Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification
Abstract
:Featured Application
Abstract
1. Introduction
2. Background
2.1. Local Binary Pattern
2.2. GP-Descriptor
3. The Proposed Method
3.1. General Procedure of Algorithm
3.2. Artificial Bee Colony Programming
3.3. ABCP-Descriptor Program Representation
3.4. Fitness Function
- Step 1. Instances are converted to feature vectors of the previously defined window size (for example 5*5). (Figure 8)
- Step 2. Leaf nodes are fed the root code node and the binary status of the branches is checked by checking the negativity of the branches.
- Step 3. By converting the binary code to the decimal, the corresponding value of the number is increased by 1 in the histogram.
- Step 4. Using histograms of instances.
- Step 5. The ABCP algorithm (Figure (6)) is operated according to the fitness values.
4. Experimental Design
4.1. Datasets
4.2. Parameters
5. Performance Analysis
5.1. Overall Results
5.2. Model Analysis Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, L.; Zhao, L.; Long, Y.; Kuang, G.; Fieguth, P. Extended Local Binary Patterns for Texture Classification. Image Vis. Comput. 2012, 30, 86–99. [Google Scholar] [CrossRef]
- Biermann, A.W. Automatic Programming: A Tutorial on Formal Methodologies. J. Symb. Comput. 1985, 1, 119–142. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 4, pp. 87–112. [Google Scholar]
- Karaboga, D.; Ozturk, C.; Karaboga, N.; Gorkemli, B. Artificial Bee Colony Programming for Symbolic Regression. Inf. Sci. 2012, 209, 1–15. [Google Scholar] [CrossRef]
- Tackett, W.A. Genetic Programming for Feature Discovery and Image Discrimination. In Proceedings of the 5th International Conference on Genetic Algorithms, Urbana, IL, USA, 17–21 July 1993; pp. 303–311. [Google Scholar]
- Shao, L.; Liu, L.; Li, X. Feature Learning for Image Classification via Multiobjective Genetic Programming. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1359–1371. [Google Scholar] [CrossRef]
- Lensen, A.; Sahaf, H.A.; Zhang, M.; Xue, B. A Hybrid Genetic Programming Approach to Feature Detection and Image Classification. In Proceedings of the International Conference on Image and Vision Computing, New Zealand (IVCNZ), Auckland, New Zealand, 23–24 November 2015. [Google Scholar]
- Iqbal, M.; Xue, B.; Al-Sahaf, H.; Zhang, M. Cross-Domain Reuse of Extracted Knowledge in Genetic Programming for Image Classification. IEEE Trans. Evol. Comput. 2017, 21. [Google Scholar] [CrossRef]
- Lensen, A.; Al-Sahaf, H.; Zhang, M.; Xue, B. Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in Image Data. In Proceedings of the European Conference on Genetic Programming EuroGP Genetic Programming, Porto, Portugal, 30 March–1 April 2016; pp. 51–67. [Google Scholar]
- Al-Sahaf, H.; Song, A.; Neshatian, K.; Zhang, M. Two-Tier Genetic Programming: Towards Raw Pixel-Based Image Classification. Expert Syst. Appl. 2012, 39, 12291–12301. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the Performance of Artificial Bee Colony (ABC) Algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Hancer, E.; Ozturk, C.; Karaboga, D. Artificial Bee Colony Based Image Clustering Method. In Proceedings of the WCCI IEEE World Congress on Computational İntelligence, Brisbane, Australia, 10–15 June 2012; pp. 10–15. [Google Scholar]
- Wang, S. Artificial Bee Colony used for Rigid Image Registration. Int. J. Res. Rev. Soft Intell. Comput. (Ijrrsic) 2011, 1, 1936–1953. [Google Scholar]
