Emotional Dysregulation Mechanisms in Psychosomatic Chronic Diseases Revealed by the Instability Coefficient
Abstract
:1. Introduction
2. Method
2.1. Sample
2.2. Instruments
3. Procedure
4. Statistical Analysis
5. Results
5.1. Differences among Groups
5.2. Correlations between Variables
5.3. Regression Models
6. Discussions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayers, S. The Application of Chaos Theory to Psychology. Theory Psychol. 1997, 7, 373–398. [Google Scholar] [CrossRef]
- Hueso, M.; Cruzado, J.M.; Torras, J.; Navarro, E. ALUminating the Path of Artherosclerosis progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease. Int. J. Mol. Sci. 2018, 19, 1734. [Google Scholar] [CrossRef] [Green Version]
- Sartakhti, J.S.; Manshaei, M.H.; Archetti, M. Game Theory of Tumor—Stroma Interactions in Multiple Myeloma: Effect of Nonlinear benefits. Games 2018, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.D.; Granic, I. A New Approach to the Study of Emotional Development. In Emotions, Development, and Self—Organization Dynamic Systems Approaches to Emotional Development; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Bourceanu, G.; Grosu, I.; Beldiman, C. Evolutie si Autoorganizare in Sisteme Departe de Echilibru; Editura Tehnica: Bucuresti, Romania, 1989. [Google Scholar]
- Grossu, I.V.; Besliu, C.; Felea, D.; Jipa, A. High precision framework for chaos many-body engine. Comput. Phys. Commun. 2014, 151, 1339–1342. [Google Scholar] [CrossRef] [Green Version]
- Camras, A.L.; Witherington, C.D. Dynamical systems approaches to emotional development. Dev. Rev. 2005, 25, 328–350. [Google Scholar] [CrossRef]
- Lewis, M.D.; Douglas, L. A dynamic systems approach to cognition–emotion interactions in development. In What Develops in Emotional Development; Mascolo, M.F., Griffin, S., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 159–188. [Google Scholar]
- Chakraborty, A.; Konar, A. Multiple Emotions and Their Chaotic Dynamics. In Emotional Intelligence. Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; Volume 234. [Google Scholar]
- Scherer, R.K. Emotions are emergent processes: They require a dynamic computational architecture. Philos. Trans. R. Soc. B 2009, 364, 3459–3474. [Google Scholar] [CrossRef] [Green Version]
- Frijda, N.H. The laws of emotion. Am. Psychol. 1988, 43, 349–358. [Google Scholar] [CrossRef]
- Gross, J.J.; Thompson, R.A. Emotion Regulation: Conceptual Foundations. In Handbook of Emotion Regulation; Gross, J.J., Ed.; Guilford Press: New York, NY, USA, 2007; pp. 3–24. [Google Scholar]
- Ciuluvica, C.N.; Fulcheri, M.; Amerio, P. Expressive suppression and negative affect, pathways of emotional dysregulation in psoriasis patients. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Ciuluvica, C.N.; Amerio, P.; Fulcheri, M. Emotion regulation strategies and quality of life in dermatologic patients. Soc. Behav. Sci. 2014, 127, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Kelly, L.; Wierenga, L.K.; Lehto, H.R.; Given, B. Emotion Regulation in Chronic Disease Populations: An Integrative Review. Res. Theory Nurs. Pr. 2017, 31, 247–271. [Google Scholar] [CrossRef]
