Pearl Grey Shading Net Boosts the Accumulation of Total Carotenoids and Phenolic Compounds That Accentuate the Antioxidant Activity of Processing Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Design, and Growth Conditions
2.2. Fruit Harvest, Yield, and Fruit Quality Measurement
2.3. Determination of Fruit Color Using CIELab Color Space
2.4. Mineral Content Determination
2.5. Determination of the Polyphenol Profile by Ultra-High Performance Liquid Chromatography (UHPLC) and Orbitrap High-Resolution Mass Spectrometry (HRMS) Analysis
2.6. Spectrophotometric Determination of ABTS, DPPH, and FRAP Antioxidant Activities
2.7. Carotenoids Determination
2.8. Statistical Analysis
3. Results and Discussion
3.1. Microclimatic Parameters
3.2. Yield and Yield Parameters
3.3. Quality Attributes of Fruits
3.4. Mineral Content of Fruits
3.5. Fruit Pigments
3.6. Phenolic Compounds and Antioxidant Activity of Fruits
3.7. Cluster Heatmap of Yield and Quality Parameters of Fruits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Bertin, N.; Génard, M. Tomato quality as influenced by preharvest factors. Sci. Hortic. 2018, 233, 264–276. [Google Scholar] [CrossRef]
- Leyva, R.; Constán-Aguilar, C.; Blasco, B.; Sánchez-Rodríguez, E.; Romero, L.; Soriano, T.; Ruíz, J.M. Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. J. Sci. Food Agric. 2014, 94, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Formisano, L.; Pannico, A.; El-Nakhel, C.; Starace, G.; Poledica, M.; De Pascale, S.; Rouphael, Y. Improved porosity of insect proof screens enhances quality aspects of zucchini squash without compromising the yield. Plants 2020, 9, 1264. [Google Scholar] [CrossRef] [PubMed]
- Ayokanmbi, F.M.; Oluwoye, J. Improving Consumer Confidence in Food Safety and Nutritional Quality. J. Multidiscip. Eng. Sci. Technol. 2020, 7, 12723–12728. [Google Scholar]
- Al Murad, M.; Razi, K.; Jeong, B.R.; Samy, P.M.A.; Muneer, S. Light emitting diodes (Leds) as agricultural lighting: Impact and its potential on improving physiology, flowering, and secondary metabolites of crops. Sustainability 2021, 13, 1985. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Shaji, S.; Beena, R.; Sarada, S.; Sajitha Rani, T.; Stephen, R.; Manju, R.V.; Viji, M.M. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon 2021, 7, e05988. [Google Scholar] [CrossRef]
- Slimestad, R.; Verheul, M.J. Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes. J. Agric. Food Chem. 2005, 53, 3114–3119. [Google Scholar] [CrossRef]
- Tinyane, P.P.; Sivakumar, D.; Soundy, P. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Sci. Hortic. 2013, 161, 340–349. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Milenković, L.; Stanojević, L.; Cvetković, D.; Fallik, E. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci. Hortic. 2012, 139, 90–95. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Milenković, L.; Šunić, L.; Fallik, E. Effect of coloured shade-nets on plant leaf parameters and tomato fruit quality. J. Sci. Food Agric. 2015, 95, 2660–2667. [Google Scholar] [CrossRef]
- Scarano, A.; Olivieri, F.; Gerardi, C.; Liso, M.; Chiesa, M.; Chieppa, M.; Frusciante, L.; Barone, A.; Santino, A.; Rigano, M.M. Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J. Sci. Food Agric. 2020, 100, 2791–2799. [Google Scholar] [CrossRef]
- Nájera, C.; Guil-Guerrero, J.L.; Enríquez, L.J.; Álvaro, J.E.; Urrestarazu, M. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit. Postharvest Biol. Technol. 2018, 145, 151–156. [Google Scholar] [CrossRef]
- Slimestada, R.; Verheulb, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- Gautier, H.; Diakou-Verdin, V.; Bénard, C.; Reich, M.; Buret, M.; Bourgaud, F.; Poëssel, J.L.; Caris-Veyrat, C.; Génard, M. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 2008, 56, 1241–1250. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bassal, A.; Leonardi, C.; Giuffrida, F.; Colla, G. Vegetable quality as affected by genetic, agronomic and environmental factors. J. Food Agric. Environ. 2012, 10, 680–688. [Google Scholar]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Milenković, L.; Mastilović, J.; Kevrešan, Ž.; Bajić, A.; Gledić, A.; Stanojević, L.; Cvetković, D.; Šunić, L.; Ilić, Z.S. Effect of shading and grafting on yield and quality of tomato. J. Sci. Food Agric. 2020, 100, 623–633. [Google Scholar] [CrossRef]
