Discrimination and Integration of Phonological Features in Children with Autism Spectrum Disorder: An Exploratory Multi-Feature Oddball Protocol
Abstract
1. Introduction
1.1. Atypical Acoustic Speech Feature Processing in ASD
1.1.1. Lexical Tone Processing
1.1.2. Consonant Processing
1.1.3. Vowel Processing
1.2. Integration Differences in ASD
1.2.1. Cross-Feature Integration in Speech Perception
1.2.2. Theoretical Frameworks: EPF, WCC and NCH
1.2.3. The Developmental Imperative: Why Focus on Children?
1.3. The Multi-Feature Oddball Paradigm
1.4. The Current Study
- Do children with ASD show diminished MMN responses to speech feature deviations, with greater impairment for complex, multi-feature contrasts?
- Do ERP differences reflect processing delays that cascade across time, rather than isolated amplitude reductions?
- How do concurrent changes in tone, consonant, and vowel interact in ERP responses, and do children with ASD show atypical integration patterns in MMN?
- Given tone’s lexical role in Mandarin, do children with ASD show the most pronounced differences in tone-related conditions, suggesting a language-specific signature of speech processing difficulty?
2. Materials and Methods
2.1. Participants
2.1.1. Sample Size Justification and Ethics
2.1.2. Inclusion and Exclusion Criteria
2.2. Stimuli, Experimental Procedure and Measurements
2.2.1. Auditory Stimuli and Phonological Manipulations
2.2.2. Oddball Paradigm and Experimental Procedure
2.3. Data Analysis
2.3.1. EEG Data Acquisition and Preprocessing
2.3.2. ERP Epoching and Feature Extraction
2.3.3. Temporal Principal Component Analysis
- eMMN: Early mismatch negativity (~100–200 ms; Fz, FCz, Cz)
- lMMN: Late mismatch negativity (~200–300 ms; Fz, FCz, Cz)
- P3a: Fronto-central positivity (~250–350 ms; Fz, FCz, Cz)
2.3.4. Representational Similarity Analysis
Step 1: Constructing Theoretical RDM Models
- Base Feature-Count Model
- Tone-Weighted Model
- Vowel-Weighted Model
- Consonant-Weighted Model
Step 2: Calculating Neural RDM
Step 3: Comparing Neural RDM with Theoretical Models
3. Predictions Based on Theory- and Data- Driven Perspectives
3.1. Theory-Driven Predictions (Based on EPF, WCC, and NCH Frameworks)
3.1.1. t-PCA-Level Predictions (P)
3.1.2. RSA-Level Predictions
3.2. Data-Driven Predictions (Based on MMN Literature)
3.2.1. t-PCA-Level Predictions
3.2.2. RSA-Level Predictions
4. Expected Results
5. Discussion
6. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013; Volume 21, pp. 591–643. [Google Scholar]
- Bavin, E.L.; Kidd, E.; Prendergast, L.; Baker, E.; Dissanayake, C.; Prior, M. Severity of Autism Is Related to Children’s Language Processing. Autism Res. 2014, 7, 687–694. [Google Scholar] [CrossRef]
- Rotschafer, S.E. Auditory Discrimination in Autism Spectrum Disorder. Front. Neurosci. 2021, 15, 651209. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Callejo, D.; Boets, B. A Systematic Review on Speech-in-Noise Perception in Autism. Neurosci. Biobehav. Rev. 2023, 154, 105406. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, W.A.; Enticott, P.G.; Rajan, R. Speech Discrimination Difficulties in High-Functioning Autism Spectrum Disorder Are Likely Independent of Auditory Hypersensitivity. Front. Hum. Neurosci. 2016, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, A.; Mittal, V. Analysis and Classification of Speech Sounds of Children with Autism Spectrum Disorder Using Acoustic Features. Comput. Speech Lang. 2022, 72, 101287. [Google Scholar] [CrossRef]
