
applied  
sciences

Article

Artificial Bee Colony Programming Descriptor for
Multi-Class Texture Classification

Sibel Arslan * and Celal Ozturk

Department of Computer Engineering Erciyes University, Engineering Faculty Computer Engineering,
Kayseri 38000, Turkey; celal@erciyes.edu.tr
* Correspondence: sibel.arslan2@icisleri.gov.tr; Tel.: +9054-4237-4610

Received: 4 April 2019; Accepted: 8 May 2019; Published: 10 May 2019
����������
�������

Featured Application: Texture classification aims to identify textures using few samples.
Local Binary Pattern (LBP) and GP-descriptor are most used texture classification algorithms.
Artificial Bee Colony Programming-Descriptor (ABCP-Descriptor) evaluates samples to extract
mathematical models. Comparative results show that proposed ABCP-Descriptor is a successful
texture classification method.

Abstract: Texture classification is one of the machine learning methods that attempts to classify textures
by evaluating samples. Extracting related features from the samples is necessary to successfully
classify textures. It is a very difficult task to extract successful models in the texture classification
problem. The Artificial Bee Colony (ABC) algorithm is one of the most popular evolutionary
algorithms inspired by the search behavior of honey bees. Artificial Bee Colony Programming (ABCP)
is a recently introduced high-level automatic programming method for a Symbolic Regression (SR)
problem based on the ABC algorithm. ABCP has applied in several fields to solve different problems
up to date. In this paper, the Artificial Bee Colony Programming Descriptor (ABCP-Descriptor) is
proposed to classify multi-class textures. The models of the descriptor are obtained with windows
sliding on the textures. Each sample in the texture dataset is defined instance. For the classification of
each texture, only two random selected instances are used in the training phase. The performance of
the descriptor is compared standard Local Binary Pattern (LBP) and Genetic Programming-Descriptor
(GP-descriptor) in two commonly used texture datasets. When the results are evaluated, the proposed
method is found to be a useful method in image processing and has good performance compared to
LBP and GP-descriptor.

Keywords: Texture classification; artificial bee colony programming-descriptor; image descriptor;
local binary pattern; genetic programming-descriptor

1. Introduction

The image descriptor provides information about the image by extracting / determining features
such as shape or color. Image descriptors have two different types: dense / sparse. Dense descriptors
are the approaches that extract features from the image in a pixel-by-pixel. One of the most common
dense descriptors is the Local Binary Pattern (LBP). Scale Invariant Feature Transform (SIFT) and
Speeded up Robust Features (SURF) are examples of instances in which sparse descriptors evaluate
each pixel in the image and extract the models [1].

Automatic programming is the process which the machine generates program code
automatically [2]. GP, the most well-known automatic programming method, was developed by
Koza [3]. GP is an extension of the Genetic Algorithm (GA) and the basic steps for the GP algorithm
are similar to the GA steps. ABCP is the recently proposed automatic programming method based on

Appl. Sci. 2019, 9, 1930; doi:10.3390/app9091930 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3626-553X
http://dx.doi.org/10.3390/app9091930
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/9/1930?type=check_update&version=3


Appl. Sci. 2019, 9, 1930 2 of 18

Artificial Bee Colony (ABC) algorithm [4]. In this paper, the ABCP image descriptor was first proposed
and the success of the extracted models in the texture classification problem was evaluated.

In recent years, automatic programming methods have been used more frequently in image
processing problems. Tackett [5] used GP to classify feature vectors derived from images into
categories. A domain adaptive learning method based on Multi-Objective Genetic Programming
(MOGP) was proposed to automatically generate field-adaptive global property descriptors for image
classification in [6]. GP was suggested for feature detection in [7]. The method separated the image
into the sub-regions, extracted the Speeded up Robust Features (SURF) points and achieved successful
classification results using the Support Vector Machine (SVM) classifier. Iqbal et al. proposed an image
classification method using transfer learning and GP [8]. The GP trees are extracted by the fragments
of the transfer learning improved classification performance producing more useful initial population.
In [9], they introduced new GP method that automatically differentiated the regions in the image and
sorted them out by extracting Histograms of Oriented Gradients (HOG). All stages of the method were
optimized with wide search space. Al-Sahaf et al. proposed a Two-Tier GP (Two-Tier GP, Two-Tier
GP-line, and Two-Tier GP-mix) with three different variations [10]. Instead of using them as input
values, they defined special functions that can convert line pixel values into a single numeric value, and
in the other tier, classification was made by using the outputs of special functions. Two Tier GP-mix
was considered the most successful method because of the flexibility of the window range.

