Psychophysiological Effects of a Single Dose vs. Partial Dose of Caffeine Gum Supplementation on the Cognitive Performance of Healthy University Students: A Placebo Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Caffeine Supplementation
2.4. Maximum Oxygen Consumption
2.5. Cognitive Task
2.5.1. Choice Reaction Time Test
2.5.2. Stroop Test
2.6. Data Analysis
3. Results
3.1. Cognitive Task
3.1.1. Choice Reaction Time Test
3.1.2. Stroop Test
3.2. Rate of Perceived Exertion and Heart Rate
4. Discussion
4.1. Limitations of the Study and Future Guidelines
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef]
- Saavedra-Velásquez, N.; Cuadrado-Peñafiel, V.; de la Vega-Marcos, R. Can caffeine improve your performance? Psychophysiological effects—A systematic review. Nutr. Hosp. 2024, 41, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Kalmar, J.M.; Cafarelli, E. Caffeine: A Valuable Tool to Study Central Fatigue in Humans? Exerc. Sport Sci. Rev. 2004, 32, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.W.; Fredholm, B.B. Caffeine—An atypical drug of dependence. Drug Alcohol Depend. 1998, 51, 199–206. [Google Scholar] [CrossRef]
- Latini, S.; Pedata, F. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J. Neurochem. 2001, 79, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Pérez-López, A.; Abian-Vicen, J.; Salinero, J.J.; Lara, B.; Valadés, D. Enhancing Physical Performance in Male Volleyball Players with a Caffeine-Containing Energy Drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef]
- San Juan, A.F.; López-Samanes, Á.; Jodra, P.; Valenzuela, P.L.; Rueda, J.; Veiga-Herreros, P.; Pérez-López, A.; Domínguez, R. Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients 2019, 11, 2120. [Google Scholar] [CrossRef]
- Rousseau, E.; Ladine, J.; Liu, Q.Y.; Meissner, G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch. Biochem. Biophys. 1988, 267, 75–86. [Google Scholar] [CrossRef]
- Lindinger, M.I.; Graham, T.E.; Spriet, L.L. Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J. Appl. Physiol. 1993, 74, 1149–1155. [Google Scholar] [CrossRef]
- Lorenzo Calvo, J.; Fei, X.; Domínguez, R.; Pareja-Galeano, H. Caffeine and Cognitive Functions in Sports: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 868. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International Society of Sports Nutrition Position stand: Caffeine and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, H.R.; Tharion, W.J.; Shukitt-Hale, B.; Speckman, K.L.; Tulley, R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land. Psychopharmacology 2002, 164, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Potgieter, S.; Wright, H.H.; Smith, C. Caffeine Improves Triathlon Performance: A Field Study in Males and Females. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 228–237. [Google Scholar] [CrossRef]
- Sinclair, C.J.; Geiger, J.D. Caffeine use in sports. A pharmacological review. J. Sports Med. Phys. Fit. 2000, 40, 71–79. [Google Scholar]
- Keisler, B.D.; Armsey, T.D. Caffeine As an Ergogenic Aid. Curr. Sports Med. Rep. 2006, 5, 215–219. [Google Scholar] [CrossRef]