- Diehl, R.L.; Lotto, A.J.; Holt, L.L. Speech Perception. Annu. Rev. Psychol. 2004, 55, 149–179. [Google Scholar] [CrossRef]
- Honbolygó, F.; Zulauf, B.; Zavogianni, M.I.; Csépe, V. Investigating the Neurocognitive Background of Speech Perception with a Fast Multi-Feature MMN Paradigm. Biol. Futura. 2024, 75, 145–158. [Google Scholar] [CrossRef]
- McClelland, J.L.; Mirman, D.; Holt, L.L. Are There Interactive Processes in Speech Perception? Trends Cogn. Sci. 2006, 10, 363–369. [Google Scholar] [CrossRef]
- Näätänen, R.; Paavilainen, P.; Rinne, T.; Alho, K. The Mismatch Negativity (MMN) in Basic Research of Central Auditory Processing: A Review. Clin. Neurophysiol. 2007, 118, 2544–2590. [Google Scholar] [CrossRef]
- Navarrete-Arroyo, S.; Virtala, P.; Nie, P.; Kailaheimo-Lönnqvist, L.; Salonen, S.; Kujala, T. Infant Mismatch Responses to Speech-Sound Changes Predict Language Development in Preschoolers at Risk for Dyslexia. Clin. Neurophysiol. 2024, 162, 248–261. [Google Scholar] [CrossRef]
- Kuhl, P.K. Brain Mechanisms in Early Language Acquisition. Neuron 2010, 67, 713–727. [Google Scholar] [CrossRef]
- Peng, G.; Rong, Y.; Chen, F.; Weng, Y. Categorical Perception of Mandarin Lexical Tones in Language-Delayed Autistic Children. Autism 2022, 27, 1426–1437. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Y. Speech Prosody in Mental Disorders. Annu. Rev. Linguist. 2023, 9, 335–355. [Google Scholar] [CrossRef]
- Yip, M.J.W. Tone; Cambridge Textbooks in Linguisti; Cambridge University Press: Cambridge, UK, 2002; ISBN 978-0-521-77314-0. [Google Scholar]
- Gomot, M.; Belmonte, M.K.; Bullmore, E.T.; Bernard, F.A.; Baron-Cohen, S. Brain Hyper-Reactivity to Auditory Novel Targets in Children with High-Functioning Autism. Brain 2008, 131, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-C.; Hsieh, M.H.; Lin, Y.-T.; Chan, P.-Y.S.; Cheng, C.-H. Mismatch Negativity to Different Deviant Changes in Autism Spectrum Disorders: A Meta-Analysis. Clin. Neurophysiol. 2020, 131, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, E.; Ding, H.; Zhang, Y. Auditory Pitch Perception in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J. Speech Lang. Hear. Res. 2022, 65, 4866–4886. [Google Scholar] [CrossRef]
- Lepistö, T.; Kuitunen, A.; Sussman, E.; Saalasti, S.; Jansson-Verkasalo, E.; Nieminen-von Wendt, T.; Kujala, T. Auditory Stream Segregation in Children with Asperger Syndrome. Biol. Psychol. 2009, 82, 301–307. [Google Scholar] [CrossRef]
- Yu, L.; Fan, Y.; Deng, Z.; Huang, D.; Wang, S.; Zhang, Y. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study. J. Autism Dev. Disord. 2015, 45, 3656–3667. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Y.; Wu, C.; Xiang, Y.-T.; Yuan, Z. Non-Speech and Speech Pitch Perception among Cantonese-Speaking Children with Autism Spectrum Disorder: An ERP Study. Neurosci. Lett. 2019, 703, 205–212. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Fan, Y.; Huang, D.; Zhang, Y. Speech-Specific Categorical Perception Deficit in Autism: An Event-Related Potential Study of Lexical Tone Processing in Mandarin-Speaking Children. Sci. Rep. 2017, 7, 43254. [Google Scholar] [CrossRef]