- Almeida, J.; Perez-Fons, L.; Fraser, P.D. A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. Plant Cell Environ. 2021, 44, 2211–2229. [Google Scholar] [CrossRef]
- Pressman, E.; Peet, M.M.; Pharr, D.M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 2002, 90, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar] [CrossRef]
- Spicher, L.; Almeida, J.; Gutbrod, K.; Pipitone, R.; Dörmann, P.; Glauser, G.; Rossi, M.; Kessler, F. Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato. J. Exp. Bot. 2017, 68, 5845–5856. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Meng, Z.; Zhang, G.; Qi, M.; Sun, Z.; Liu, Y.; Li, T. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front. Plant Sci. 2017, 8, 365. [Google Scholar] [CrossRef] [Green Version]
- Gajc-Wolska, J.; Kowalczyk, K.; Metera, A.; Mazur, K.; Bujalski, D.; Hemka, L. Effect of supplementary lighting on selected physiological parameters and yielding of tomato plants. Folia Hortic. 2013, 25, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Riga, P.; Anza, M.; Garbisu, C. Tomato quality is more dependent on temperature than on photosynthetically active radiation. J. Sci. Food Agric. 2008, 88, 158–166. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Rigakis, N.; Bartzanas, T.; Kitta, E. Effects on microclimate, crop production and quality of a tomato crop grown under shade nets. J. Hortic. Sci. Biotechnol. 2012, 87, 7–12. [Google Scholar] [CrossRef]
- Castellano, S.; Scarascia Mugnozza, G.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic Nets in Agriculture: A General Review of Types and Applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Castellano, S.; Starace, G.; De Pascalis, L.; Lippolis, M.; Scarascia-Mugnozza, G. Experimental results on air permeability of agricultural nets. J. Agric. Eng. 2016, 47, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Castellano, S.; Starace, G.; De Pascalis, L.; Lippolis, M.; Mugnozza, G.S.; Scarascia Mugnozza, G. Test results and empirical correlations to account for air permeability of agricultural nets. Biosyst. Eng. 2016, 150, 131–141. [Google Scholar] [CrossRef]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; De Pascale, S.; Rouphael, Y. Dataset on the effects of anti-insect nets of different porosity on mineral and organic acids profile of Cucurbita pepo L. Fruits and leaves. Data 2021, 6, 50. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; de Pascale, S.; Rouphael, Y. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. microgreens species grown in peat-based media. Agronomy 2021, 11, 346. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Martínez-Huélamo, M.; Jáuregui, O.; Andres-Lacueva, C.; Lamuela-Raventos, R.M. Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. J. Agric. Food Chem. 2011, 59, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rajurkar, N.; Hande, S.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Salomon, M.V.; Piccoli, P.; Fontana, A. Simultaneous determination of carotenoids with different polarities in tomato products using a C30 core-shell column based approach. Microchem. J. 2020, 159, 105390. [Google Scholar] [CrossRef]
- Sadler, G.; Davis, J.; Dezman, D. Rapid Extraction of Lycopene and β-Carotene from Reconstituted Tomato Paste and Pink Grapefruit Homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Arena, C.; Pesce, G.; Dell’Aversana, E.; Fusco, G.M.; Carillo, P.; De Pascale, S.; Paradiso, R. The role of light quality of photoperiodic lighting on photosynthesis, flowering and metabolic profiling in Ranunculus asiaticus L. Physiol. Plant. 2020, 170, 187–201. [Google Scholar] [CrossRef]
- Food and Drug Agriculture Organization of the United FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 25 November 2021).