Comparative studies of ABC with Particle Swarm Optimization, GA and other evolutionary
computational algorithms have shown that ABC has better performance in terms of achieving local and
global optimum results in engineering problems [11]. ABC is an algorithm that is successfully applied
in image processing, especially in image clustering [12], image registration [13], pattern recognition [14],
image segmentation [15–19], and image classification [20]. ABC algorithm was used in the diagnosis
of computed tomography images in [20]. The images are classified with k Nearest Neighbor (k-NN)
and SVM classifiers by selecting features with ABC. The ABC-SVM hybrid is highly successful. The
ABCP algorithm has been proposed as an ABC-based method that improves functions on symbolic
regression [4]. This is the first paper that observes the performance of the ABCP algorithm in texture
classification and extracts mathematical models.

Nowadays, due to its simplicity of calculation and its robustness against light changes, LBP-based
descriptors have been extensively researched due to its importance in various fields such as image
classification problem, pattern recognition and computer vision [21–25]. [21] was proposed a GP-based
LBP image descriptor using one instance per class. The method was shown to be more successful
against five different methods with / without GP-based. Ojala et al. presented a uniform LBP (uniform
LBP) approach in rotation-sensitive, simple and gray-scale variances [22]. Sinha et al. proposed the
Wigner-based LBP identifier (WLBP, Wigner-Based Local Binary Patterns), which uses the Wigner
distribution together with LBP [23]. In experiments using different classifiers, the method performed
better than conventional LBP. [24] was presented a two-part Feature Based Local Binary Pattern (FB-LBP)
approach. In the first part, traditional LBP is used, while in the other part the mean and variance
of the magnitude vector is used. Liu et al. proposed a novel local texture descriptor, generalizing
the well-known LBP approach. Four LBP-like descriptors, two local intensity-based Central Intensity
LBP (CI-LBP) and Neighbors Intensity LBP (NI-LBP), and two local difference-based descriptors
Radial Difference LBP (RD-LBP) and Angular Difference LBP(AD-LBP), were presented to extract
complementary texture information of local spatial patterns [1]. The descriptors had the same structure
as the standard LBP and not require training and parameter adjustment. In the study conducted in
three different texture, the descriptors showed better performance in gray-scale and rotation-sensitive
pattern classification compared to traditional LBP.

A plethora of neural networks have been presented image processing [25–27]. Zhang et al.
introduced a two-stage approach to the use of pixel based neural networks trained by back propagation
and GA [26]. The network is trained on samples, which cut out of from large pictures. In the first stage,
weights of networks are adjusted GA and in the second stage they tested the method on three object



Appl. Sci. 2019, 9, 1930 3 of 18

detection problems. The results show that the back-propagation algorithm has stronger generalization
ability than GA. In [27] is proposed two phase GP method compared neural network approach [25,26]
on three object detection problems. The experimental results show that GP has better performance
neural network in terms of object detection accuracy.

The paper is organized as follows: Background, which includes subsections of Local Binary
Pattern and GP-descriptor are introduced in Section 2. Section 3 explains in detail general procedure
of algorithm, ABCP, suggesting ABCP-descriptor and fitness function. Section 4 provides detailed
information on the experimental design, including datasets and parameters. The performance analysis,
which includes subsections overall results and discussion of the results from the extracted models are
explained in Section 5. The paper is finalized with Conclusions in Section 6.

2. Background

2.1. Local Binary Pattern

Local Binary Pattern [28] is one of the most common methods in image processing. The LBP
operator assigns binary values as a result of comparing them to each other by scrolling floating
windows and selecting the center pixel value in the middle of these windows as the threshold level.
The generated binary number sequence is called the LBP code, which is used to specify different
properties in the image, such as edges, corners, light or dark areas, line regions. The size of the window
can be changed according to the problems in order to capture different properties. The length of the
LBP code is circularly defined by two parameters, such as the number of sample pixels p and the
radius r of the symmetric circular neighborhood as shown in Figure 1. LBPp,r defines the appropriate
2p different output value from the neighboring pixel set.