- Khcharem, A.; Souissi, M.; Atheymen, R.; Souissi, W.; Sahnoun, Z. Acute caffeine ingestion improves 3-km run performance, cognitive function, and psychological state of young recreational runners. Pharmacol. Biochem. Behav. 2021, 207, 173219. [Google Scholar] [CrossRef]
- Mahoney, C.R.; Giles, G.E.; Marriott, B.P.; Judelson, D.A.; Glickman, E.L.; Geiselman, P.J.; Lieberman, H.R. Intake of caffeine from all sources and reasons for use by college students. Clin. Nutr. 2019, 38, 668–675. [Google Scholar] [CrossRef]
- Choi, J. Motivations Influencing Caffeine Consumption Behaviors among College Students in Korea: Associations with Sleep Quality. Nutrients 2020, 12, 953. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.-A.; MacGregor, A.; Fond, G. A preliminary study on cognitive enhancer consumption behaviors and motives of French Medicine and Pharmacology students. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1875–1878. [Google Scholar]
- Wickham, K.A.; Spriet, L.L. Administration of Caffeine in Alternate Forms. Sports Med. 2018, 48, 79–91. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.; Costa, V.; Guglielmo, L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J. Sports Sci. 2014, 33, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Lowe, T.; Irvine, A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur. J. Appl. Physiol. 2010, 110, 1243–1250. [Google Scholar] [CrossRef]
- Bellar, D.M.; Kamimori, G.; Judge, L.; Barkley, J.E.; Ryan, E.J.; Muller, M.; Glickman, E.L. Effects of low-dose caffeine supplementation on early morning performance in the standing shot put throw. Eur. J. Sport Sci. 2012, 12, 57–61. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; Pratt, H.; Parsons, M.; Parry, A.; Boyd, C.; Lynn, A. Effect of caffeinated gum on a battery of rugby-specific tests in trained university-standard male rugby union players. J. Int. Soc. Sports Nutr. 2019, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Veiner, S.; Grgic, J.; Mikulic, P. Acute Enhancement of Jump Performance, Muscle Strength, and Power in Resistance-Trained Men After Consumption of Caffeinated Chewing Gum. Int. J. Sports Physiol. Perform. 2019, 14, 1415–1421. [Google Scholar] [CrossRef]
- Daneshfar, A.; Petersen, C.J.; Koozehchian, M.S.; Gahreman, D.E. Caffeinated Chewing Gum Improves Bicycle Motocross Time-Trial Performance. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 427–434. [Google Scholar] [CrossRef]
- Morris, C.; Viriot, S.M.; Mirza, Q.U.A.F.; Morris, G.; Lynn, A. Caffeine release and absorption from caffeinated gums. Food Funct. 2019, 10, 1792–1796. [Google Scholar] [CrossRef]
- O’Donnell, B.F.; Hetrick, W.P. Psychophysiology of Mental Health. In Encyclopedia of Mental Health, 2nd ed.; Academic Press: San Diego, CA, USA, 2016; pp. 372–376. [Google Scholar]
- Lal, S.K.L.; Craig, A. A critical review of the psychophysiology of driver fatigue. Biol. Psychol. 2001, 55, 173–194. [Google Scholar] [CrossRef]
- Nehlig, A. Is Caffeine a Cognitive Enhancer? J. Alzheimer’s Dis. 2010, 20, S85–S94. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Pollo, A.; Carlino, E.; Benedetti, F. The top-down influence of ergogenic placebos on muscle work and fatigue. Eur. J. Neurosci. 2008, 28, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Lyons, M.; Hankey, J. Placebo Effects of Caffeine on Short-Term Resistance Exercise to Failure. Int. J. Sports Physiol. Perform. 2009, 4, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Phan, J.K.; Shah, S.A. Effect of Caffeinated Versus Noncaffeinated Energy Drinks on Central Blood Pressures. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 555–560. [Google Scholar] [CrossRef]