- Werner, K.; Gross, J.J. Emotion regulation and psychopathology: A conceptual framework. In Emotion Regulation and Psychopathology: A Transdiagnostic Approach to Etiology and Treatment; Kring, A.M., Sloan, D.M., Eds.; Guilford Press: New York, NY, USA, 2010; pp. 13–37. [Google Scholar]
- Carpenter, R.W.; Trull, T.J. Components of emotion dysregulation in borderline personality disorder: A review. Curr. Psychiatry Rep. 2013, 15, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frijda, N.H.; Ridderinkhof, K.R.; Rietveld, E. Impulsive action: Emotional impulses and their control. Front. Psychol. 2014, 5, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratz, L.K.; Roemer, L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the difficulties in emotion regulation scale. J. Psychopathol. Behav. Assess 2004, 26, 41–54. [Google Scholar] [CrossRef]
- Proud, V. The concept of vulnerability and resilience. Procedia Econ. Financ. 2014, 18, 369–376. [Google Scholar]
- Boldt, J. The concept of vulnerability in medical ethics and philosophy. Philos. EthicsHumanit. Med. 2019, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Ciuluvica, C.; Grossu, I.V.; Amerio, P. Application of Chaos Theory in the assessment of emotional vulnerability and emotion dysregulation in adults. Brain Sci. 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciuluvica, C.; Grossu, I.V.; Amerio, P. Application of Chaos Theory in the assessment of emotional instability and emotion dysregulation in adults. Res. Gate 2019. [Google Scholar] [CrossRef]
- Ciuluvica, C.; Grossu, I.V.; Fulcheri, M. Chaos analysis of emotional patterns in patients with chronical diseases: Implications in the disease management. Psychother. Psychosom. 2019, 88 (Suppl. S1), 1–152. [Google Scholar] [CrossRef] [Green Version]
- Ciuluvica, C.; Grossu, I.V.; Amerio, P. Chaos theory analysis of emotional patterns in psoriasis patients. Preprint. Res. Gate 2020. [Google Scholar] [CrossRef]
- Prigogine, I.; Nicolis, G. Self-Organisation in Nonequilibrium Systems: Towards A Dynamics of Complexity. In Bifurcation Analysis; Hazewinkel, M., Jurkovich, R., Paelinck, J.H.P., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 3–12. [Google Scholar]
- Wang, L.F.; Wu, H.; Liu, D.Y.; Boutat, D.; Chen, Y.M. Lur’e Postnikov, Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument. Neurocomputing 2018, 302, 23–32. [Google Scholar] [CrossRef]