- Yu, L.; Huang, D.; Wang, S.; Wu, X.; Chen, Y.; Zhang, Y. Evidence of Altered Cortical Processing of Dynamic Lexical Tone Pitch Contour in Chinese Children with Autism. Neurosci. Bull. 2021, 37, 1605–1608. [Google Scholar] [CrossRef]
- Yu, L.; Huang, D.; Wang, S.; Zhang, Y. Reduced Neural Specialization for Word-Level Linguistic Prosody in Children with Autism. J. Autism Dev. Disord. 2023, 53, 4351–4367. [Google Scholar] [CrossRef]
- Tantam, D.; Hisaizumi, M. Enhanced Sensitivity to Pitch Perception and Its Possible Relation to Language Acquisition in Autism. Autism Dev. Lang. Impair. 2024, 9, 23969415241248618. [Google Scholar] [CrossRef]
- Stevens, K.N. Toward a Model for Lexical Access Based on Acoustic Landmarks and Distinctive Features. J. Acoust. Soc. Am. 2002, 111, 1872–1891. [Google Scholar] [CrossRef]
- Kuhl, P.K.; Coffey-Corina, S.; Padden, D.; Dawson, G. Links between Social and Linguistic Processing of Speech in Preschool Children with Autism: Behavioral and Electrophysiological Measures. Dev. Sci. 2005, 8, F1–F12. [Google Scholar] [CrossRef]
- Chen, F.; Peng, G. Categorical Perception of Pitch Contours and Voice Onset Time in Mandarin-Speaking Adolescents with Autism Spectrum Disorders. J. Speech Lang. Hear. Res. 2021, 64, 4468–4484. [Google Scholar] [CrossRef] [PubMed]
- Steinschneider, M.; Volkov, I.O.; Fishman, Y.I.; Oya, H.; Arezzo, J.C.; Howard, M.A. Intracortical Responses in Human and Monkey Primary Auditory Cortex Support a Temporal Processing Mechanism for Encoding of the Voice Onset Time Phonetic Parameter. Cereb. Cortex 2004, 15, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Tallal, P.; Miller, S.; Fitch, R.H. Neurobiological Basis of Speech: A Case for the Preeminence of Temporal Processing. Ann. N. Y. Acad. Sci. 1993, 682, 27–47. [Google Scholar] [CrossRef]
- Edgar, J.C.; Fisk Iv, C.L.; Berman, J.I.; Chudnovskaya, D.; Liu, S.; Pandey, J.; Herrington, J.D.; Port, R.G.; Schultz, R.T.; Roberts, T.P.L. Auditory Encoding Abnormalities in Children with Autism Spectrum Disorder Suggest Delayed Development of Auditory Cortex. Mol. Autism 2015, 6, 69. [Google Scholar] [CrossRef]
- Huang, D.; Yu, L.; Wang, X.; Fan, Y.; Wang, S.; Zhang, Y. Distinct Patterns of Discrimination and Orienting for Temporal Processing of Speech and Nonspeech in Chinese Children with Autism: An Event-related Potential Study. Eur. J. Neurosci. 2018, 47, 662–668. [Google Scholar] [CrossRef]
- Yu, L.; Wang, S.; Huang, D.; Wu, X.; Zhang, Y. Role of Inter-Trial Phase Coherence in Atypical Auditory Evoked Potentials to Speech and Nonspeech Stimuli in Children with Autism. Clin. Neurophysiol. 