S.; Minno, A.D.; Salviati, E.; Campiglia, P.; Dentice, M.; Tenore, G.C.; Stornaiuolo, M.; et al. The Hepatoprotective Effect of Taurisolo, a Nutraceutical Enriched in Resveratrol and Polyphenols, Involves Activation of Mitochondrial Metabolism in Mice Liver. Antioxidants 2020, 9, 410. [Google Scholar] [CrossRef]
- Praphasawat, R.; Klungsupya, P.; Muangman, T.; Laovitthayanggoon, S.; Arunpairojana, V.; Himakoun, L. Antimutagenicity and antioxidative DNA damage properties of oligomeric proanthocyanidins from Thai grape seeds in TK6 cells. Asian Pac. J. Cancer Prev. 2011, 12, 1317–1321. [Google Scholar]
- Del Pino-García, R.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Ortega-Heras, M.; García Lomillo, J.; Muñiz, P. Chemopreventive Potential of Powdered Red Wine Pomace Seasonings against Colorectal Cancer in HT-29 Cells. J. Agric. Food Chem. 2017, 65, 66–73. [Google Scholar] [CrossRef]
- Swallah, M.S.; Fan, H.; Wang, S.; Yu, H.; Piao, C. Prebiotic Impacts of Soybean Residue (Okara) on Eubiosis/Dysbiosis Condition of the Gut and the Possible Effects on Liver and Kidney Functions. Molecules 2021, 26, 326. [Google Scholar] [CrossRef]
- Roldán-Marín, E.; Krath, B.N.; Poulsen, M.; Binderup, M.-L.; Nielsen, T.H.; Hansen, M.; Barri, T.; Langkilde, S.; Pilar Cano, M.; Sánchez-Moreno, C.; et al. Effects of an Onion By-Product on Bioactivity and Safety Markers in Healthy Rats. Br. J. Nutr. 2009, 102, 1574. [Google Scholar] [CrossRef] [Green Version]
- Plewa, M.J.; Wagner, E.D.; Kirchoff, L.; Repetny, K.; Adams, L.C.; Rayburn, A.L. The Use of Single Cell Gel Electrophoresis and Flow Cytometry to Identify Antimutagens from Commercial Soybean By-Products. Mutat. Res./Fundam. Mol. Mech. Mutagenes. 1998, 402, 211–218. [Google Scholar] [CrossRef]
- Aguilera-Rodríguez, F.R.; Zamora-Perez, A.L.; Galván-Moreno, C.L.; Gutiérrez-Hernández, R.; Reyes Estrada, C.A.; Esparza-Ibarra, E.L.; Lazalde-Ramos, B.P. Cytotoxic and Genotoxic Evaluation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of Crataegus Oxyacantha in Murine Model. Plants 2021, 10, 2217. [Google Scholar] [CrossRef] [PubMed]
- United Nations; Department of Economic and Social Affairs; Population Division. World Population Prospects; United Nations: Geneva, Switzerland, 2019; Volume 1, ISBN 978-92-1-148327-7. [Google Scholar]
- Albihn, A. Recycling Biowaste-Human and Animal Health Problems. Acta Vet. Scand. Suppl. 2001, 95, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffan, J.J.; Brevik, E.C.; Burgess, L.C.; Cerdà, A. The Effect of Soil on Human Health: An Overview. Eur. J. Soil Sci. 2018, 69, 159–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musto, G.; Laurenzi, V.; Annunziata, G.; Novellino, E.; Stornaiuolo, M. Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We “AMES”? Antioxidants 2022, 11, 1197. https://doi.org/10.3390/antiox11061197
Musto G, Laurenzi V, Annunziata G, Novellino E, Stornaiuolo M. Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We “AMES”? Antioxidants. 2022; 11(6):1197. https://doi.org/10.3390/antiox11061197
Chicago/Turabian StyleMusto, Giorgia, Valentina Laurenzi, Giuseppe Annunziata, Ettore Novellino, and Mariano Stornaiuolo. 2022. "Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We “AMES”?" Antioxidants 11, no. 6: 1197. https://doi.org/10.3390/antiox11061197
APA StyleMusto, G., Laurenzi, V., Annunziata, G., Novellino, E., & Stornaiuolo, M. (2022). Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We “AMES”? Antioxidants, 11(6), 1197. https://doi.org/10.3390/antiox11061197