- Panthee, D.R.; Cao, C.; Debenport, S.J.; Rodríguez, G.R.; Labate, J.A.; Robertson, L.D.; Breksa, A.P.; van der Knaap, E.; McSpadden Gardener, B.B. Magnitude of genotype × environment interactions affecting tomato fruit quality. HortScience 2012, 47, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Angmo, P.; Phuntsog, N.; Namgail, D.; Chaurasia, O.P.; Stobdan, T. Effect of shading and high temperature amplitude in greenhouse on growth, photosynthesis, yield and phenolic contents of tomato (Lycopersicum esculentum Mill.). Physiol. Mol. Biol. Plants 2021, 27, 1539–1546. [Google Scholar] [CrossRef]
- Lorenzo, P.; Sánchez-Guerrero, M.C.; Medrano, E.; García, M.L.; Caparrós, I.; Giménez, M. External greenhouse mobile shading: Effect on microclimate, water use efficiency and yield of a tomato crop grown under different salinity levels of the nutrient solution. Acta Hortic. 2003, 609, 181–186. [Google Scholar] [CrossRef]
- El-Gizawy, A.M.; Abdallah, M.M.F.; Gomaa, H.M.; Mohamed, S.S. Effect of Different Shading Levels on Tomato Plants. 2. Yield and Fruit Quality. Acta Hortic. 1993, 323, 349–354. [Google Scholar] [CrossRef]
- Gent, M.P.N. Density and duration of shade affect water and nutrient use in greenhouse tomato. J. Am. Soc. Hortic. Sci. 2008, 133, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, M.J.; García-López, J.; Collados-Luján, J.F.; López-Ortiz, F.; Díaz, M.; Toresano, F.; Camacho, F. Differential response to environmental and nutritional factors of high-quality tomato varieties. Food Chem. 2015, 176, 278–287. [Google Scholar] [CrossRef]
- Davies, J.N.; Hobson, G.E. The constituents of tomato fruit—The influence of environment, nutrition, and genotype. CRC Crit. Rev. Food Sci. Nutr. 1981, 15, 205–280. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Milenković, L.; Šunić, L.; Stanojević, L.; Bodroža-solarov, M.; Marinković, D. Tomato fruits quality as affected by light intensity using color shade nets. In Proceedings of the 47th Croatian and 7th International Symposium on Agriculture, Opatija, Croatia, 13–17 February 2012; Volume 414, pp. 414–418. [Google Scholar]
- Kläring, H.P.; Krumbein, A. The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. J. Agron. Crop Sci. 2013, 199, 351–359. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Granato, D.; Masson, M.L. Instrumental color and sensory acceptance of soy-based emulsions: A response surface approach. Ciência Tecnol. Aliment. 2010, 30, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Messina, V.; Domínguez, P.G.; Sancho, A.M.; Walsöe de Reca, N.; Carrari, F.; Grigioni, G. Tomato Quality during Short-Term Storage Assessed by Colour and Electronic Nose. Int. J. Electrochem. 2012, 2012, 687429. [Google Scholar] [CrossRef] [Green Version]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2016, 4, 1–23. [Google Scholar]