Appl. Sci. 2019, 9, x 3 of 19 

In the first stage, weights of networks are adjusted GA and in the second stage they tested the method 
on three object detection problems. The results show that the back-propagation algorithm has 
stronger generalization ability than GA. In [27] is proposed two phase GP method compared neural 
network approach [25,26] on three object detection problems. The experimental results show that GP 
has better performance neural network in terms of object detection accuracy. 

The paper is organized as follows: Background, which includes subsections of Local Binary 
Pattern and GP-descriptor are introduced in Section 2. Section 3 explains in detail general procedure 
of algorithm, ABCP, suggesting ABCP-descriptor and fitness function. Section 4 provides detailed 
information on the experimental design, including datasets and parameters. The performance 
analysis, which includes subsections overall results and discussion of the results from the extracted 
models are explained in Section 5. The paper is finalized with Conclusions in Section 6. 

2. Background 

2.1. Local Binary Pattern 

Local Binary Pattern [28] is one of the most common methods in image processing. The LBP 
operator assigns binary values as a result of comparing them to each other by scrolling floating 
windows and selecting the center pixel value in the middle of these windows as the threshold level. 
The generated binary number sequence is called the LBP code, which is used to specify different 
properties in the image, such as edges, corners, light or dark areas, line regions. The size of the 
window can be changed according to the problems in order to capture different properties. The 
length of the LBP code is circularly defined by two parameters, such as the number of sample pixels 
p and the radius r of the symmetric circular neighborhood as shown in Figure 1. LBPp,r defines the 
appropriate 2p different output value from the neighboring pixel set. 

 
Figure 1. LBP parameter samples. 

The histogram of the image is obtained by Equation (1) using LBP. (xc, yc) is the location of the 
given pixel and ip and ic are the gray level of the center pixel. 

𝐿𝐵𝑃௣,௥(𝑥௖, 𝑦௖) = ෍ 𝑠൫𝑖௣, 𝑖௖൯2௣௣ିଵ
௣ୀ଴ , 𝑠(𝑥) = ൜ 1,   𝑖𝑓 𝑥 ≥ 0 0,   𝑖𝑓 𝑥 < 0  (1) 

The process of extracting the feature vector (histogram) using the sliding windows of the LBP 
operator is shown in Figure 2. The center pixel of the window is set as the threshold value using 
sliding windows. The neighboring pixel values greater than the threshold value assigned to 1 and 
the small values assigned to 0. The obtained values multiplied by the mask and collected. 

 
Figure 2. Example of converting LBP code to decimal. 

(p=4, r=1.0) (p=8, r=1.0) (p=12, r=1.5) (p=16, r=2.0) (p=24, r=3.0) 

Figure 1. LBP parameter samples.

The histogram of the image is obtained by Equation (1) using LBP. (xc, yc) is the location of the
given pixel and ip and ic are the gray level of the center pixel.

LBPp,r(xc, yc) =

p−1∑
p=0

s(ip, ic)2p, s(x) =
{

1, i f x ≥ 0
0, i f x < 0

(1)

The process of extracting the feature vector (histogram) using the sliding windows of the LBP
operator is shown in Figure 2. The center pixel of the window is set as the threshold value using sliding
windows. The neighboring pixel values greater than the threshold value assigned to 1 and the small
values assigned to 0. The obtained values multiplied by the mask and collected.

Appl. Sci. 2019, 9, x 3 of 19 

In the first stage, weights of networks are adjusted GA and in the second stage they tested the method 
on three object detection problems. The results show that the back-propagation algorithm has 
stronger generalization ability than GA. In [27] is proposed two phase GP method compared neural 
network approach [25,26] on three object detection problems. The experimental results show that GP 
has better performance neural network in terms of object detection accuracy. 

The paper is organized as follows: Background, which includes subsections of Local Binary 
Pattern and GP-descriptor are introduced in Section 2. Section 3 explains in detail general procedure 
of algorithm, ABCP, suggesting ABCP-descriptor and fitness function. Section 4 provides detailed 
information on the experimental design, including datasets and parameters. The performance 
analysis, which includes subsections overall results and discussion of the results from the extracted 
models are explained in Section 5. The paper is finalized with Conclusions in Section 6. 