- Marczinski, C.A.; Stamates, A.L.; Ossege, J.; Maloney, S.F.; Bardgett, M.E.; Brown, C.J. Subjective State, Blood Pressure, and Behavioral Control Changes Produced by an “Energy Shot”. J. Caffeine Res. 2014, 4, 57–63. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef]
- Arazi, H.; Hoseinihaji, M.; Eghbali, E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz. J. Pharm. Sci. 2016, 52, 685–692. [Google Scholar] [CrossRef]
- Martin, D.T.; Andersen, M.B. Heart rate-perceived exertion relationship during training and taper. J. Sports Med. Phys. Fitness 2000, 40, 201–208. [Google Scholar] [PubMed]
- Dittrich, N.; Serpa, M.C.; Lemos, E.C.; De Lucas, R.D.; Guglielmo, L.G.A. Effects of Caffeine Chewing Gum on Exercise Tolerance and Neuromuscular Responses in Well-Trained Runners. J. Strength Cond. Res. 2019, 35, 1671–1676. [Google Scholar] [CrossRef]
- Smirmaul, B.P.C.; de Moraes, A.C.; Angius, L.; Marcora, S.M. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur. J. Appl. Physiol. 2016, 117, 27–38. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gonzalez-Millán, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Muñoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Ramírez, J.A.; Muñoz, G.; Portillo, J.; Gonzalez-Millán, C.; Muñoz, V.; Barbero-Álvarez, J.C.; Muñoz-Guerra, J. Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl. Physiol. Nutr. Metab. 2013, 38, 368–374. [Google Scholar] [CrossRef] [PubMed]
Physical Characteristics | Participants (n = 20) |
---|---|
Age (years) | 21.8 ± 3.1 |
Height (cm) | 174.1 ± 7.2 |
Weight (kg) | 78.3 ± 14.6 |
BMI | 25.8 ± 4.3 |
Vo2max (mL/kg/min) | 34.2 ± 6.3 |
N | Mean | Std. Deviation | ||
---|---|---|---|---|
Heart rate, Gr.A | Block 1 | 20 | 130.35 | 18.18 |
Block 2 | 20 | 135.65 | 18.18 | |
Heart rate, Gr.B | Block 1 | 20 | 133.45 | 15.99 |
Block 2 | 20 | 135.50 | 12.66 | |
Heart rate, Gr.C | Block 1 | 20 | 137.35 | 14.93 |
Block 2 | 20 | 137.70 | 13.45 | |
Rate of perceived exertion, Gr.A | Block 1 | 20 | 4.50 | 1.76 |
Block 2 | 20 | 5.15 | 1.93 | |
Rate of perceived exertion, Gr.B | Block 1 | 20 | 4.95 | 1.90 |
Block 2 | 20 | 5.10 | 1.86 | |
Rate of perceived exertion, Gr.C | Block 1 | 20 | 5.15 | 1.73 |
Block 2 | 20 | 5.35 | 1.98 | |
Ratio HR/RPE, Gr.A | Block 1 | 20 | 35.99 | 24.09 |
Block 2 | 20 | 32.06 | 17.74 | |
Ratio HR/RPE, Gr.B | Block 1 | 20 | 32.65 | 16.96 |
Block 2 | 20 | 30.98 | 13.38 | |
Ratio HR/RPE, Gr.C | Block 1 | 20 | 30.47 | 12.61 |
Block 2 | 20 | 31.40 | 17.23 | |
Choice reaction time test (ms), Gr.A | Block 1 | 20 | 558.09 | 84.57 |
Block 2 | 20 | 553.79 | 73.54 | |
Choice reaction time test (ms), Gr.B | Block 1 | 20 | 570.56 | 99.24 |
Block 2 | 20 | 568.15 | 96.82 | |
Choice reaction time test (ms), Gr.C | Block 1 | 20 | 560.42 | 90.65 |
Block 2 | 20 | 569.02 | 93.73 | |
Stroop mean response (s), Gr.A | Block 1 | 20 | 1.15 | 0.17 |
