Design Optimization of the Aeronautical Sheet Hydroforming Process Using the Taguchi Method
Abstract
:1. Introduction
2. Taguchi’s Robust Design Method
3. Methodology
3.1. Case Study
3.2. Methodological Process
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramezani, M.; Ripin, Z.M. Rubber-Pad Forming Processes: Technology and Applications; Woodhead Publishing Limited, Ed.; Elsevier: Oxford, UK, 2012; ISBN 9780857090942. [Google Scholar]
- Gelin, J.-C. Advances and Progresses in Sheet and Tube Hydroforming Processes. In Advances in Material Forming; Springer: Paris, France, 2007; pp. 193–205. [Google Scholar]
- Mahabunphachai, S.; Koç, M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int. J. Mach. Tools Manuf. 2008, 48, 1014–1029. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, L.; Yi, P.; Lai, X. An investigation on the formability of sheet metals in the micro/meso scale hydroforming process. Int. J. Mech. Sci. 2019, 150, 265–276. [Google Scholar] [CrossRef]
- Capece Minutolo, F.; Durante, M.; Formisano, A.; Langella, A. Optimization of a Hydroforming Process to Realize Asymmetrical Aeronautical Components by FE Analysis. In Intelligent Production Machines and Systems, 2nd I*PROMS Virtual International Conference 3–14 July 2006; Elsevier: Amsterdam, The Netherlands, 2006; pp. 241–246. [Google Scholar] [CrossRef]
- Reveles Arredondo, J.F.; Ledesma Orozco, E.R.; Aguilera Gomez, E.; Saldaña Robles, A.; Castillo Hinojosa, I. Análisis teórico-numérico-experimental de un proceso de hidroconformado usando diámetro equivalente. DYNA Ing. Ind. 2015, 90, 67–77. [Google Scholar] [CrossRef]
- Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Quality Resources: New York, NY, USA, 1986. [Google Scholar]
- Taguchi, G. System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs; Quality Resources: New York, NY, USA, 1987. [Google Scholar]
- Venkateshwar Reddy, P.; Veerabhadra Reddy, B.; Srinivasa Rao, P. A Numerical Study on Tube Hydroforming Process to optimize the Process Parameters by Taguchi Method. Mater. Today Proc. 2018, 5, 25376–25381. [Google Scholar] [CrossRef]
- Tilak, K.B.G.; Nagaraju, D. Investigation on Aluminium Alloy 1100 Using Taguchi Robust Design Methodology on CNC Milling. Mater. Today Proc. 2018, 5, 12719–12724. [Google Scholar] [CrossRef]
- Wang, M.; Li, D.S.; Li, X.Q.; Yang, W.J. Probabilistic design of uncertainty for aluminum alloy sheet in rubber fluid forming process. Rev. Adv. Mater. Sci. 2013, 33, 442–451. [Google Scholar]
- Rao, R.S.; Kumar, C.G.; Prakasham, R.S.; Hobbs, P.J. The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnol. J. 2008, 3, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Box, G.; Bisgaard, S.; Fung, C. An explanation and critique of Taguchi’s contributions to quality engineering. Qual. Reliab. Eng. Int. 1988, 4, 123–131. [Google Scholar] [CrossRef]
- Swan, D.A.; Savage, G.J. Continuous Taguchi—A model-based approach to Taguchi’s ‘quality by design’with arbitrary distributions. Qual. Reliab. Eng. Int. 1998, 14, 29–41. [Google Scholar] [CrossRef]
- Zoras, S. A review of building earth-contact heat transfer. Adv. Build. Energy Res. 2009, 3, 289–314. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Chandrasekhara Rao, N.; Krishna Prasad, K.; Murali Krishna, P.; Sreenivas Rao, R.; Sarma, P.N. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: Process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology. Biotechnol. Bioeng. 2005, 90, 732–745. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, G.; Wu, Y. Introduction to Off-Line Quality Control; Central Japan Quality Control Association: Nagoya, Japan, 1979. [Google Scholar]