2018, 129, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ban, L.; Yi, A.; Xin, J.; Li, S.; Wang, S.; Mottron, L. Acoustic Exaggeration Enhances Speech Discrimination in Young Autistic Children. Autism Res. 2024, 18, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, J.; Kuschner, E.S.; Blaskey, L.; Bloy, L.; Kim, M.; Ku, M.; Edgar, J.C.; Embick, D.; Roberts, T.P.L. Abnormal Auditory Mismatch Fields Are Associated with Communication Impairment in Both Verbal and Minimally Verbal/Nonverbal Children Who Have Autism Spectrum Disorder. Autism Res. 2019, 12, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Kasai, K.; Hashimoto, O.; Kawakubo, Y.; Yumoto, M.; Kamio, S.; Itoh, K.; Koshida, I.; Iwanami, A.; Nakagome, K.; Fukuda, M.; et al. Delayed Automatic Detection of Change in Speech Sounds in Adults with Autism: A Magnetoencephalographic Study. Clin. Neurophysiol. 2005, 116, 1655–1664. [Google Scholar] [CrossRef]
- Oram Cardy, J.E.; Flagg, E.J.; Roberts, W.; Roberts, T.P.L. Delayed Mismatch Field for Speech and Non-Speech Sounds in Children with Autism. Neuroreport 2005, 16, 521–525. [Google Scholar] [CrossRef]
- Light, G.A.; Swerdlow, N.R.; Braff, D.L. Preattentive Sensory Processing as Indexed by the MMN and P3a Brain Responses Is Associated with Cognitive and Psychosocial Functioning in Healthy Adults. J. Cogn. Neurosci. 2007, 19, 1624–1632. [Google Scholar] [CrossRef]
- Escera, C.; Corral, M.J. Role of Mismatch Negativity and Novelty-P3 in Involuntary Auditory Attention. J. Psychophysiol. 2007, 21, 251–264. [Google Scholar] [CrossRef]
- Lepistö, T.; Kujala, T.; Vanhala, R.; Alku, P.; Huotilainen, M.; Näätänen, R. The Discrimination of and Orienting to Speech and Non-Speech Sounds in Children with Autism. Brain Res. 2005, 1066, 147–157. [Google Scholar] [CrossRef]
- Lepistö, T.; Silokallio, S.; Nieminen-von Wendt, T.; Alku, P.; Näätänen, R.; Kujala, T. Auditory Perception and Attention as Reflected by the Brain Event-Related Potentials in Children with Asperger Syndrome. Clin. Neurophysiol. 2006, 117, 2161–2171. [Google Scholar] [CrossRef]
- Sjerps, M.; Peng, G.; Zhang, K. Integral Perception, but Separate Processing: The Perceptual Normalization of Lexical Tones and Vowels. Neuropsychologia 2021, 156, 107839. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Wang, R.; Chen, Y.-H.; Yu, K. Distinct but Integrated Processing of Lexical Tones, Vowels, and Consonants in Tonal Language Speech Perception: Evidence from Mismatch Negativity. J. Neurolinguistics 2022, 61, 101039. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y. Testing Native Language Neural Commitment at the Brainstem Level: A Cross-Linguistic Investigation of the Association between Frequency-Following Response and Speech Perception. Neuropsychologia 2018, 109, 140–148. [Google Scholar] [CrossRef]
- Cao, C.; Li, Q. The Role of F0 in the Recognition of Aspiration Contrasts in Mandarin. In Proceedings of the 2024 IEEE 14th International Symposium on Chinese Spoken Language Processing ISCSLP, Beijing, China, 7–10 November 2024; pp. 536–540. [Google Scholar] [CrossRef]
- Key, A.P.; D’Ambrose Slaboch, K. Speech Processing in Autism Spectrum Disorder: An Integrative Review of Auditory Neurophysiology Findings. J. Speech Lang. Hear. Res. 2021, 64, 4192–4212. [Google Scholar] [CrossRef]
- Lepistö, T.; Kajander, M.; Vanhala, R.; Alku, P.; Huotilainen, M.; Näätänen, R.; Kujala, T. The Perception of Invariant Speech Features in Children with Autism. Biol. Psychol. 2008, 77, 25–31. [Google Scholar] [CrossRef]