Block 2 | 20 | 1.06 | 0.13 | |
Stroop mean response (s), Gr.B | Block 1 | 20 | 1.11 | 0.17 |
Block 2 | 20 | 1.07 | 0.18 | |
Stroop mean response (s), Gr.C | Block 1 | 20 | 1.10 | 0.14 |
Block 2 | 20 | 1.04 | 0.13 | |
Errors, Gr.A | Block 1 | 20 | 1.20 | 1.40 |
Block 2 | 20 | 1.25 | 1.55 | |
Errors, Gr.B | Block 1 | 20 | 1.50 | 1.28 |
Block 2 | 20 | 1.70 | 1.42 | |
Errors, Gr.C | Block 1 | 20 | 1.35 | 1.42 |
Block 2 | 20 | 1.25 | 1.37 |
Mean (B1-B2) | Std. Deviation | Std. Error Mean | t | gl | g | p | |
---|---|---|---|---|---|---|---|
Heart rate, Gr.A | −5.30 | 18.01 | 4.03 | −1.32 | 19 | 18.77 | 0.20 |
Heart rate, Gr.B | −2.05 | 10.02 | 2.24 | −0.91 | 19 | 10.44 | 0.37 |
Heart rate, Gr.C | −0.35 | 6.75 | 1.51 | −0.23 | 19 | 7.03 | 0.82 |
Rate of perceived exertion, Gr.A | −0.65 | 0.93 | 0.21 | −3.11 | 19 | 0.97 | <0.01 ** |
Rate of perceived exertion, Gr.B | −0.15 | 0.88 | 0.20 | −0.77 | 19 | 0.91 | 0.45 |
Rate of perceived exertion, Gr.C | −0.20 | 1.11 | 0.25 | −0.81 | 19 | 1.15 | 0.43 |
Choice reaction time test, Gr.A | 4.30 | 54.21 | 12.12 | 0.35 | 19 | 56.47 | 0.73 |
Choice reaction time test, Gr.B | 2.41 | 43.15 | 9.65 | 0.25 | 19 | 44.96 | 0.81 |
Choice reaction time test, Gr.C | −8.60 | 37.41 | 8.37 | −1.03 | 19 | 38.97 | 0.32 |
Stroop total response, Gr.A | 0.10 | 0.08 | 0.02 | 5.60 | 19 | 0.08 | <0.001 *** |
Stroop total response, Gr.B | 0.04 | 0.08 | 0.02 | 2.37 | 19 | 0.09 | 0.03 * |
Stroop total response, Gr.C | 0.05 | 0.08 | 0.02 | 2.89 | 19 | 0.08 | 0.01 ** |
Z | r | p | |
---|---|---|---|
Ratio HR/RPE, Gr.A | −2.01 b | −0.32 | 0.04 * |
Ratio HR/RPE, Gr.B | −0.99 b | −0.16 | 0.32 |
Ratio HR/RPE, Gr.C | −0.21 b | −0.03 | 0.84 |
Errors, Gr.A | −0.14 d | −0.02 | 0.89 |
Errors, Gr.B | −0.34 d | −0.05 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saavedra Velasquez, N.; Francino Barrera, G.; Cuadrado Peñafiel, V.; de la Vega Marcos, R. Psychophysiological Effects of a Single Dose vs. Partial Dose of Caffeine Gum Supplementation on the Cognitive Performance of Healthy University Students: A Placebo Controlled Study. Brain Sci. 2025, 15, 536. https://doi.org/10.3390/brainsci15050536
Saavedra Velasquez N, Francino Barrera G, Cuadrado Peñafiel V, de la Vega Marcos R. Psychophysiological Effects of a Single Dose vs. Partial Dose of Caffeine Gum Supplementation on the Cognitive Performance of Healthy University Students: A Placebo Controlled Study. Brain Sciences. 2025; 15(5):536. https://doi.org/10.3390/brainsci15050536
Chicago/Turabian StyleSaavedra Velasquez, Nicolas, Giovanni Francino Barrera, Victor Cuadrado Peñafiel, and Ricardo de la Vega Marcos. 2025. "Psychophysiological Effects of a Single Dose vs. Partial Dose of Caffeine Gum Supplementation on the Cognitive Performance of Healthy University Students: A Placebo Controlled Study" Brain Sciences 15, no. 5: 536. https://doi.org/10.3390/brainsci15050536
APA StyleSaavedra Velasquez, N., Francino Barrera, G., Cuadrado Peñafiel, V., & de la Vega Marcos, R. (2025). Psychophysiological Effects of a Single Dose vs. Partial Dose of Caffeine Gum Supplementation on the Cognitive Performance of Healthy University Students: A Placebo Controlled Study. Brain Sciences, 15(5), 536. https://doi.org/10.3390/brainsci15050536