2. Background 

2.1. Local Binary Pattern 

Local Binary Pattern [28] is one of the most common methods in image processing. The LBP 
operator assigns binary values as a result of comparing them to each other by scrolling floating 
windows and selecting the center pixel value in the middle of these windows as the threshold level. 
The generated binary number sequence is called the LBP code, which is used to specify different 
properties in the image, such as edges, corners, light or dark areas, line regions. The size of the 
window can be changed according to the problems in order to capture different properties. The 
length of the LBP code is circularly defined by two parameters, such as the number of sample pixels 
p and the radius r of the symmetric circular neighborhood as shown in Figure 1. LBPp,r defines the 
appropriate 2p different output value from the neighboring pixel set. 

 
Figure 1. LBP parameter samples. 

The histogram of the image is obtained by Equation (1) using LBP. (xc, yc) is the location of the 
given pixel and ip and ic are the gray level of the center pixel. 

𝐿𝐵𝑃௣,௥(𝑥௖, 𝑦௖) = ෍ 𝑠൫𝑖௣, 𝑖௖൯2௣௣ିଵ
௣ୀ଴ , 𝑠(𝑥) = ൜ 1,   𝑖𝑓 𝑥 ≥ 0 0,   𝑖𝑓 𝑥 < 0  (1) 

The process of extracting the feature vector (histogram) using the sliding windows of the LBP 
operator is shown in Figure 2. The center pixel of the window is set as the threshold value using 
sliding windows. The neighboring pixel values greater than the threshold value assigned to 1 and 
the small values assigned to 0. The obtained values multiplied by the mask and collected. 

 
Figure 2. Example of converting LBP code to decimal. 

(p=4, r=1.0) (p=8, r=1.0) (p=12, r=1.5) (p=16, r=2.0) (p=24, r=3.0) 

Figure 2. Example of converting LBP code to decimal.



Appl. Sci. 2019, 9, 1930 4 of 18

Ojala et al. [22,29] divide LBP codes into two different classes: uniform and non-uniform. A code
with a uniform distribution has maximum of 2 times different bits transitions. Examples of uniform
and non-uniform LBP code are shown in Figure 3. Figure 3a has 2 transitions; uniform LBP code;
Figure 3b is the non-uniform LBP code because it has 4 transitions.

Appl. Sci. 2019, 9, x 4 of 19 

Ojala et al. [22,29] divide LBP codes into two different classes: uniform and non-uniform. A code 
with a uniform distribution has maximum of 2 times different bits transitions. Examples of uniform 
and non-uniform LBP code are shown in Figure (3). Figure 3a has 2 transitions; uniform LBP code; 
Figure 3 (b) is the non-uniform LBP code because it has 4 transitions. 

 
Figure 3. Uniform and non-uniform LBP code examples; (a)uniform LBP; (b): non-uniform LBP 

2.2. GP-Descriptor 

The GP-descriptor is a GP-based image descriptor, is proposed by Al-Sahaf et al., inspired by 
the LBP algorithm [30]. The GP-descriptor targets to automatically generate an image descriptor 
similar to the LBP. As in the standard LBP, the corresponding division of the resulting value in the 
decimal is increased by 1. The fitness function consists of two components: The classification accuracy 
and distance. The classification accuracy measures the ability of accurate classification of training 
instances using the k-NN classifier when evaluating histograms. Distance function calculates distance 
of between-classes and distance of within classes. 

GP-criptor is adopted tree-based GP to represent the solution. GP-criptor is designed to operate 
directly on image raw pixel values [30]. The criptor uses a sliding window of a predetermined size 
and the pixel values that fall within the window are used as inputs in the system. Criptor has a special 
node called code node that represents the root of the program tree. The node uses the input 
parameters to generate a binary code at each position of the sliding window. 

In this paper, ABCP-descriptor was proposed for the first time, inspired by the proposed GP-
descriptor in [30], and performance was monitored with two texture datasets. 

3. The Proposed Method 

This section provides an overview of the overall operation of the ABCP-based image descriptor, 
the program structure, the terminal and the function set, and the evaluation of the program. 

3.1. General Procedure of Algorithm 

Each dataset consists of different texture classes, and each texture class consists of multiple 
instances of small sizes. The data sets are divided into two instances randomly selected as 50% 
training and 50% test. From the training set, two random instances are selected from each class. The 
algorithm feeds ABCP using 2 instances from each class in the training phase. By using the fitness 
function, ABCP solutions are improved and when the stopping criteria is achieved, the ABCP model 
with the best fitness value is extracted. For each instance in the test set, feature vectors (histograms) 
are obtained using the best model. Histograms are classified by simple and rapid method 1-Nearest 
Neighbor (1-NN). The performance of the model is evaluated by the classification success. Details of 
the steps of the algorithm are presented in the following sections. The steps of the descriptor are given 
in Figure 4. 