- Labate, J.A.; Breksa, A.P.; Robertson, L.D.; King, B.A.; King, D.E. Genetic differences in macro-element mineral concentrations among 52 historically important tomato varieties. Plant Genet. Resour. Charact. Util. 2018, 16, 343–351. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-López, C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. Sustain. Agric. 2009, 2, 111–128. [Google Scholar] [CrossRef]
- Afzal, I.; Hussain, B.; Basra, S.M.A.; Ullah, S.H.; Shakeel, Q.; Kamran, M. Foliar application of potassium improves fruit quality and yield of tomato plants. Acta Sci. Pol. Hortorum Cultus 2015, 14, 3–13. [Google Scholar]
- Toresano-Sánchez, F.; Díaz-Pérez, M.; Diánez-Martínez, F.; Camacho-Ferre, F. Effect of the application of monosilicic acid on the production and quality of triploid watermelon. J. Plant Nutr. 2010, 33, 1411–1421. [Google Scholar] [CrossRef]
- Lavon, R.; Shapchiski, S.; Mohel, E.; Zur, N.; Horesh, L. Fruit size and fruit quality of “Star Ruby” grapefruit as affected by foliar spray of monopotassium phosphate (MPK). In Proceedings of the 8th International Congress of International Society of Citrus, Sun City, South Africa, 12–17 May 1996; pp. 3–14. [Google Scholar]
- World Health Organization, Food and Agriculture Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Bangkok, Thailand, 2004; ISBN 9241546123. [Google Scholar]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A.-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoma, F.; Somborn-Schulz, A.; Schlehuber, D.; Keuter, V.; Deerberg, G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Front. Plant Sci. 2020, 11, 497. [Google Scholar] [CrossRef]
- Perveen, R.; Suleria, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Flores, P.; Sánchez, E.; Fenoll, J.; Hellín, P. Genotypic variability of carotenoids in traditional tomato cultivars. Food Res. Int. 2017, 100, 510–516. [Google Scholar] [CrossRef]
- Stamps, R.H. Use of colored shade netting in horticulture. HortScience 2009, 44, 239–241. [Google Scholar] [CrossRef]
- Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agric. 2006, 86, 568–572. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Pék, Z.; Brandt, S. Analysis of antioxidant compounds and hydroxymethylfurfural in processing tomato cultivars. Horttechnology 2006, 16, 615–619. [Google Scholar] [CrossRef]
- Przybylska, S. Lycopene—A bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Technol. 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Stress Physiology. In Plant Physiology; Sinauer Associates, Inc.: Sunderland, MA, USA, 2006; pp. 1–36. [Google Scholar]
- Seabra, R.; Andrade, P. Phenolic Compounds. In Encyclopedia of Chromatography, Second Edition; Queiroz Zepka, L., Casagrande do Nascimiento, T., Jacob-Lopez, E., Eds.; IntechOpen: London, UK, 2005; pp. 1259–1266. ISBN 1839692707. [Google Scholar]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; Moreno, D.A.; Ferreres, F.; Rubio-Wilhelmi, M.D.M.; Ruiz, J.M. Differential responses of five cherry tomato varieties to water stress: Changes on phenolic metabolites and related enzymes. Phytochemistry 2011, 72, 723–729. [Google Scholar] [CrossRef]
