AI-Driven Multimodal Brain-State Decoding for Personalized Closed-Loop TENS: A Comprehensive Review
Abstract
1. Introduction
2. Hypothesis 1: Multimodal Imaging Can Reveal Unified Mechanisms of TENS-Induced Pain Modulation
2.1. Mechanistic Insights Across Scales and Contexts
2.2. Toward a Unified Framework of Pain Modulation
3. Hypothesis 2: Brain-State Decoding Can Enable Real-Time Prediction of Individual Responses to TENS
3.1. Brain-State Decoding for Predicting TENS Responsiveness
3.2. Adaptive Closed-Loop Control Strategies
3.3. Integration with Brain–Computer Interfaces for Precision Neuromodulation
3.4. Methodological Framework for Multimodal Brain-State Decoding and Closed-Loop TENS
4. Hypothesis 3: Adaptive Closed-Loop TENS Systems Can Enhance Clinical Efficacy in Real-World Settings
4.1. Architectures for Adaptive, Closed-Loop Neuromodulation
4.2. Evaluating the Superiority of Adaptive Closed-Loop TENS over Static Protocols
4.3. Implementation Pathways: Devices, Interfaces, and Clinical Integration
4.4. From Experimental Systems to Routine Clinical Care
5. Comparative Summary of Key Studies
6. Discussion and Future Outlook
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jutzeler, C.R.; Curt, A.; Kramer, J.L.K. Effectiveness of High-Frequency Electrical Stimulation Following Sensitization with Capsaicin. J. Pain 2015, 16, 595–605. [Google Scholar] [CrossRef]
- Johnson, M.I. Resolving Long-Standing Uncertainty About the Clinical Efficacy of Transcutaneous Electrical Nerve Stimulation (TENS) to Relieve Pain: A Comprehensive Review of Factors Influencing Outcome. Medicina 2021, 57, 378. [Google Scholar] [CrossRef]
- Maris, S.; Brands, M.; Lenskens, D.; Braeken, G.; Kemnitz, S.; Vanhove, H.; Mc Laughlin, M.; Meesen, R.; Brône, B.; Stessel, B. Transcutaneous Electrical Nerve Inhibition Using Medium Frequency Alternating Current. Sci. Rep. 2022, 12, 14911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, M.; Dong, T.; Yang, H.; Zhang, Q.; Yang, Q.; Zhou, X.; Mao, C.; Zhang, M. Disrupted Resting-State Functional Connectivity and Effective Connectivity of the Nucleus Accumbens in Chronic Low Back Pain: A Cross-Sectional Study. J. Pain Res. 2024, 17, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Feher, G.; Szok, D.; Rodríguez-Saldaña, J.; Nagy, F. Chronic Pain Hurts the Brain: The Pain Physician’s Perspective. Behav. Neurol. 2020, 2020, 3786562. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ahmadipour, P.; Shanechi, M.M. Adaptive Latent State Modeling of Brain Network Dynamics with Real-Time Learning Rate Optimization. J. Neural Eng. 2021, 18, 36013. [Google Scholar] [CrossRef]
- van Westen, M.; Rietveld, E.; Bergfeld, I.O.; de Koning, P.; Vullink, N.; Ooms, P.; Graat, I.; Liebrand, L.; van den Munckhof, P.; Schuurman, R.; et al. Optimizing Deep Brain Stimulation Parameters in Obsessive-Compulsive Disorder. Neuromodulation 2021, 24, 307–315. [Google Scholar] [CrossRef]
- Chen, S.-H.; Lin, Y.-W.; Tseng, W.-L.; Lin, W.-T.; Lin, S.-C.; Hsueh, Y.-Y. Ultrahigh Frequency Transcutaneous Electrical Nerve Stimulation for Neuropathic Pain Alleviation and Neuromodulation. Neurotherapeutics 2024, 21, e00336. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.-M. Parameterization of Physical Properties of Layered Body Structure into Equivalent Circuit Model. BMC Biomed. Eng. 2021, 3, 9. [Google Scholar] [CrossRef]