Figure 3. Uniform and non-uniform LBP code examples; (a) uniform LBP; (b): non-uniform LBP

2.2. GP-Descriptor

The GP-descriptor is a GP-based image descriptor, is proposed by Al-Sahaf et al., inspired by
the LBP algorithm [30]. The GP-descriptor targets to automatically generate an image descriptor
similar to the LBP. As in the standard LBP, the corresponding division of the resulting value in the
decimal is increased by 1. The fitness function consists of two components: The classification accuracy
and distance. The classification accuracy measures the ability of accurate classification of training
instances using the k-NN classifier when evaluating histograms. Distance function calculates distance
of between-classes and distance of within classes.

GP-criptor is adopted tree-based GP to represent the solution. GP-criptor is designed to operate
directly on image raw pixel values [30]. The criptor uses a sliding window of a predetermined size and
the pixel values that fall within the window are used as inputs in the system. Criptor has a special
node called code node that represents the root of the program tree. The node uses the input parameters
to generate a binary code at each position of the sliding window.

In this paper, ABCP-descriptor was proposed for the first time, inspired by the proposed
GP-descriptor in [30], and performance was monitored with two texture datasets.

3. The Proposed Method

This section provides an overview of the overall operation of the ABCP-based image descriptor,
the program structure, the terminal and the function set, and the evaluation of the program.

3.1. General Procedure of Algorithm

Each dataset consists of different texture classes, and each texture class consists of multiple
instances of small sizes. The data sets are divided into two instances randomly selected as 50% training
and 50% test. From the training set, two random instances are selected from each class. The algorithm
feeds ABCP using 2 instances from each class in the training phase. By using the fitness function, ABCP
solutions are improved and when the stopping criteria is achieved, the ABCP model with the best
fitness value is extracted. For each instance in the test set, feature vectors (histograms) are obtained
using the best model. Histograms are classified by simple and rapid method 1-Nearest Neighbor
(1-NN). The performance of the model is evaluated by the classification success. Details of the steps of
the algorithm are presented in the following sections. The steps of the descriptor are given in Figure 4.



Appl. Sci. 2019, 9, 1930 5 of 18

Appl. Sci. 2019, 9, x 5 of 19 

 
Figure 4. General mechanism of descriptor. 

3.2. Artificial Bee Colony Programming 

ABCP is a high-level automatic programming method based on ABC algorithm [4,31,32]. The 
steps of the ABCP are similar to the ABC algorithm. The two fundamental differences between these 
algorithms are the representation of the solution structure and the information sharing mechanism 
that enables the development of solutions. In ABC, the positions of the food sources, i.e. solutions, 
are carried out with fixed size arrays and displays the values found by the algorithm for the 
predetermined variables as in GA. In the ABCP, the positions of food sources are expressed in tree 
structure that is composed of different combinations of terminals and functions. The smallest unit of 
trees is called a node. Nodes are selected from the specially defined terminal set (variables such as x, 
y, variables and constants) and the function set (arithmetic operators, logical functions, mathematical 
functions). Trees representing the solutions are created with the combination of the nodes. The 
representation of a solution tree for ABCP is the shown in Figure 5. The mathematical model of the 
tree in Figure 5 is as in Equation (2) where x and y are defined independent variable and f(x) is 
dependent variable. The equation of the tree is obtained by combining the terminals and functions in 
the nodes from the leaves to the root. 

 
Figure 5. Representation of solutions in ABCP by tree structure. 

𝑓(𝑥) = (8.1x − 3.7) + ቆlog(4) ∗ 𝑥cos (𝑦) ቇ (2) 

The complexity of the solution trees is calculated by Equation (3) in proportion to the number of 
nodes and the depth of trees. 

𝐶 = ෍ 𝑛 ∗ 𝑘ௗ
௞ୀଵ  (3) 

Figure 4. General mechanism of descriptor.