- van Vreeswijk, C.; Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 1996, 274, 1724–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, S. Chaotic intinerancy in the oscillator neural network without Lyapunov functions. Chaos Interdiscip. J. Nonlinear Sci. 2004, 14, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M. Numerical calculation of Lyapunov exponents. Math. J. 1996, 6, 78–84. [Google Scholar]
- Grossu, I.V.; Besliu, C.; Jipa, A.; Bordeianu, C.C.; Felea, D.; Stan, E.; Esanu, T. Code C# for chaos analysis of relativistic many-body systems. Comput. Phys. Commun. 2010, 181, 1464–1470. [Google Scholar]
- Giromini, L.; Velotti, P.; de Campora, G.; Bonalume, L.; Cesare Zavattini, G. Cultural adaptation of the difficulties in emotion regulation scale: Reliability and validity of an Italian version. J. Clin. Psychol. 2012, 68, 989–1007. [Google Scholar] [CrossRef] [Green Version]
- Gratz, K.L.; Roemer, L. The relationship between emotion dysregulation and deliberate self-harm among female undergraduate students at an urban commuter university. Cogn. Behav. Ther. 2008, 37, 14–25. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Terracciano, A.; McCrae, R.R.; Costa, T.P., Jr. Factorial and Construct validity of the italian Positive and Negative Affect Schedule (PANAS). Eur. J. Psychol. Assess 2003, 19, 131–141. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H. Bonferroni t-Test. In Statistical Analysis of Clinical Data on a Pocket Calculator; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Sloan, D.M.; Kring, A.M. Measuring changes in emotion during psychotherapy: Conceptual and methodological issues. Clin. Psychol. Sci. Pract. 2007, 14, 302–322. [Google Scholar] [CrossRef]
- Sloman, A.S. The empirical case for two systems of reasoning. Psychol. Bull. 1996, 119, 3–22. [Google Scholar] [CrossRef]
Groups | n | Age (Years) | Age (Years) | Age (Years) | Gender | Working Status | Civil Status | Education (Years) |
---|---|---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Female n (%) | Working n (%) | Married n (%) | Mean ± SE | ||
Chronic disease | 137 | 19 | 77 | 53.30 ± 13.797 | 95 (68.5) | 91 (64.24) | 101 (76.21) | 11.43 ± 3.92 |
Healthy persons | 146 | 22 | 77 | 51.06 ± 10.304 | 92 (65.6) | 101 (76.14) | 106 (82.34) | 10.93 ± 2.92 |
Demographic Characteristics | Breast Cancer | Blood Cancer | Hypertension |
---|---|---|---|
n = 50 | n = 46 | n = 41 | |
Age (Years) Mean ± SD | 54.02 ± 10.327 | 53.86 ± 13.490 | 50.25 ± 18.036 |
Gender Female (%) | 50 (100%) | 30 (62%) | 26 (62%) |
Civil status Married n (%) | 37 (73%) | 38 (82%) | 29 (71%) |
Education Years (Mean) | 10.02 | 11.87 | 10.95 |
Illness Time Years (Mean) | 3.5 | 1.86 | 6.56 |
Illness (Characteristics) | 99% Surgical breast intervention | 62% Lymphoma 27% Leukemia 1% Myeloma | 100% High blood pressure |
Medication | 28% No tumoral medication 21% Chemotherapy 50% Hormonal 5% Immunotherapy (concomitant) | 100% Chemotherapy+ 44% autologous bone marrow transplant (concomitant) | 100% Antihypertensive medication |