- Antony Mike Kaye, J.; Frangou, A. A strategic methodology to the use of advanced statistical quality improvement techniques. TQM Mag. 1998, 10, 169–176. [Google Scholar] [CrossRef]
- Aggarwal, A.; Singh, H.; Kumar, P.; Singh, M. Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—A comparative analysis. J. Mater. Process. Technol. 2008, 200, 373–384. [Google Scholar] [CrossRef]
- Fung, C.P.; Kang, P.C. Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. J. Mater. Process. Technol. 2005, 170, 602–610. [Google Scholar] [CrossRef]
- Reddy, P.B.S.; Nishina, K.; Subash Babu, A. Unification of robust design and goal programming for multiresponse optimization—A case study. Qual. Reliab. Eng. Int. 1997, 13, 371–383. [Google Scholar] [CrossRef]
- Mitra, A.C.; Jawarkar, M.; Soni, T.; Kiranchand, G.R. Implementation of Taguchi Method for Robust Suspension Design. Procedia Eng. 2016, 144, 77–84. [Google Scholar] [CrossRef]
- Katoueizadeh, E.; Zebarjad, S.M.; Janghorban, K. Optimization of synthesis conditions of N-doped TiO2 nanoparticles using Taguchi robust design. Mater. Chem. Phys. 2017, 201, 69–77. [Google Scholar] [CrossRef]
- Hong, Y.; Beltran, A.A.; Paglinawan, A.C. A robust design of maximum power point tracking using Taguchi method for stand-alone PV system. Appl. Energy 2018, 211, 50–63. [Google Scholar] [CrossRef]
- Sun, G.; Fang, J.; Tian, X.; Li, G.; Li, Q. Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design. Expert Syst. Appl. 2015, 42, 4482–4492. [Google Scholar] [CrossRef]
- Ebrahimiasl, S.; Zin, W.; Yunus, W.; Kassim, A.; Zainal, Z. Prediction of grain size, thickness and absorbance of nanocrystalline tin oxide thin fi lm by Taguchi robust design. Solid State Sci. 2010, 12, 1323–1327. [Google Scholar] [CrossRef]
- Naik, A.B.; Reddy, A.C. Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA). Therm. Sci. Eng. Prog. 2018, 8, 327–339. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Liu, W.; Ma, Y.; Tang, S.; Liang, C.; Cai, Q. Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method. Opt. Laser Technol. 2019, 111, 470–480. [Google Scholar] [CrossRef]
- Kumar, S.; Agarwal, S.; Srivastava, S. ScienceDirect Analysis of Surface Roughness during Turning Operation by Taguchi Method. Mater. Today Proc. 2018, 5, 28089–28097. [Google Scholar] [CrossRef]
- Derdour, F.Z.; Kezzar, M.; Khochemane, L. Optimization of penetration rate in rotary percussive drilling using two techniques: Taguchi analysis and response surface methodology (RMS). Powder Technol. 2018, 339, 846–853. [Google Scholar] [CrossRef]
Product or Process | Experimental Design | Reference |
---|---|---|
Optimization of the injection-molding process for friction properties of fiber-reinforced polybutylene terephthalate (PBT). | L9 | Fung and Kang [20] |
Optimization of the injection process of polypropylene moldings. | L8 | Reddy, Nishina and Subash Babu [21] |
Reduce the variability in the Ride comfort of a vehicle with respect to sprung mass of vehicle. | L8 | Mitra et al. [22] |
Optimization of the synthesis conditions of N-doped TiO2 nanoparticles. | L9 | Katoueizadeh, Zebarjad and Janghorban [23] |
Optimization of autonomous photovoltaic system. | L9 | Hong, Beltran and Paglinawan [24] |
Maximize the impact resistance of hybrid welded steel and aluminum structures. | L9 | Sun et al. [25] |
Optimization of the SnO2 thin film deposition process design. | L9 | Ebrahimiasl et al. [26] |
Optimization of tensile strength of duplex stainless steel 2205. | L9 | Naik and Reddy [27] |
Optimization of laser powder deposition parameters to get an alloy of AlSi10Mg with maximum density. | L25 | Liu et al. [28] |