- Juliebø-Jones, P.; Hjelle, K.M.; Mohn, J.; Gudbrandsdottir, G.; Roth, I.; Chaudhry, A.A.; Bergesen, A.K.; Beisland, C. Management of Bladder Pain Syndrome (BPS): A Practical Guide. Adv. Urol. 2022, 2022, 7149467. [Google Scholar] [CrossRef]
- Bermo, M.; Saqr, M.; Hoffman, H.; Patterson, D.; Sharar, S.; Minoshima, S.; Lewis, D.H. Utility of SPECT Functional Neuroimaging of Pain. Front. Psychiatry 2021, 12, 705242. [Google Scholar] [CrossRef] [PubMed]
- Urien, L.; Wang, J. Top-Down Cortical Control of Acute and Chronic Pain. Psychosom. Med. 2019, 81, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Borsook, D.; Becerra, L.R. Breaking down the Barriers: fMRI Applications in Pain, Analgesia and Analgesics. Mol. Pain 2006, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Roué, J.-M.; Morag, I.; Haddad, W.M.; Gholami, B.; Anand, K.J.S. Using Sensor-Fusion and Machine-Learning Algorithms to Assess Acute Pain in Non-Verbal Infants: A Study Protocol. BMJ Open 2021, 11, e039292. [Google Scholar] [CrossRef]
- Fernandez Rojas, R.; Joseph, C.; Bargshady, G.; Ou, K.-L. Empirical Comparison of Deep Learning Models for fNIRS Pain Decoding. Front. Neuroinform 2024, 18, 1320189. [Google Scholar] [CrossRef]
- Peng, K.; Karunakaran, K.D.; Green, S.; Borsook, D. Machines, Mathematics, and Modules: The Potential to Provide Real-Time Metrics for Pain Under Anesthesia. Neurophotonics 2024, 11, 010701. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Liu, J.; Han, J.; Wang, X.; Cui, C. Cerebral Blood Flow-Based Evidence for Mechanisms of Low- Versus High-Frequency Transcutaneous Electric Acupoint Stimulation Analgesia: A Perfusion fMRI Study in Humans. Neuroscience 2014, 268, 180–193. [Google Scholar] [CrossRef]
- Cai, R.; Shen, G.; Wang, H.; Guan, Y. Brain Functional Connectivity Network Studies of Acupuncture: A Systematic Review on Resting-State fMRI. J. Integr. Med. 2018, 16, 26–33. [Google Scholar] [CrossRef]
- Fiúza-Fernandes, J.; Pereira-Mendes, J.; Esteves, M.; Radua, J.; Picó-Pérez, M.; Leite-Almeida, H. Common Neural Correlates of Chronic Pain—A Systematic Review and Meta-Analysis of Resting-State fMRI Studies. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2025, 138, 111326. [Google Scholar] [CrossRef]
- Luo, Y.; Du, J.; Fang, F.; Shi, P. Cortical Functional Connectivity and Topology Based on Complex Network Graph Theory Analysis During Acute Pain Stimuli. Neurophotonics 2025, 12, 025010. [Google Scholar] [CrossRef]
- May, E.S.; Butz, M.; Kahlbrock, N.; Hoogenboom, N.; Brenner, M.; Schnitzler, A. Pre- and Post-Stimulus Alpha Activity Shows Differential Modulation with Spatial Attention During the Processing of Pain. NeuroImage 2012, 62, 1965–1974. [Google Scholar] [CrossRef]
- Hauck, M.; Domnick, C.; Lorenz, J.; Gerloff, C.; Engel, A.K. Top-down and Bottom-up Modulation of Pain-Induced Oscillations. Front. Hum. Neurosci. 2015, 9, 375. [Google Scholar] [CrossRef]
- Inoue, T.; Kobayashi, K.; Matsumoto, R.; Inouchi, M.; Togo, M.; Togawa, J.; Usami, K.; Shimotake, A.; Matsuhashi, M.; Kikuchi, T.; et al. Engagement of Cortico-Cortical and Cortico-Subcortical Networks in a Patient with Epileptic Spasms: An Integrated Neurophysiological Study. Clin. Neurophysiol. 2020, 131, 2255–2264. [Google Scholar] [CrossRef]