- Clé, C.; Hill, L.M.; Niggeweg, R.; Martin, C.R.; Guisez, Y.; Prinsen, E.; Jansen, M.A.K. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 2008, 69, 2149–2156. [Google Scholar] [CrossRef]
- Miller, N.J.; Begoña Ruiz-Larrea, M. Flavonoids and other plant phenols in the diet: Their significance as antioxidants. J. Nutr. Environ. Med. 2002, 12, 39–51. [Google Scholar] [CrossRef]
- Abreu, A.C.; Marín, P.; Aguilera-Sáez, L.M.; Tristán, A.I.; Peña, A.; Oliveira, I.; Simões, M.; Valera, D.; Fernández, I. Effect of a Shading Mesh on the Metabolic, Nutritional, and Defense Profiles of Harvested Greenhouse-Grown Organic Tomato Fruits and Leaves Revealed by NMR Metabolomics. J. Agric. Food Chem. 2019, 67, 12972–12985. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. The Beneficial Role of Rutin, a Naturally Occurring Flavonoid in Health Promotion and Disease Prevention: A Systematic Review and Update. Bioact. Food Diet. Interv. Arthritis Relat. Inflamm. Dis. 2019, 457–479. [Google Scholar] [CrossRef]
- Toor, R.K.; Lister, C.E.; Savage, G.P. Antioxidant activities of New Zealand-grown tomatoes. Int. J. Food Sci. Nutr. 2005, 56, 597–605. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ornelas-Paz, J.D.J.; López-Mata, M.A.; Del-Toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Márquez-Ríos, E. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. Int. J. Anal. Chem. 2015, 2015, 124071. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, N.J.; Dew, T.P.; Orfila, C.; Urwin, P.E. Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). J. Agric. Food Chem. 2011, 59, 9673–9682. [Google Scholar] [CrossRef]
- Campa, C.; Urban, L.; Mondolot, L.; Fabre, D.; Roques, S.; Lizzi, Y.; Aarrouf, J.; Doulbeau, S.; Breitler, J.C.; Letrez, C.; et al. Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Front. Plant Sci. 2017, 8, 1126. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Fenoll, J.; Flores, P. Interaction of nitrogen and shading on tomato yield and quality. Sci. Hortic. 2019, 255, 255–259. [Google Scholar] [CrossRef]
- Botella, M.Á.; Hernández, V.; Mestre, T.; Hellín, P.; García-Legaz, M.F.; Rivero, R.M.; Martínez, V.; Fenoll, J.; Flores, P. Bioactive compounds of tomato fruit in response to salinity, heat and their combination. Agriculture 2021, 11, 534. [Google Scholar] [CrossRef]
- Graziani, G.; Gaspari, A.; Di Vaio, C.; Cirillo, A.; Ronca, C.L.; Grosso, M.; Ritieni, A. Assessment of in vitro bioaccessibility of polyphenols from annurca, limoncella, red delicious, and golden delicious apples using a sequential enzymatic digestion model. Antioxidants 2021, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef]
Treatment | June | July | August |
---|---|---|---|
Control | 1247 ± 5.49 a | 1271 ± 7.02 a | 1127 ± 7.54 a |
White net | 871 ± 6.66 b | 889 ± 6.43 b | 786 ± 3.38 b |
Pearl grey net | 703 ± 13.3 c | 727 ± 3.18 c | 633 ± 3.53 c |
Significance | *** | *** | *** |
Treatment | June | July | August |
---|---|---|---|
Control | 25.9 ± 0.37 | 27.5 ± 0.32 | 26.9 ± 0.94 |