- Karaboga, D.; Ozturk, C. Neural Networks Training by Artificial Bee Colony Algorithm on Pattern Classification. Neural Netw. World 2009, 19, 279–292. [Google Scholar]
- Maa, M.; Lianga, J.; Guoa, M.; Fana, Y.; Yinb, Y. SAR Image Segmentation Based on Artificial Bee Colony Algorithm. Appl. Soft Comput. 2011, 11, 5205–5214. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, W.; Lv, S.; Feng, J. Multi-level threshold Image Segmentation Using Artificial Bee Colony Algorithm. In Proceedings of the Fifth Conference on Measuring Technology and Mechatronics Automation, Hong Kong, China, 16–17 January 2013. [Google Scholar]
- Dakshitha, B.A.; Deekshitha, V.; Manikantan, K. A Novel Bi-Level Artificial Bee Colony Algorithm and Its Application to Image Segmentation. In Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 10–12 December 2015. [Google Scholar]
- Sag, T.; Cunkas, M. Color Image Segmentation Based on Multiobjective Artificial Bee Colony Optimization. Appl. Soft Comput. 2015, 34, 389–401. [Google Scholar] [CrossRef]
- Hancer, E.; Ozturk, C.; Karaboga, D. Extraction of Brain Tumors from MRI Images with Artificial Bee Colony Based Segmentation Methodology. In Proceedings of the 8th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2013. [Google Scholar]
- Agrawal, V.; Chandra, S. Feature Selection Using Artificial Bee Colony Algorithm for Medical Image Classification. In Proceedings of the Eighth International Conference on Contemporary Computing (IC3), Noida, India, 20–22 August 2015. [Google Scholar]
- Al-Sahaf, H.; Zhang, M.; Johnston, M. Binary Image Classification Using Genetic Programming Based on Local Binary Patterns. In Proceedings of the 28th International Conference on Image and Vision Computing, Wellington, New Zealand, 27–29 November 2013. [Google Scholar]
- Ojala, T.; Pietikaè, M.; Maèenpaè, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–981. [Google Scholar] [CrossRef]
- Sinha, A.; Banerji, S.; Liu, C. Scene Image Classification Using a Wigner-Based Local Binary Patterns Descriptor. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014. [Google Scholar]
- Pan, Z.; Li, Z.; Fan, H.; Wu, X. Feature Based Local Binary Pattern for Rotation Invariant Texture Classification. Expert Syst. Appl. 2017, 88, 238–248. [Google Scholar] [CrossRef]
- Bunna, N. Multi-Class Object Classification and Detection Using Neural Networks. BSc Honours Research, Project/Thesis, School of Mathematical and Computing Sciences, Victoria University of Wellington, Wellington, New Zealand, October 2003. [Google Scholar]
- Zhang, M.; Ciesielski, V. Using back propagation algorithm and genetic algorithm to train and refine neural networks for object detection. In Lecture Notes in Computer Science, Proceedings of the 10th International Conference on Database and Expert Systems Applications (DEXA’99), Florence, Italy, 30 August–3 September 1999; Bench-Capon, T., Soda, G., Tjoa, A.M., Eds.; Springer: Berlin, Germany, 1999; LNCS Volume 1677, pp. 626–635. [Google Scholar]
- Zhang, M.; Bhowan, U.; Ny, B. Genetic programming for object detection: A two-phase approach with an improved fitness function. Electron. Lett. Comput. Vis. Image Anal. 2007, 6, 27–43. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. Performance Evaluation of Texture Measures with Classification Based on Kullback Discrimination of Distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 582–585. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns. In Proceedings of the European Conference on Computer Vision, Dublin, Ireland, 26 June–1 July 2000; pp. 404–420. [Google Scholar]