- Key, A.P.; Yoder, P.J.; Stone, W.L. Consonant Differentiation Mediates the Discrepancy between Non-verbal and Verbal Abilities in Children with ASD. J. Intellect. Disabil. Res. 2016, 60, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Fadeev, K.A.; Romero Reyes, I.V.; Goiaeva, D.E.; Obukhova, T.S.; Ovsiannikova, T.M.; Prokofyev, A.O.; Rytikova, A.M.; Novikov, A.Y.; Kozunov, V.V.; Stroganova, T.A.; et al. Attenuated Processing of Vowels in the Left Temporal Cortex Predicts Speech-in-Noise Perception Deficit in Children with Autism. J. Neurodev. Disord. 2024, 16, 67. [Google Scholar] [CrossRef] [PubMed]
- Happé, F.; Frith, U. The Weak Coherence Account: Detail-Focused Cognitive Style in Autism Spectrum Disorders. J. Autism Dev. Disord. 2006, 36, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Mottron, L.; Dawson, M.; Soulières, I.; Hubert, B.; Burack, J. Enhanced Perceptual Functioning in Autism: An Update, and Eight Principles of Autistic Perception. J. Autism Dev. Disord. 2006, 36, 27–43. [Google Scholar] [CrossRef]
- Bertone, A.; Mottron, L.; Jelenic, P.; Faubert, J. Enhanced and Diminished Visuo-Spatial Information Processing in Autism Depends on Stimulus Complexity. Brain 2005, 128, 2430–2441. [Google Scholar] [CrossRef]
- Mesgarani, N.; Cheung, C.; Johnson, K.; Chang, E.F. Phonetic Feature Encoding in Human Superior Temporal Gyrus. Science 2014, 343, 1006–1010. [Google Scholar] [CrossRef]
- Tu, S.; Mason, C.; Rooks-Ellis, D.; Lech, P. Odds of Autism at 5 to 10 Years of Age for Children Who Did Not Pass Their AABR Newborn Hearing Screen, but Were Diagnosed with Normal Hearing. J. Early Hear. Detect. Interv. 2020, 5, 1–12. [Google Scholar] [CrossRef]
- Chiang, T.; Dell, J.; Blaskey, L.; Matsuzaki, J.; Saby, J.; Dipiero, M.; Berman, J.; Roberts, T.; Ku, M.; Liu, S.; et al. Delayed Auditory Evoked Responses in Autism Spectrum Disorder across the Life Span. Dev. Neurosci. 2020, 41, 223–233. [Google Scholar] [CrossRef]
- Schneider, P.; Engelmann, D.; Groß, C.; Bernhofs, V.; Hofmann, E.; Christiner, M.; Benner, J.; Bücher, S.; Ludwig, A.; Serrallach, B.L.; et al. Neuroanatomical Disposition, Natural Development, and Training-Induced Plasticity of the Human Auditory System from Childhood to Adulthood: A 12-Year Study in Musicians and Nonmusicians. J. Neurosci. 2023, 43, 6430–6446. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. Neural Plasticity in Speech Acquisition and Learning. Bilingualism 2007, 10, 147–160. [Google Scholar] [CrossRef]
- Foss-Feig, J.H.; Kwakye, L.D.; Cascio, C.J.; Burnette, C.P.; Kadivar, H.; Stone, W.L.; Wallace, M.T. An Extended Multisensory Temporal Binding Window in Autism Spectrum Disorders. Exp. Brain Res. 2010, 203, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Gandal, M.J.; Edgar, J.C.; Ehrlichman, R.S.; Mehta, M.; Roberts, T.P.L.; Siegel, S.J. Validating γ Oscillations and Delayed Auditory Responses as Translational Biomarkers of Autism. Biol. Psychiatry 2010, 68, 1100–1106. [Google Scholar] [CrossRef]
- Näätänen, R.; Pakarinen, S.; Rinne, T.; Takegata, R. The Mismatch Negativity (MMN): Towards the Optimal Paradigm. Clin. Neurophysiol. 2004, 115, 140–144. [Google Scholar] [CrossRef]
- Pakarinen, S.; Takegata, R.; Rinne, T.; Huotilainen, M.; Näätänen, R. Measurement of Extensive Auditory Discrimination Profiles Using the Mismatch Negativity (MMN) of the Auditory Event-Related Potential (ERP). Clin. Neurophysiol. 2007, 118, 177–185. [Google Scholar] [CrossRef]