White net | 27.1 ± 0.06 | 29.3 ± 0.31 | 28.0 ± 0.23 |
Pearl grey net | 26.8 ± 0.53 | 28.2 ± 0.74 | 27.1 ± 0.20 |
Significance | ns | ns | ns |
Treatment | Yield | Fruit Number | Mean Marketable Fruits Weight (g) | ||||
---|---|---|---|---|---|---|---|
Total | Marketable | Unmarketable | Total | Marketable | Unmarketable | ||
(kg pl−1) | (kg pl−1) | (kg pl−1) | (n° fruits pl−1) | (n° fruits pl−1) | (n° fruits pl−1) | ||
Control | 2.58 ± 0.15 | 2.25 ± 0.02 | 0.33 ± 0.06 | 351.50 ± 9.41 a | 268.11 ± 1.66 a | 83.39 ± 2.06 a | 8.50 ± 0.75 b |
White net | 2.56 ± 0.24 | 2.12 ± 0.08 | 0.44 ± 0.05 | 251.47 ± 5.55 b | 182.98 ± 0.77 b | 68.48 ± 1.96 b | 11.70 ± 0.76 ab |
Pearl grey net | 2.20 ± 0.07 | 1.89 ± 0.08 | 0.32 ± 0.04 | 184.88 ± 4.75 c | 141.13 ± 1.09 c | 43.75 ± 1.55 c | 13.37 ± 0.36 a |
Significance | ns | ns | ns | *** | *** | *** | * |
Treatment | TSS | Dry Matter | L | a * | b * | Chroma | Hue Angle | Equatorial Diameter | Polar Diameter |
---|---|---|---|---|---|---|---|---|---|
(°Brix) | (%) | (mm) | (mm) | ||||||
Control | 7.43 ± 0.30 a | 8.71 ± 0.32 a | 36.35 ± 0.12 b | 28.80 ± 0.90 | 23.27 ± 0.64 | 37.03 ± 0.08 ab | 218.94 ± 0.59 | 24.52 ± 0.21 c | 33.16 ± 0.01 b |
White net | 5.40 ± 0.06 b | 7.63 ± 0.14 b | 38.12 ± 0.24 a | 29.49 ± 0.20 | 23.50 ± 0.16 | 37.70 ± 0.22 a | 218.55 ± 0.21 | 26.26 ± 0.11 b | 36.55 ± 0.17 a |
Pearl grey net | 5.30 ± 0.25 b | 7.25 ± 0.20 b | 37.32 ± 0.26 ab | 28.21 ± 0.31 | 23.76 ± 0.35 | 36.89 ± 0.03 b | 220.11 ± 0.62 | 27.00 ± 0.04 a | 36.71 ± 0.13 a |
Significance | ** | * | * | ns | ns | * | ns | *** | *** |
Treatment | P | K | Mg | Na | Malate | Citrate |
---|---|---|---|---|---|---|
Control | 14.88 ± 0.94 a | 412.08 ± 4.76 b | 13.04 ± 0.53 | 6.84 ± 0.72 | 34.15 ± 1.91 a | 140.36 ± 7.84 a |
White net | 7.63 ± 0.41 b | 445.65 ± 1.08 a | 12.49 ± 0.43 | 5.29 ± 0.17 | 26.78 ± 0.74 b | 109.90 ± 1.20 b |
Pearl grey net | 9.21 ± 0.15 b | 361.43 ± 3.58 c | 11.23 ± 0.30 | 6.14 ± 0.32 | 29.89 ± 1.02 ab | 104.33 ± 2.92 b |
Significance | ** | *** | ns | ns | * | ** |
Treatment | Lutein | Lycopene | β-Carotene | Total Carotenoids |
---|---|---|---|---|
Control | 0.022 ± 0.001 b | 1.666 ± 0.061 b | 0.358 ± 0.012 b | 2.046 ± 0.074 b |
White net | 0.024 ± 0.000 ab | 2.881 ± 0.053 a | 0.623 ± 0.013 a | 3.528 ± 0.065 a |
Pearl grey net | 0.027 ± 0.001 a | 2.828 ± 0.080 a | 0.643 ± 0.018 a | 3.498 ± 0.099 a |
Significance | * | *** | *** | *** |
Phenolic Compounds | Treatment | Significance | ||
---|---|---|---|---|
Control | White Net | Pearl Grey Net | ||
PHENOLIC ACID DERIVATIVES | ||||
Chlorogenic acid | 3363 ± 105 a | 2470 ± 47 b | 1799 ± 46 c | *** |
Homovanillic acid-O-hexoside | 939 ± 38 b | 1,151 ± 24 a | 956 ± 23 b | ** |
Caffeic acid-O-hexoside | 418 ± 19 a | 372 ± 5 b | 343 ± 11 b | ** |
Coumaric acid-O-hexoside | 74 ± 5 a | 56 ± 1 b | 81 ± 2 a | ** |
Ferulic acid | 20 ± 0 c | 48 ± 2 b | 61 ± 3 a | *** |
Ferulic acid-O-hexoside | 19 ± 1 b | 34 ± 2 a | 21 ± 2 b | * |
Caffeic acid | 16 ± 1 b | 27 ± 1 a | 25 ± 1 a | ** |