- Al-Sahaf, H.; Zhang, M.; Johnston, M.; Verma, B. Image Descriptor: A Genetic Programming Approach to Multiclass Texture Classification. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 2460–2467. [Google Scholar]
- Gorkemli, B.; Ozturk, C.; Karaboga, D. Yapay Arı Kolonisi Programlama ile Sistem Modelleme. In Proceedings of the Otomatik Kontrol Türk Milli Komitesi 2012 Ulusal Toplantısı (TOK), Niğde, Turkey, 11–13 October 2012; pp. 857–860. [Google Scholar]
- Arslan, S.; Ozturk, C. Multi Hive Artificial Bee Colony Programming for high dimensional symbolic regression with feature selection. Appl. Soft Comput. J. 2019, 78, 515–527. [Google Scholar] [CrossRef]
- Brodatz, P. Textures: A Photographic Album for Artists and Designers; Dover: New York, NY, USA, 1999. [Google Scholar]
- Kylberg, G. The Kylberg Texture Dataset V. 1.0; Technical Report 35; Centre Image Anal., Swedish University of Agricultural Sciences: Uppsala, Sweden, 2011. [Google Scholar]
Dataset | Nclasses | Ninstances | Ntrain_in | Ntest_in | Instance Dimensions |
---|---|---|---|---|---|
Broadtz | 20 | 100 | 50 | 50 | 64*64 |
Kylberg | 20 | 160 | 80 | 80 | 115*115 |
Parameters | Artificial Bee Colony Programming-Descriptor (ABCP-Descriptor) |
---|---|
Colony Size | 100 |
Iteration Number | 30 |
Maximum Tree Depth | 6 |
Number of Branches in the Code node | 7 |
Initial Method | Ramped Half and Half |
Functions | + (plus), −(minus), ∗ (times), / (rdivide) |
Limit | 50 |
Descriptor | Dataset | Criteria | Best Test Fitness | Test Classification Success (%) |
---|---|---|---|---|
ABCP-descriptor | Broadtz | Mean | 0.03 | 94.55 |
Maximum | 0.03 | 97.3 | ||
Minimum | 0.01 | 93.3 | ||
Standard deviation | 0.01 | 1.17 | ||
Kylberg | Mean | 0.05 | 89.71 | |
Maximum | 0.14 | 95.19 | ||
Minimum | 0.02 | 71.63 | ||
Standard deviation | 0.03 | 6.38 | ||
LBP8.1 | Broadtz | Mean | 90.63 | |
Maximum | 93.8 | |||
Minimum | 87.3 | |||
Standard deviation | 1.92 | |||
Kylberg | Mean | 90 | ||
Maximum | 93.13 | |||
Minimum | 87.13 | |||
Standard deviation | 1.9 | |||
GP-descriptor [30] | Broadtz | Mean | 94.40 | |
Standard deviation | 0.81 | |||
Kylberg | Mean | 93.21 | ||
Standard deviation | 1.14 |
Node | Depth | Complexity | |
---|---|---|---|
Tree 1 | 7 | 3 | 17 |
Tree 2 | 5 | 3 | 11 |
Tree 3 | 7 | 3 | 17 |
Tree 4 | 19 | 5 | 69 |
Tree 5 | 21 | 6 | 83 |
Tree 6 | 3 | 2 | 5 |
Tree 7 | 19 | 6 | 87 |
Equation | |
---|---|
Tree 1 | |
Tree 2 | |
Tree 3 | |
Tree 4 | |
Tree 5 | |
Tree 6 | |
Tree 7 |
Node | Depth | Complexity | |
---|---|---|---|
Tree 1 | 5 | 3 | 11 |
Tree 2 | 7 | 3 | 17 |
Tree 3 | 3 | 2 | 5 |
Tree 4 | 13 | 6 | 51 |
Tree 5 | 9 | 4 | 27 |
Tree 6 | 33 | 6 | 145 |
Tree 7 | 11 | 4 | 33 |
Equation | |
---|---|
Tree 1 | |
Tree 2 | |
Tree 3 | |
Tree 4 | |
Tree 5 | |
Tree 6 | |
Tree 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, S.; Ozturk, C. Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification. Appl. Sci. 2019, 9, 1930. https://doi.org/10.3390/app9091930
Arslan S, Ozturk C. Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification. Applied Sciences. 2019; 9(9):1930. https://doi.org/10.3390/app9091930
Chicago/Turabian StyleArslan, Sibel, and Celal Ozturk. 2019. "Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification" Applied Sciences 9, no. 9: 1930. https://doi.org/10.3390/app9091930
APA StyleArslan, S., & Ozturk, C. (2019). Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification. Applied Sciences, 9(9), 1930. https://doi.org/10.3390/app9091930