- Pakarinen, S.; Lovio, R.; Huotilainen, M.; Alku, P.; Näätänen, R.; Kujala, T. Fast Multi-Feature Paradigm for Recording Several Mismatch Negativities (MMNs) to Phonetic and Acoustic Changes in Speech Sounds. Biol. Psychol. 2009, 82, 219–226. [Google Scholar] [CrossRef]
- Lovio, R.; Näätänen, R.; Kujala, T. Abnormal Pattern of Cortical Speech Feature Discrimination in 6-Year-Old Children at Risk for Dyslexia. Brain Res. 2010, 1335, 53–62. [Google Scholar] [CrossRef]
- Kostilainen, K.; Partanen, E.; Mikkola, K.; Wikström, V.; Pakarinen, S.; Fellman, V.; Huotilainen, M. Neural Processing of Changes in Phonetic and Emotional Speech Sounds and Tones in Preterm Infants at Term Age. Int. J. Psychophysiol. 2020, 148, 111–118. [Google Scholar] [CrossRef]
- Kao, C.; Zhang, Y. Sex Differences in Processing Emotional Speech Prosody: Preliminary Findings from a Multi-Feature Oddball Study. Brain Sci. 2024, 14, 1216. [Google Scholar] [CrossRef]
- Rapaport, H.; Seymour, R.A.; Benikos, N.; He, W.; Pellicano, E.; Brock, J.; Sowman, P.F. Investigating Predictive Coding in Younger and Older Children Using MEG and a Multi-Feature Auditory Oddball Paradigm. Cereb. Cortex 2023, 33, 7489–7499. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, J.E. Gilliam Autism Rating Scale: GARS 2; Pro-ed: Austin, TX, USA, 2006. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Li, N. Preliminary Validation of the Childhood Autism Rating Scale-Second Edition Questionnaire for Parents or Caregivers (Cars2-Qpc) and the Gilliam Autism Rating Scale (Gars-2) with a Chinese-Speaking Population. Master Thesis, Eastern Kentucky University, Richmond, KY, USA, 2012. [Google Scholar]
- Boersma, P.; Weenink, D. Praat: Doing Phonetics by Computer [Computer Program]; Version 5.3.51; University of Amsterdam: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.-M.; Robbins, K.A. The PREP Pipeline: Standardized Preprocessing for Large-Scale EEG Analysis. Front. Neuroinform. 2015, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Dien, J. The ERP PCA Toolkit: An Open Source Program for Advanced Statistical Analysis of Event-Related Potential Data. J. Neurosci. Methods 2010, 187, 138–145. [Google Scholar] [CrossRef]
- Scharf, F.; Widmann, A.; Bonmassar, C.; Wetzel, N. A Tutorial on the Use of Temporal Principal Component Analysis in Developmental ERP Research–Opportunities and Challenges. Dev. Cogn. Neurosci. 2022, 54, 101072. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Lu, Y.; Tiihonen, T.; Chang, Z.; Cong, F. Single-Trial-Based Temporal Principal Component Analysis on Extracting Event-Related Potentials of Interest for an Individual Subject. J. Neurosci. Methods 2023, 385, 109768. [Google Scholar] [CrossRef]
- Haese, A.; Czernochowski, D. Using Temporo-Spatial Principal Component Analysis as Tool to Dissociate Latent ERP Components of Episodic Memory Retrieval: Objectifying Time-Window Selection for Overlapping ERP Components. Brain Cogn. 2022, 157, 105833. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, C.; Shao, L.; Wang, Y.; Xiao, X.; Chen, C.; Yang, J.; Zevin, J.; Xue, G. Orthographic and Phonological Representations in the Fusiform Cortex. Cereb. Cortex 2016, 27, 5197–5210. [Google Scholar] [CrossRef]