- Du, J.; Shi, P.; Fang, F.; Yu, H. Cerebral Cortical Hemodynamic Metrics to Aid in Assessing Pain Levels? A Pilot Study of Functional Near-Infrared Spectroscopy. Front. Neurosci. 2023, 17, 1136820. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, P.; Losin, E.A.R.; Anderson, S.R.; Schelkun, V.R.; Wager, T.D. Clinician-Patient Movement Synchrony Mediates Social Group Effects on Interpersonal Trust and Perceived Pain. J. Pain 2020, 21, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- Cury, C.; Maurel, P.; Gribonval, R.; Barillot, C. A Sparse EEG-Informed fMRI Model for Hybrid EEG-fMRI Neurofeedback Prediction. Front. Neurosci. 2020, 13, 1451. [Google Scholar] [CrossRef] [PubMed]
- Faghani Jadidi, A.; Stevenson, A.J.T.; Zarei, A.A.; Jensen, W.; Lontis, R. Effect of Modulated TENS on Corticospinal Excitability in Healthy Subjects. Neuroscience 2022, 485, 53–64. [Google Scholar] [CrossRef]
- Mishra, A.; Yang, P.-F.; Manuel, T.J.; Newton, A.T.; Phipps, M.A.; Luo, H.; Sigona, M.K.; Dockum, A.Q.; Reed, J.L.; Gore, J.C.; et al. Modulating Nociception Networks: The Impact of Low-Intensity Focused Ultrasound on Thalamocortical Connectivity. Brain Commun. 2025, 7, fcaf062. [Google Scholar] [CrossRef]
- Zidda, F.; Lyu, Y.; Nees, F.; Radev, S.T.; Sitges, C.; Montoya, P.; Flor, H.; Andoh, J. Neural Dynamics of Pain Modulation by Emotional Valence. Cereb. Cortex 2024, 34, bhae358. [Google Scholar] [CrossRef]
- Beldzik, E.; Ullsperger, M.; Domagalik, A.; Marek, T. Conflict- and Error-Related Theta Activities Are Coupled to BOLD Signals in Different Brain Regions. NeuroImage 2022, 256, 119264. [Google Scholar] [CrossRef]
- Deligani, R.J.; Hosni, S.I.; Borgheai, S.B.; McLinden, J.; Zisk, A.H.; Mankodiya, K.; Shahriari, Y. Electrical and Hemodynamic Neural Functions in People with ALS: An EEG-fNIRS Resting-State Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3129–3139. [Google Scholar] [CrossRef]
- Zhang, Z.; Gewandter, J.S.; Geha, P. Brain Imaging Biomarkers for Chronic Pain. Front. Neurol. 2022, 12, 734821. [Google Scholar] [CrossRef]
- Pfannmöller, J.; Lotze, M. Review on Biomarkers in the Resting-State Networks of Chronic Pain Patients. Brain Cogn. 2019, 131, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Min, B.-K. Non-Invasive Electrical Brain Stimulation Modulates Human Conscious Perception of Mental Representation. Neuro Image 2024, 294, 120647. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Violante, I.; Ross, E.; Leech, R.; Hampshire, A.; Carmichael, D.; Sharp, D. Brain Network Modulation with Non-Invasive Brain Stimulation. J. Neurol. Neurosurg. Psychiatry 2016, 87, e1. [Google Scholar] [CrossRef]
- Chandrabhatla, A.S.; Pomeraniec, I.J.; Horgan, T.M.; Wat, E.K.; Ksendzovsky, A. Landscape and Future Directions of Machine Learning Applications in Closed-Loop Brain Stimulation. npj Digit. Med. 2023, 6, 79. [Google Scholar] [CrossRef]
- Zhou, A.; Santacruz, S.R.; Johnson, B.C.; Alexandrov, G.; Moin, A.; Burghardt, F.L.; Rabaey, J.M.; Carmena, J.M.; Muller, R. A Wireless and Artefact-Free 128-Channel Neuromodulation Device for Closed-Loop Stimulation and Recording in Non-Human Primates. Nat. Biomed. Eng. 2019, 3, 15–26. [Google Scholar] [CrossRef]
- Li, L.; Zhang, B.; Zhao, W.; Sheng, D.; Yin, L.; Sheng, X.; Yao, D. Multimodal Technologies for Closed-Loop Neural Modulation and Sensing. Adv. Healthc. Mater. 2024, 13, 2303289. [Google Scholar] [CrossRef]
- Kerasidou, A. Ethics of Artificial Intelligence in Global Health: Explainability, Algorithmic Bias and Trust. J. Oral Biol. Craniofacial Res. 2021, 11, 612–614. [Google Scholar] [CrossRef]
- Kellmeyer, P.; Cochrane, T.; Müller, O.; Mitchell, C.; Ball, T.; Fins, J.J.; Biller-Andorno, N. The Effects of Closed-Loop Medical Devices on the Autonomy and Accountability of Persons and Systems. Camb. Q. Healthc. Ethics 2016, 25, 623–633. [Google Scholar] [CrossRef]