Variables | Min | Max | Mean | SD | Skewness | Std. Error | Kurtosis | Std. Error |
---|---|---|---|---|---|---|---|---|
ΔED | 2.236 | 15.524 | 5.172 | 1.985 | 1.557 | 0.229 | 5.450 | 0.455 |
Δstrategies | 0.000 | 14.142 | 2.440 | 1.678 | 2.210 | 0.229 | 12.428 | 0.455 |
Δawareness | 0.000 | 5.656 | 1.542 | 1.128 | 0.743 | 0.229 | 0.858 | 0.455 |
Δimpulse | 0.000 | 5.000 | 2.084 | 1.204 | 0.273 | 0.229 | −0.606 | 0.455 |
Δgoals | 0.000 | 5.000 | 1.716 | 1.314 | 0.558 | 0.229 | −0.501 | 0.455 |
Δclarity | 0.000 | 5.656 | 2.433 | 1.386 | 0.405 | 0.229 | −0.492 | 0.455 |
ED | 43 | 121 | 81.25 | 16.718 | 0.179 | 0.229 | −0.126 | 0.455 |
NA | 17 | 94 | 40.66 | 14.035 | 0.686 | 0.229 | 1.044 | 0.455 |
PAT | 13 | 44 | 30.37 | 6.066 | −0.095 | 0.229 | −0.247 | 0.455 |
NAT | 10 | 47 | 19.71 | 6.860 | 1.172 | 0.229 | 1.961 | 0.455 |
PAS | 13 | 39 | 27.56 | 5.646 | −0.253 | 0.229 | −0.218 | 0.455 |
NAS | 10 | 47 | 21.53 | 8.724 | 0.526 | 0.229 | 0.456 | 0.455 |
Variables | Min | Max | Mean | SD | Skewness | Std. Error | Kurtosis | Std. Error |
---|---|---|---|---|---|---|---|---|
ΔED | 1.414 | 9.055 | 4.544 | 1.572 | 0.386 | 0.217 | −0.913 | 0.430 |
Δstrategies | 0.000 | 5.744 | 1.941 | 1.361 | 0.732 | 0.217 | −0.051 | 0.430 |
Δawareness | 0.000 | 4.472 | 1.436 | 1.136 | 0.556 | 0.217 | −0.254 | 0.430 |
Δimpulse | 0.000 | 5.656 | 1.967 | 1.244 | 0.596 | 0.217 | 0.189 | 0.430 |
Δgoals | 0.000 | 4.472 | 1.656 | 1.257 | 0.594 | 0.217 | −0.424 | 0.430 |
Δclarity | 0.000 | 5.656 | 1.696 | 1.251 | 0.768 | 0.217 | 0.446 | 0.430 |
ED | 36 | 121 | 67.22 | 17.674 | 0.852 | 0.117 | 0.513 | 0.430 |
NA | 20 | 67 | 32.86 | 11.140 | 1.050 | 0.217 | 0.592 | 0.430 |
PAT | 11 | 50 | 31.62 | 7.392 | −0.300 | 0.217 | 0.590 | 0.430 |
NAT | 10 | 36 | 17.65 | 6.577 | 0.986 | 0.217 | 0.446 | 0.430 |
PAS | 11 | 50 | 29.34 | 7.696 | −0.077 | 0.217 | −0.158 | 0.430 |
NAS | 10 | 34 | 15.21 | 5.660 | 1.277 | 0.217 | 1.083 | 0.430 |
Variables | Min | Max | Mean | SD | Skewness | Std. Error | Kurtosis | Std. Error |
---|---|---|---|---|---|---|---|---|
ΔED | 1.414 | 15.524 | 4.839 | 1.802 | 1.219 | 0.158 | 4.359 | 0.316 |
Δstrategies | 0.000 | 14.142 | 2.176 | 1.535 | 2.310 | 0.158 | 14.541 | 0.316 |
Δawareness | 0.000 | 5.656 | 1.486 | 1.131 | 0.636 | 0.158 | 0.243 | 0.316 |
Δimpulse | 0.000 | 5.656 | 2.022 | 1.224 | 0.443 | 0.158 | −0.211 | 0.316 |
Δgoals | 0.000 | 5.000 | 1.684 | 1.282 | 0.575 | 0.158 | −0.472 | 0.316 |
Δclarity | 0.000 | 5.656 | 2.043 | 1.364 | 0.587 | 0.158 | −0.165 | 0.316 |
ED | 36 | 121 | 73.82 | 18.571 | 0.397 | 0.158 | −0.329 | 0.316 |
NA | 17 | 94 | 36.53 | 13.150 | 0.911 | 0.158 | 0.999 | 0.316 |
PAT | 11 | 50 | 31.03 | 6.815 | −0.179 | 0.158 | 0.378 | 0.316 |
NAT | 10 | 47 | 18.62 | 6.777 | 1.055 | 0.158 | 1.219 | 0.316 |
PAS | 11 | 50 | 28.52 | 6.866 | −0.010 | 0.158 | 0.318 | 0.316 |
NAS | 10 | 47 | 18.14 | 7.886 | 1.010 | 0.158 | 0.392 | 0.316 |