Optimization of the machining process for the roughness of the surface of materials. | L9 | Kumar, Agarwal and Srivastava [29] |
Optimization of the penetration rate in rotary percussive drilling of machines. | L18 | Derdour, Kezzar and Khochemane [30] |
Inner Array | Outer Array | |||||||
---|---|---|---|---|---|---|---|---|
No. | Control Factors | Noise Factors | ||||||
P (MPa) | ρsh-rubb | ρsh-blo | n | 0.088 | 0.146 | 0.146 | 0.088 | |
K (MPa) | 636 | 726 | 636 | 726 | ||||
E (GPa) | 61 | 61 | 71 | 71 | ||||
1 | 50 | 0.2 | 0.1 | η11 | η11 | η13 | η14 | |
2 | 50 | 0.5 | 0.2 | η21 | η22 | η23 | η24 | |
3 | 60 | 0.2 | 0.2 | η31 | η32 | η33 | η34 | |
4 | 60 | 0.5 | 0.1 | η41 | η42 | η43 | η44 |
Inner Array | Outer Array | |||||||
---|---|---|---|---|---|---|---|---|
No. | Control Factors | Noise Factors | ||||||
P (MPa) | ρsh-rubb | ρsh-blo | n | 0.088 | 0.146 | 0.146 | 0.088 | |
K (MPa) | 636 | 726 | 636 | 726 | ||||
E (GPa) | 61 | 61 | 71 | 71 | ||||
1 | 50 | 0.2 | 0.1 | 2.14 | 0.78 | 0.75 | 1.18 | |
2 | 50 | 0.5 | 0.2 | 7.25 | 3.39 | 1.56 | 7.11 | |
3 | 60 | 0.2 | 0.2 | 2.21 | 4.43 | 1.90 | 1.50 | |
4 | 60 | 0.5 | 0.1 | 1.83 | 1.57 | 1.81 | 1.80 |
Inner Array | Outer Array | |||||||
---|---|---|---|---|---|---|---|---|
No. | Control Factors | Noise Factors | ||||||
P (MPa) | ρsh-rubb | ρsh-blo | n | 0.088 | 0.146 | 0.146 | 0.088 | |
K (MPa) | 636 | 726 | 636 | 726 | ||||
E (GPa) | 61 | 61 | 71 | 71 | ||||
1 | 50 | 0.2 | 0.1 | 0.90 | 0.83 | 0.86 | 0.84 | |
2 | 50 | 0.5 | 0.2 | 0.86 | 0.88 | 0.87 | 0.84 | |
3 | 60 | 0.2 | 0.2 | 0.87 | 0.86 | 0.88 | 0.88 | |
4 | 60 | 0.5 | 0.1 | 0.88 | 0.90 | 0.90 | 0.90 |
Inner Array | Outer Array | SN | Media | |||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | Control factors | Noise factors | ||||||||
P (MPa) | ρsh-rubb | ρsh-blo | n | 0.088 | 0.146 | 0.146 | 0.088 | |||
K (MPa) | 636 | 726 | 636 | 726 | ||||||
E (GPa) | 61 | 61 | 71 | 71 | ||||||
1 | 50 | 0.2 | 0.1 | 0.48 | 1.30 | 0.89 | 1.16 | −0.07 | 0.96 | |
2 | 50 | 0.5 | 0.2 | 1.24 | 0.73 | 0.78 | 1.50 | −0.91 | 1.06 | |
3 | 60 | 0.2 | 0.2 | 0.79 | 1.02 | 0.67 | 0.66 | 1.94 | 0.79 | |
4 | 60 | 0.5 | 0.1 | 0.67 | 0.47 | 0.47 | 0.57 | 5.18 | 0.54 |
Elastic Recovery d (mm) | Minimum Thickness tmin (mm) | ||||||
---|---|---|---|---|---|---|---|
Combination of Noise Factors 1 | Combination of Noise Factors 2 | Combination of Noise Factors 3 | Combination of Noise Factors 4 | Combination of Noise Factors 1 | Combination of Noise Factors 2 | Combination of Noise Factors 3 | Combination of Noise Factors 4 |
1.83 | 1.57 | 1.81 | 1.80 | 0.88 | 0.90 | 0.90 | 0.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Rubio, A.; Bienvenido-Huertas, D.; Bermúdez-Rodríguez, F.J.; Tornell-Barbosa, M. Design Optimization of the Aeronautical Sheet Hydroforming Process Using the Taguchi Method. Appl. Sci. 2019, 9, 1932. https://doi.org/10.3390/app9091932
Muñoz-Rubio A, Bienvenido-Huertas D, Bermúdez-Rodríguez FJ, Tornell-Barbosa M. Design Optimization of the Aeronautical Sheet Hydroforming Process Using the Taguchi Method. Applied Sciences. 2019; 9(9):1932. https://doi.org/10.3390/app9091932
Chicago/Turabian StyleMuñoz-Rubio, Aurelio, David Bienvenido-Huertas, Francisco Javier Bermúdez-Rodríguez, and Manuel Tornell-Barbosa. 2019. "Design Optimization of the Aeronautical Sheet Hydroforming Process Using the Taguchi Method" Applied Sciences 9, no. 9: 1932. https://doi.org/10.3390/app9091932
APA StyleMuñoz-Rubio, A., Bienvenido-Huertas, D., Bermúdez-Rodríguez, F. J., & Tornell-Barbosa, M. (2019). Design Optimization of the Aeronautical Sheet Hydroforming Process Using the Taguchi Method. Applied Sciences, 9(9), 1932. https://doi.org/10.3390/app9091932