3.2. Artificial Bee Colony Programming

ABCP is a high-level automatic programming method based on ABC algorithm [4,31,32]. The steps
of the ABCP are similar to the ABC algorithm. The two fundamental differences between these
algorithms are the representation of the solution structure and the information sharing mechanism
that enables the development of solutions. In ABC, the positions of the food sources, i.e. solutions, are
carried out with fixed size arrays and displays the values found by the algorithm for the predetermined
variables as in GA. In the ABCP, the positions of food sources are expressed in tree structure that is
composed of different combinations of terminals and functions. The smallest unit of trees is called
a node. Nodes are selected from the specially defined terminal set (variables such as x, y, variables
and constants) and the function set (arithmetic operators, logical functions, mathematical functions).
Trees representing the solutions are created with the combination of the nodes. The representation
of a solution tree for ABCP is the shown in Figure 5. The mathematical model of the tree in Figure 5
is as in Equation (2) where x and y are defined independent variable and f(x) is dependent variable.
The equation of the tree is obtained by combining the terminals and functions in the nodes from the
leaves to the root.

f (x) = (8.1x− 3.7) + (
log (4) ∗ x

cos (y)
) (2)

Appl. Sci. 2019, 9, x 5 of 19 

 
Figure 4. General mechanism of descriptor. 

3.2. Artificial Bee Colony Programming 

ABCP is a high-level automatic programming method based on ABC algorithm [4,31,32]. The 
steps of the ABCP are similar to the ABC algorithm. The two fundamental differences between these 
algorithms are the representation of the solution structure and the information sharing mechanism 
that enables the development of solutions. In ABC, the positions of the food sources, i.e. solutions, 
are carried out with fixed size arrays and displays the values found by the algorithm for the 
predetermined variables as in GA. In the ABCP, the positions of food sources are expressed in tree 
structure that is composed of different combinations of terminals and functions. The smallest unit of 
trees is called a node. Nodes are selected from the specially defined terminal set (variables such as x, 
y, variables and constants) and the function set (arithmetic operators, logical functions, mathematical 
functions). Trees representing the solutions are created with the combination of the nodes. The 
representation of a solution tree for ABCP is the shown in Figure 5. The mathematical model of the 
tree in Figure 5 is as in Equation (2) where x and y are defined independent variable and f(x) is 
dependent variable. The equation of the tree is obtained by combining the terminals and functions in 
the nodes from the leaves to the root. 

 
Figure 5. Representation of solutions in ABCP by tree structure. 

𝑓(𝑥) = (8.1x − 3.7) + ቆlog(4) ∗ 𝑥cos (𝑦) ቇ (2) 

The complexity of the solution trees is calculated by Equation (3) in proportion to the number of 
nodes and the depth of trees. 

𝐶 = ෍ 𝑛 ∗ 𝑘ௗ
௞ୀଵ  (3) 

Figure 5. Representation of solutions in ABCP by tree structure.

The complexity of the solution trees is calculated by Equation (3) in proportion to the number of
nodes and the depth of trees.

C =
d∑

k=1

n ∗ k (3)



Appl. Sci. 2019, 9, 1930 6 of 18

The flow diagram for the ABCP method is given in Figure 6. As in the GP, solutions at the
initial phase in ABCP can be produced with “full”, “grow” and “ramped half and half” methods [3].
The quality of each solution tree is determined by considering the fitness function, which is specifically
determined to each problem.

Since solutions are represented by fixed-size arrays in ABC, the candidate solution generation
cannot be used directly in ABCP. In order to produce the candidate solution (vi) in the ABCP where
solutions are represented tree structures have variable depth and different numbers of nodes, the
crossover operator in GP [3] has been adapted to the neighborhood research process on ABC.

In the ABCP algorithm, there three different types of bees: employed bees, onlooker bees and
scout bees. Employed bees leave the hives and they have a specific food source in their memory. When
they return to the hive, they share information about the food sources with onlooker bees. The onlooker
bees decide which source they will go to base on the amount of the nectar of the source shared by the
employed bees. During the scout bee phase, it is checked to see whether all food sources are exhausted.
If the food source is exhausted, the source is abandoned. The bees formally used with an abandoned
source turn into scout bees and search randomly for a new source. Unlike other bees, scout bees find
new food sources without sharing information. The exhausted of food resources controls a parameter
called “limit”. For each source, the number of improving trials is kept, and in each cycle, it is checked
to see whether the number of trials exceeds the “limit” parameter.

Appl. Sci. 2019, 9, x 6 of 19 

The flow diagram for the ABCP method is given in Figure 6. As in the GP, solutions at the initial 
phase in ABCP can be produced with “full”, “grow” and “ramped half and half” methods [3]. The 
quality of each solution tree is determined by considering the fitness function, which is specifically 
determined to each problem. 