Variables | Chronic Diseases | Healthy | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p | t | Cohen’s d | |
Δstrategies | 2.440 | 1.678 | 1.941 | 1.361 | 0.013 | 2.516 | 0.369 |
Δawareness | 1.542 | 1.128 | 1.436 | 1.136 | 0.474 | 0.717 | 0.093 |
Δimpulse | 2.084 | 1.204 | 1.967 | 1.244 | 0.464 | 0.734 | 0.096 |
Δgoals | 1.716 | 1.314 | 1.656 | 1.257 | 0.722 | 0.356 | 0.046 |
Δclarity | 2.433 | 1.386 | 1.696 | 1.251 | 0.000 | 4.293 | 0.589 |
ΔED | 5.172 | 1.985 | 4.544 | 1.572 | 0.007 | 2.706 | 0.399 |
Variables | Mean Square | F | Sig. | Partial Eta Square | Observed Power * |
---|---|---|---|---|---|
Δstrategies | 14.606 | 6.332 | 0.013 | 0.047 | 0.707 |
Δawareness | 0.660 | 0.514 | 0.474 | 0.004 | 0.110 |
Δimpulse | 0.806 | 0.537 | 0.464 | 0.004 | 0.113 |
Δgoals | 0.210 | 0.127 | 0.722 | 0.003 | 0.065 |
Δclarity | 31.942 | 18.432 | 0.000 | 0.098 | 0.990 |
ΔED | 23.157 | 7.320 | 0.007 | 0.067 | 0.769 |
Variables | Breast Cancer | Blood Cancer | Hypertension | |||||
---|---|---|---|---|---|---|---|---|
Mean | Mean | Mean | Mean Square | F | Sig. | Partial Eta Square | Observed Power * | |
Δstrategies | 3.080 | 1.943 | 2.174 | 14.300 | 5.487 | 0.005 | 0.122 | 0.841 |
Δawareness | 1.707 | 1.501 | 1.371 | 1.071 | 0.839 | 0.435 | 0.035 | 0.191 |
Δimpulse | 2.227 | 2.322 | 1.622 | 4.897 | 3.532 | 0.033 | 0.081 | 0.647 |
Δgoals | 2.012 | 1.670 | 1.380 | 3.681 | 2.176 | 0.118 | 0.059 | 0.437 |
Δclarity | 2.707 | 2.499 | 1.999 | 4.672 | 2.497 | 0.087 | 0.044 | 0.492 |
ΔED | 5.862 | 4.916 | 4.560 | 17.229 | 4.660 | 0.011 | 0.119 | 0.774 |
Variables | Breast Cancer | Healthy | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p | t | Cohen’s d | |
Δstrategies | 3.080 | 2.211 | 1.668 | 1.051 | 0.000 | 3.808 | 0.771 |
Δawareness | 1.707 | 1.098 | 1.555 | 1.143 | 0.025 | 2.282 | 0.212 |
Δimpulse | 2.227 | 1.205 | 1.757 | 1.171 | 0.070 | 1.833 | 0.436 |
Δgoals | 2.012 | 1.315 | 1.424 | 1.138 | 0.029 | 2.219 | 0.344 |
Δclarity | 2.707 | 1.354 | 1.365 | 0.835 | 0.000 | 5.559 | 1.048 |
ΔED | 5.862 | 2.311 | 3.871 | 1.341 | 0.000 | 4.913 | 0.915 |
Variables | Blood Cancer | Healthy | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p | t | Cohen’s d | |
Δstrategies | 1.943 | 0.961 | 1.785 | 1.255 | 0.524 | −0.641 | 0.143 |
Δawareness | 1.501 | 1.185 | 1.639 | 1.178 | 0.602 | 0.524 | 0.116 |
Δimpulse | 2.322 | 1.229 | 1.909 | 1.316 | −1.457 | 0.149 | 0.324 |
Δgoals | 1.670 | 1.287 | 1.810 | 1.362 | 0.638 | 0.472 | 0.105 |
Δclarity | 2.499 | 1.361 | 1.519 | 1.213 | 0.001 | −3.423 | 0.760 |
ΔED | 4.916 | 1.882 | 4.530 | 1.577 | 0.318 | −1.006 | 0.222 |
Variables | Hypertension | Healthy | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | p | t | Cohen’s d | |
Δstrategies | 2.174 | 1.239 | 2.406 | 1.596 | 0.482 | −0.707 | 0.162 |
Δawareness | 1.371 | 1.104 | 1.520 | 1.075 | 0.559 | −0.587 | 0.136 |