- Das, A.; Sheffield, A.G.; Nandy, A.S.; Jadi, M.P. Brain-State Mediated Modulation of Inter-Laminar Dependencies in Visual Cortex. Nat. Commun. 2024, 15, 5105. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Xing, Z.; Wang, Y.; Fang, S.; Gao, X.; Dong, X. Research on Emotion Recognition Method of Cerebral Blood Oxygen Signal Based on CNN-Transformer Network. Sensors 2023, 23, 8643. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Q.; Zhu, Z.; Hu, Z.; Wu, X. Multi-Scale Spatio-Temporal Fusion with Adaptive Brain Topology Learning for fMRI Based Neural Decoding. IEEE J. Biomed. Health Inform. 2024, 28, 262–272. [Google Scholar] [CrossRef]
- Carè, M.; Chiappalone, M.; Cota, V.R. Personalized Strategies of Neurostimulation: From Static Biomarkers to Dynamic Closed-Loop Assessment of Neural Function. Front. Neurosci. 2024, 18, 1363128. [Google Scholar] [CrossRef] [PubMed]
- Su, P.-Y.P.; Arle, J.; Poree, L. Closing the Loop and Raising the Bar: Automated Control Systems in Neuromodulation. Pain Pract. 2024, 24, 177–185. [Google Scholar] [CrossRef]
- Powell, B.K.M.; Machalek, D.; Quah, T. Real-Time Optimization Using Reinforcement Learning. Comput. Chem. Eng. 2020, 143, 107077. [Google Scholar] [CrossRef]
- Cho, C.-H.; Huang, P.-J.; Chen, M.-C.; Lin, C.-W. Closed-Loop Deep Brain Stimulation with Reinforcement Learning and Neural Simulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3615–3624. [Google Scholar] [CrossRef]
- Coventry, B.S.; Bartlett, E.L. Protocol for Artificial Intelligence-Guided Neural Control Using Deep Reinforcement Learning and Infrared Neural Stimulation. STAR Protoc. 2025, 6, 103496. [Google Scholar] [CrossRef]
- Viswan, V.; Shaffi, N.; Mahmud, M.; Subramanian, K.; Hajamohideen, F. Explainable Artificial Intelligence in Alzheimer’s Disease Classification: A Systematic Review. Cogn. Comput. 2024, 16, 1–44. [Google Scholar] [CrossRef]
- Zheng, W.; Pu, M.; Li, X.; Du, Z.; Jin, S.; Li, X.; Zhou, J.; Zhang, Y. Deep Learning Model Accurately Classifies Metastatic Tumors from Primary Tumors Based on Mutational Signatures. Sci. Rep. 2023, 13, 8752. [Google Scholar] [CrossRef]
- Sufian, M.A.; Hamzi, W.; Sharifi, T.; Zaman, S.; Alsadder, L.; Lee, E.; Hakim, A.; Hamzi, B. AI-Driven Thoracic X-Ray Diagnostics: Transformative Transfer Learning for Clinical Validation in Pulmonary Radiography. J. Pers. Med. 2024, 14, 856. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-W.; Wu, C.-K.; Wu, C.-H.; Shia, B.-C.; Chen, M. Machine Learning in Predicting Cardiac Events for ESRD Patients: A Framework for Clinical Decision Support. Diagnostics 2025, 15, 1063. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhou, Y.; Moneruzzaman, M.; Wang, Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024, 536, 104–118. [Google Scholar] [CrossRef]
- Chen, J.; Yu, K.; Wang, F.; Zhou, Z.; Bi, Y.; Zhuang, S.; Zhang, D. Temporal Convolutional Network-Enhanced Real-Time Implicit Emotion Recognition with an Innovative Wearable fNIRS-EEG Dual-Modal System. Electronics 2024, 13, 1310. [Google Scholar] [CrossRef]
- Jeong, E.; Seo, M.; Kim, K.-S. Design of an fNIRS–EEG Hybrid Terminal for Wearable BCI Systems. Rev. Sci. Instrum. 2024, 95, 85001. [Google Scholar] [CrossRef]
- Li, W.; Gao, C.; Li, Z.; Diao, Y.; Li, J.; Zhou, J.; Zhou, J.; Peng, Y.; Chen, G.; Wu, X.; et al. BrainFusion: A Low-Code, Reproducible, and Deployable Software Framework for Multimodal Brain–Computer Interface and Brain–Body Interaction Research. Adv. Sci. 2025, e17408. [Google Scholar] [CrossRef]