Since solutions are represented by fixed-size arrays in ABC, the candidate solution generation 
cannot be used directly in ABCP. In order to produce the candidate solution (𝑣௜) in the ABCP where 
solutions are represented tree structures have variable depth and different numbers of nodes, the 
crossover operator in GP [3] has been adapted to the neighborhood research process on ABC.   

In the ABCP algorithm, there three different types of bees: employed bees, onlooker bees and 
scout bees. Employed bees leave the hives and they have a specific food source in their memory. 
When they return to the hive, they share information about the food sources with onlooker bees. The 
onlooker bees decide which source they will go to base on the amount of the nectar of the source 
shared by the employed bees. During the scout bee phase, it is checked to see whether all food sources 
are exhausted. If the food source is exhausted, the source is abandoned. The bees formally used with 
an abandoned source turn into scout bees and search randomly for a new source. Unlike other bees, 
scout bees find new food sources without sharing information. The exhausted of food resources 
controls a parameter called “limit”. For each source, the number of improving trials is kept, and in 
each cycle, it is checked to see whether the number of trials exceeds the “limit” parameter. 

 
Figure 6. Flowchart ABCP algorithm. 

When generating the candidate solution 𝑣௜, the neighbor node solution 𝑥௞  (𝑖 ≠ 𝑘), taken from a 
different solution in the population is randomly selected as a mechanism considering the probability 
of 𝑃௜௣ . The node 𝑥௞ is randomly selected from the neighbor solution and determines what 
information to share in the current solution. Similarly, a function node is selected in the probability 

Employed Bee 

Onlooker Bee 

Scout Bee 

Assign parameters to initial values, randomly generate initial solutions and 
evaluate the solutions 

Create a candidate solution, evaluate new solution and perform greedy 
selection using the information sharing mechanism for each employed bee 

Calculate the probability of solutions and choose solutions for each 
onlooker bee 

Generate a candidate solution, evaluate new solution and perform greedy 
selection using the information sharing mechanism for each onlooker bee 

Memorize the best solution 

Stop 

Replace this solution 
with a randomly 

generated solution by 
the scout bee 

Are stopping 
criteria satisfied? 

Initial Phase 

Yes 

No

Start 

Yes 

Is there an 
abandoned 
solution? 

Figure 6. Flowchart ABCP algorithm.

When generating the candidate solution vi, the neighbor node solution xk (i , k), taken from a
different solution in the population is randomly selected as a mechanism considering the probability of
Pip. The node xk is randomly selected from the neighbor solution and determines what information to



Appl. Sci. 2019, 9, 1930 7 of 18

share in the current solution. Similarly, a function node is selected in the probability of Pip (set to 0.9)
and a terminal in the probability of (1−Pip ) is selected from the current solution xi. The candidate
solution vi is generated by replacing the nodes of the current solution node xi and the neighbor solution
node xk. This sharing mechanism is shown in Figure 7. Figure 7a,b are node xi representing the
current solution and a neighbor node xk taken from the tree respectively, Figure 7c shows neighboring
information and the generated candidate solution is given in Figure 7d. After the candidate solution is
generated, a greedy selection process is applied between the node xi expressing the current solution
and the candidate solution vi. The candidate solution is evaluated, and greedy selection is used for
each employed bee.

Appl. Sci. 2019, 9, x 7 of 19 

of 𝑃௜௣  (set to 0.9) and a terminal in the probability of (1-𝑃௜௣ ) is selected from the current solution 𝑥௜ . 
The candidate solution 𝑣௜ is generated by replacing the nodes of the current solution node  𝑥௜  and 
the neighbor solution node 𝑥௞. This sharing mechanism is shown in Figure 7. Figure 7a and 7b are 
node  𝑥௜  representing the current solution and a neighbor node  𝑥௞  taken from the tree 
respectively, Figure 7c shows neighboring information and the generated candidate solution is given 
in Figure 7d. After the candidate solution is generated, a greedy selection process is applied between 
the node 𝑥௜  expressing the current solution and the candidate solution 𝑣௜. The candidate solution is 
evaluated, and greedy selection is used for each employed bee. 