Δimpulse | 1.622 | 1.074 | 2.229 | 1.284 | 0.029 | −2.225 | 0.512 |
Δgoals | 1.380 | 1.295 | 1.820 | 1.295 | 0.150 | −1.456 | 0.339 |
Δclarity | 1.999 | 1.392 | 2.125 | 1.493 | 0.707 | −0.377 | 0.087 |
ΔED | 4.560 | 1.302 | 5.288 | 1.425 | 0.024 | −2.300 | 0.533 |
Variables | ED | NA | ||
---|---|---|---|---|
r | p | r | p | |
ΔED | 0.379 ** | 0.000 | 0.255 ** | 0.004 |
Δstrategies | 0.495 ** | 0.000 | 0.287 ** | 0.001 |
Δawareness | 0.048 | 0.594 | 0.202 | 0.024 |
Δimpulse | 0.216 | 0.016 | 0.093 | 0.301 |
Δgoals | 0.093 | 0.304 | 0.011 | 0.903 |
Δclarity | 0.208 | 0.020 | 0.102 | 0.258 |
Variables | ED | NA | PAT | NAT | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
ΔED | −0.176 | 0.264 | −0.282 | 0.070 | 0.429 ** | 0.005 | −0.265 | 0.090 |
Δstrategies | −0.077 | 0.626 | −0.147 | 0.352 | 0.220 | 0.162 | −0.115 | 0.469 |
Δawareness | −0.134 | 0.396 | −0.168 | 0.288 | 0.075 | 0.636 | −0.172 | 0.277 |
Δimpulse | −0.100 | 0.530 | −0.219 | 0.164 | 0.331 | 0.032 | −0.256 | 0.102 |
Δgoals | −0.001 | 0.897 | 0.153 | 0.334 | 0.113 | 0.476 | −0.169 | 0.285 |
Δclarity | −0.253 | 0.106 | −0.440 ** | 0.004 | 0.481 ** | 0.001 | −0.454 ** | 0.003 |
Variables | ED | NA | ||
---|---|---|---|---|
r | p | r | p | |
ΔED | 0.426 ** | 0.008 | –0.516 ** | 0.001 |
Δstrategies | –0.225 | 0.181 | –0.212 | 0.207 |
Δawareness | –0.190 | 0.261 | –0.076 | 0.654 |
Δimpulse | –0.168 | 0.321 | –0.454 ** | 0.005 |
Δgoals | –0.351 | 0.033 | –0.436 ** | 0.007 |
Δclarity | –0.393 | 0.016 | –0.435 ** | 0.007 |
Group | Model | R2 | F | p | Β (ΔED) |
---|---|---|---|---|---|
Blood cancer | ΔED, NAT, NAS | 0.241 | 3.137 | 0.016 * | –0.201 |
Hypertension | ΔED, NAT, NAS | 0.462 | 8.019 | 0.001 ** | 0.095 |
Group | R2 | B | SEB | p |
---|---|---|---|---|
Blood cancer | 0.292 | –3.403 | 1.346 | 0.016 * |
Breast cancer | 0.171 | 5.93 | 2.531 | 0.003 * |
Hypertension | 0.112 | 6.582 | 2.250 | 0.006 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciuluvica, C.; Amerio, P.; Grossu, I.V. Emotional Dysregulation Mechanisms in Psychosomatic Chronic Diseases Revealed by the Instability Coefficient. Brain Sci. 2020, 10, 673. https://doi.org/10.3390/brainsci10100673
Ciuluvica C, Amerio P, Grossu IV. Emotional Dysregulation Mechanisms in Psychosomatic Chronic Diseases Revealed by the Instability Coefficient. Brain Sciences. 2020; 10(10):673. https://doi.org/10.3390/brainsci10100673
Chicago/Turabian StyleCiuluvica (Neagu), Cristina, Paolo Amerio, and Ioan Valeriu Grossu. 2020. "Emotional Dysregulation Mechanisms in Psychosomatic Chronic Diseases Revealed by the Instability Coefficient" Brain Sciences 10, no. 10: 673. https://doi.org/10.3390/brainsci10100673
APA StyleCiuluvica, C., Amerio, P., & Grossu, I. V. (2020). Emotional Dysregulation Mechanisms in Psychosomatic Chronic Diseases Revealed by the Instability Coefficient. Brain Sciences, 10(10), 673. https://doi.org/10.3390/brainsci10100673