Total phenolic acid derivatives | 4848 ± 164 a | 4157 ± 80 b | 3287 ± 78 c | *** |
FLAVONOID DERIVATIVES | ||||
Rutin | 2944 ± 101 b | 2481 ± 48 c | 4414 ± 112 a | *** |
Kampferol-3-diglucoside | 1979 ± 82 b | 1578 ± 24 c | 3245 ± 80 a | *** |
Naringenin | 1199 ± 50 b | 450 ± 15 c | 1851 ± 51 a | *** |
Rutin-O-pentoside | 333 ± 11 b | 387 ± 4 b | 732 ± 20 a | *** |
Rutin-O-hexoside | 167 ± 6 a | 161 ± 2 a | 140 ± 6 b | * |
Kaempferol-3-O-rutinoside | 105 ± 5 c | 164 ± 10 b | 225 ± 4 a | *** |
Naringenin-C-diglycoside | 72 ± 6 b | 78 ± 4 b | 225 ± 10 a | *** |
Apigenin-C-hexoside-hexoside | 34 ± 1 c | 57 ± 2 b | 84 ± 1 a | *** |
Naringenin-C-hexoside | 37 ± 1 b | 30 ± 1 c | 66 ± 1 a | *** |
Quercetin-O-dihexoside | 14 ± 0 b | 12 ± 0 c | 21 ± 1 a | *** |
Genistin | 10 ± 0 b | 10 ± 1 b | 21 ± 0 a | *** |
Total flavonoid derivatives | 6896 ± 263 b | 5407 ± 107 c | 11,025 ± 276 a | *** |
HYDROXYCINNAMOYLQUINIC ACID DERIVATIVES | ||||
Dicaffeoylquinic Acid | 505 ± 28 a | 266 ± 3 b | 557 ± 22 a | *** |
Tricaffeoylquinic Acid | 128 ± 7 a | 39 ± 3 b | 128 ± 5 a | *** |
Total hydroxycinnamoyl quinic acid derivatives | 633 ± 35 a | 305 ± 5 b | 685 ± 26 a | *** |
Total phenolic compounds | 12,377 ± 460 b | 9869 ± 183 c | 14,997 ± 378 a | *** |
Treatment | DPPH | ABTS | FRAP |
---|---|---|---|
Control | 32.21 ± 0.40 c | 39.18 ± 0.09 b | 27.51 ± 0.31 b |
White net | 35.54 ± 0.37 b | 35.33 ± 0.30 c | 27.64 ± 0.17 b |
Pearl grey net | 40.72 ± 0.22 a | 43.70 ± 0.58 a | 34.38 ± 0.81 a |
Significance | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, L.; Ciriello, M.; El-Nakhel, C.; Poledica, M.; Starace, G.; Graziani, G.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Pearl Grey Shading Net Boosts the Accumulation of Total Carotenoids and Phenolic Compounds That Accentuate the Antioxidant Activity of Processing Tomato. Antioxidants 2021, 10, 1999. https://doi.org/10.3390/antiox10121999
Formisano L, Ciriello M, El-Nakhel C, Poledica M, Starace G, Graziani G, Ritieni A, De Pascale S, Rouphael Y. Pearl Grey Shading Net Boosts the Accumulation of Total Carotenoids and Phenolic Compounds That Accentuate the Antioxidant Activity of Processing Tomato. Antioxidants. 2021; 10(12):1999. https://doi.org/10.3390/antiox10121999
Chicago/Turabian StyleFormisano, Luigi, Michele Ciriello, Christophe El-Nakhel, Milena Poledica, Giuseppe Starace, Giulia Graziani, Alberto Ritieni, Stefania De Pascale, and Youssef Rouphael. 2021. "Pearl Grey Shading Net Boosts the Accumulation of Total Carotenoids and Phenolic Compounds That Accentuate the Antioxidant Activity of Processing Tomato" Antioxidants 10, no. 12: 1999. https://doi.org/10.3390/antiox10121999
APA StyleFormisano, L., Ciriello, M., El-Nakhel, C., Poledica, M., Starace, G., Graziani, G., Ritieni, A., De Pascale, S., & Rouphael, Y. (2021). Pearl Grey Shading Net Boosts the Accumulation of Total Carotenoids and Phenolic Compounds That Accentuate the Antioxidant Activity of Processing Tomato. Antioxidants, 10(12), 1999. https://doi.org/10.3390/antiox10121999