- Beach, S.D.; Ozernov-Palchik, O.; May, S.C.; Centanni, T.M.; Gabrieli, J.D.E.; Pantazis, D. Neural Decoding Reveals Concurrent Phonemic and Subphonemic Representations of Speech across Tasks. Neurobiol. Lang. 2021, 2, 254–279. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Z.; Feng, C.; Qu, Q. Predicting Phonological Information in Language Comprehension: Evidence from ERP Representational Similarity Analysis and Chinese Idioms. Cereb. Cortex 2023, 33, 9367–9375. [Google Scholar] [CrossRef] [PubMed]
- Freund, M.C.; Etzel, J.A.; Braver, T.S. Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. Trends Cogn. Sci. 2021, 25, 622–638. [Google Scholar] [CrossRef] [PubMed]
- Lovio, R.; Pakarinen, S.; Huotilainen, M.; Alku, P.; Silvennoinen, S.; Näätänen, R.; Kujala, T. Auditory Discrimination Profiles of Speech Sound Changes in 6-Year-Old Children as Determined with the Multi-Feature MMN Paradigm. Clin. Neurophysiol. 2009, 120, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Kujala, T.; Kuuluvainen, S.; Saalasti, S.; Jansson-Verkasalo, E.; Wendt, L.; Lepistö, T. Speech-Feature Discrimination in Children with Asperger Syndrome as Determined with the Multi-Feature Mismatch Negativity Paradigm. Clin. Neurophysiol. 2010, 121, 1410–1419. [Google Scholar] [CrossRef]
- Ceponiene, R.; Kushnerenko, E.; Fellman, V.; Renlund, M.; Suominen, K.; Näätänen, R. Event-Related Potential Features Indexing Central Auditory Discrimination by Newborns. Cogn. Brain Res. 2002, 13, 101–113. [Google Scholar] [CrossRef]
- Niemitalo-Haapola, E.; Lapinlampi, S.; Kujala, T.; Alku, P.; Kujala, T.; Suominen, K.; Jansson-Verkasalo, E. Linguistic Multi-Feature Paradigm as an Eligible Measure of Central Auditory Processing and Novelty Detection in 2-Year-Old Children. Cogn. Neurosci. 2013, 4, 106–199. [Google Scholar] [CrossRef]
- Wottawa, J.; Adda-Decker, M.; Isel, F. Neurophysiology of Non-Native Sound Discrimination: Evidence from German Vowels and Consonants in Successive French–German Bilinguals Using an MMN Oddball Paradigm. Biling. Lang. Cogn. 2021, 25, 137–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Kuntz, E.; Kao, C. Age-Related Decline in Hearing and Emotional Prosody Processing: A Multi-Feature Oddball Study. J. Acoust. Soc. Am. 2024, 155, A78–A79. [Google Scholar] [CrossRef]
- Roche-Labarbe, N.; Marais, A.-L. Predictive Coding and Attention in Developmental Cognitive Neuroscience and Perspectives for Neurodevelopmental Disorders. Dev. Cogn. Neurosci. 2025, 72, 101519. [Google Scholar] [CrossRef]
- Van Boxtel, J.J.A.; Lu, H. A Predictive Coding Perspective on Autism Spectrum Disorders. Front. Psychol. 2013, 4, 19. [Google Scholar] [CrossRef]
- Rapaport, H.; Sowman, P. Examining Predictive Coding Accounts of Typical and Autistic Neurocognitive Development. Neurosci. Biobehav. Rev. 2024, 167, 105905. [Google Scholar] [CrossRef]
- Hovsepyan, S.; Olasagasti, I.; Giraud, A.L. Combining Predictive Coding and Neural Oscillations Enables Online Syllable Recognition in Natural Speech. Nat. Commun. 2020, 11, 3117. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, H.; Pellieano, E.; Seymour, R.A.; Benikos, N.; He, W.; Sun, Y.; Brock, J.; Sowman, P.F. Hearing the World Differently: Examining Predictive Coding Accounts of Autism Using MEG. bioRxiv 2022. [Google Scholar] [CrossRef]