- Chen, J.; Yu, K.; Bi, Y.; Ji, X.; Zhang, D. Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sci. 2024, 14, 1022. [Google Scholar] [CrossRef]
- Cui, W.; Lin, K.; Liu, G.; Sun, Y.; Cai, J. A Wireless Integrated EEG–fNIRS System for Brain Function Monitoring. IEEE Sens. J. 2024, 24, 2125–2133. [Google Scholar] [CrossRef]
- Alrizq, M.; Solangi, S.; Alghamdi, A.; Nizamani, M.; Memon, M.; Hamdi, M. An Architecture Supporting Intelligent Mobile Healthcare Using Human-Computer Interaction HCI Principles. CSSE 2021, 40, 557–569. [Google Scholar] [CrossRef]
- Chakraborty, M. Explainable Neural Networks: Achieving Interpretability in Neural Models. Arch. Comput. Methods Eng. 2024, 31, 3535–3550. [Google Scholar] [CrossRef]
- Jia, H.; Li, Y.; Yu, D. Normalized Spatial Complexity Analysis of Neural Signals. Sci. Rep. 2018, 8, 7912. [Google Scholar] [CrossRef] [PubMed]
- Gerloff, C.; Konrad, K.; Bzdok, D.; Büsing, C.; Reindl, V. Interacting Brains Revisited: A Cross-Brain Network Neuroscience Perspective. Hum. Brain Mapp. 2022, 43, 4458–4474. [Google Scholar] [CrossRef]
- Du, J.; Luo, S.; Shi, P. A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation. Sensors 2025, 25, 5113. [Google Scholar] [CrossRef]
- Beauchene, C.; Zurn, C.A.; Duan, W.; Guan, Y.; Sarma, S.V. The Future of Therapeutic Peripheral Nerve Stimulation for Chronic Pain. Annu. Rev. Control 2022, 54, 377–385. [Google Scholar] [CrossRef]
Modality | Representative References | Analytical Method | Data Characteristics | Key Findings/Performance |
---|---|---|---|---|
EEG | [18,36,41] | SVM, RF, CNN, LSTM | 20–60 subjects, pain task paradigms | CNN/LSTM achieve >85% accuracy in pain state classification; classical ML ~70–80% |
fMRI | [23,46,51] | Multivariate pattern analysis, regression | Small cohorts (n=12–30), high spatial resolution imaging | Identification of pain-related networks and predictive biomarkers; limited by cost and accessibility |
fNIRS | [27,31,58] | Logistic regression, hybrid ML models | 10–25 subjects, cortical hemodynamic responses | Effective in differentiating pain vs. no-pain states; moderate accuracy (~75–85%) |
EEG–fNIRS (Hybrid) | [31,58] | Multimodal fusion, ensemble learning | Dual-modality datasets | Improved robustness and performance compared with unimodal approaches |
Clinical closed-loop TENS pilot | [60,63] | Adaptive algorithms, feedback-based control | Pilot cohorts (n < 20) | Initial evidence of analgesic benefit; limited by heterogeneity and small sample sizes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Luo, S.; Shi, P. AI-Driven Multimodal Brain-State Decoding for Personalized Closed-Loop TENS: A Comprehensive Review. Brain Sci. 2025, 15, 903. https://doi.org/10.3390/brainsci15090903
Du J, Luo S, Shi P. AI-Driven Multimodal Brain-State Decoding for Personalized Closed-Loop TENS: A Comprehensive Review. Brain Sciences. 2025; 15(9):903. https://doi.org/10.3390/brainsci15090903
Chicago/Turabian StyleDu, Jiahao, Shengli Luo, and Ping Shi. 2025. "AI-Driven Multimodal Brain-State Decoding for Personalized Closed-Loop TENS: A Comprehensive Review" Brain Sciences 15, no. 9: 903. https://doi.org/10.3390/brainsci15090903
APA StyleDu, J., Luo, S., & Shi, P. (2025). AI-Driven Multimodal Brain-State Decoding for Personalized Closed-Loop TENS: A Comprehensive Review. Brain Sciences, 15(9), 903. https://doi.org/10.3390/brainsci15090903