Processing Type | Prediction in ASD | EPF + NCH Account | WCC + NCH Account | |
---|---|---|---|---|
Consonant only | Local | ↑ or = MMN amplitude ↓ or = MMN latency | Enhanced perception of phonetic detail | Intact |
Vowel only | Local | ↑ or = MMN amplitude ↓ or = MMN latency | Enhanced formant processing | Intact |
Tone only | Global | ↓ MMN amplitude ↑ MMN latency | Reduced prosodic integration | Impaired due to global integration load |
C + V | Mixed/Global | ↓ MMN amplitude ↑ MMN latency | Disruption due to multiple feature load | Integration weakness |
V + T | Global | ↓↓ MMN amplitude ↑↑ MMN latency | Disrupted holistic processing | Poor feature binding |
C + T | Global | ↓↓ MMN amplitude ↑↑ MMN latency | Disrupted holistic processing | Failure to form unified percept |
C + V + T | Global | ↓↓↓ MMN amplitude ↑↑↑ MMN latency | Collapsed integration under complexity | Strongest integration failure |
Condition | MMN Amplitude in ASD | Latency in ASD | Reduced Left-Hemispheric MMN Dominance |
---|---|---|---|
Consonant only | ↓ | ↑ | Predicted—based on broader speech processing literature |
Vowel only | = or ↓ | ↑ | Predicted—but may be less pronounced than for consonants |
Tone only | ↓ | = or ↑ | Predicted—particularly for lexical tones |
C + V | ↓↓ | ↑↑ | Predicted—likely pronounced |
V + T | ↓↓ | ↑↑ | Predicted—key for tonal languages |
C + T | ↓↓ | ↑↑ | Predicted—reflects integration challenge |
C + V + T | ↓↓↓ | ↑↑↑ | Predicted—most pronounced reduction expected |
Stimulus Type | Stimulus | Feature(s) Changed |
---|---|---|
Standard | /ba1/ | None |
Deviant 1 | /ba4/ | Tone change |
Deviant 2 | /bu1/ | Vowel change |
Deviant 3 | /da1/ | Consonant change |
Deviant 4 | /bu4/ | Tone + Vowel Change |
Deviant 5 | /da4/ | Tone + Consonant Change |
Deviant 6 | /du1/ | Vowel + Consonant Change |
Deviant 7 | /du4/ | Tone + Vowel + Consonant Change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, M.; Zhang, Y.; Wang, R.; Huang, D.; Yu, L.; Wang, S. Discrimination and Integration of Phonological Features in Children with Autism Spectrum Disorder: An Exploratory Multi-Feature Oddball Protocol. Brain Sci. 2025, 15, 905. https://doi.org/10.3390/brainsci15090905
Zuo M, Zhang Y, Wang R, Huang D, Yu L, Wang S. Discrimination and Integration of Phonological Features in Children with Autism Spectrum Disorder: An Exploratory Multi-Feature Oddball Protocol. Brain Sciences. 2025; 15(9):905. https://doi.org/10.3390/brainsci15090905
Chicago/Turabian StyleZuo, Mingyue, Yang Zhang, Rui Wang, Dan Huang, Luodi Yu, and Suiping Wang. 2025. "Discrimination and Integration of Phonological Features in Children with Autism Spectrum Disorder: An Exploratory Multi-Feature Oddball Protocol" Brain Sciences 15, no. 9: 905. https://doi.org/10.3390/brainsci15090905
APA StyleZuo, M., Zhang, Y., Wang, R., Huang, D., Yu, L., & Wang, S. (2025). Discrimination and Integration of Phonological Features in Children with Autism Spectrum Disorder: An Exploratory Multi-Feature Oddball Protocol. Brain Sciences, 15(9), 905. https://doi.org/10.3390/brainsci15090905