 
Figure 7. Information sharing mechanism of ABCP algorithm. (a): 𝑥௜; (b): 𝑥௞; (c): neighbor 

information (d): generated candidate solution 

3.3. ABCP-Descriptor Program Representation 

ABCP-descriptor is an ABCP-based image descriptor that generates models using raw pixel 
values. The descriptor presents the pixel values in a certain size of sliding windows. The pixel values 
are used inputs of a feature vector. Figure 8 shows representation of the feature vector. In the example 
in Figure 8, window size 5 × 5 is selected. The window has a value of 5 × 5 = 25 pixels. The first pixel 
is labelled with P0 and is labeled up to P24 in total. Pixels are sequenced from left to right and feature 
vector is generated. Therefore, the inputs of the ABCP are (P0, P1, …, P24) in feature vector. 

 
Figure 8. Row feature vector representation. 

Figure 7. Information sharing mechanism of ABCP algorithm. (a): xi; (b): xk; (c): neighbor information
(d): generated candidate solution

3.3. ABCP-Descriptor Program Representation

ABCP-descriptor is an ABCP-based image descriptor that generates models using raw pixel
values. The descriptor presents the pixel values in a certain size of sliding windows. The pixel values
are used inputs of a feature vector. Figure 8 shows representation of the feature vector. In the example
in Figure 8, window size 5 × 5 is selected. The window has a value of 5 × 5 = 25 pixels. The first pixel
is labelled with P0 and is labeled up to P24 in total. Pixels are sequenced from left to right and feature
vector is generated. Therefore, the inputs of the ABCP are (P0, P1, . . . , P24) in feature vector.

The ABCP function set consists of simple arithmetic operators {+, -, *, /} and the code root node.
The divide (/) function in the function set is a protected version where the divisor value is equal to 0, it
is later revised to 1, otherwise, normal division is performed. The code node creates binary code using
the inputs in row vectors. The number of children of the code node determines the length and range of
the generated code. For example, if the number of children is 5, the length of the binary code is 5 bits



Appl. Sci. 2019, 9, 1930 8 of 18

and the program can produce different values up to 25 = 32 (0.1, . . . , 31). The representation of the
ABCP-descriptor is given in Figure 9.

Appl. Sci. 2019, 9, x 7 of 19 

of 𝑃௜௣  (set to 0.9) and a terminal in the probability of (1-𝑃௜௣ ) is selected from the current solution 𝑥௜ . 
The candidate solution 𝑣௜ is generated by replacing the nodes of the current solution node  𝑥௜  and 
the neighbor solution node 𝑥௞. This sharing mechanism is shown in Figure 7. Figure 7a and 7b are 
node  𝑥௜  representing the current solution and a neighbor node  𝑥௞  taken from the tree 
respectively, Figure 7c shows neighboring information and the generated candidate solution is given 
in Figure 7d. After the candidate solution is generated, a greedy selection process is applied between 
the node 𝑥௜  expressing the current solution and the candidate solution 𝑣௜. The candidate solution is 
evaluated, and greedy selection is used for each employed bee. 

 
Figure 7. Information sharing mechanism of ABCP algorithm. (a): 𝑥௜; (b): 𝑥௞; (c): neighbor 

information (d): generated candidate solution 

3.3. ABCP-Descriptor Program Representation 

ABCP-descriptor is an ABCP-based image descriptor that generates models using raw pixel 
values. The descriptor presents the pixel values in a certain size of sliding windows. The pixel values 
are used inputs of a feature vector. Figure 8 shows representation of the feature vector. In the example 
in Figure 8, window size 5 × 5 is selected. The window has a value of 5 × 5 = 25 pixels. The first pixel 
is labelled with P0 and is labeled up to P24 in total. Pixels are sequenced from left to right and feature 
vector is generated. Therefore, the inputs of the ABCP are (P0, P1, …, P24) in feature vector. 

 
Figure 8. Row feature vector representation. Figure 8. Row feature vector representation.

Appl. Sci. 2019, 9, x 8 of 19 

The ABCP function set consists of simple arithmetic operators {+, -, *, /} and the code root node. 
The divide (/) function in the function set is a protected version where the divisor value is equal to 0, 
it is later revised to 1, otherwise, normal division is performed. The code node creates binary code 
using the inputs in row vectors. The number of children of the code node determines the length and 
range of the generated code. For example, if the number of children is 5, the length of the binary code 
is 5 bits and the program can produce different values up to 25 = 32 (0.1, …, 31). The representation 
of the ABCP-descriptor is given in Figure 9. 

 
Figure 9. ABCP program representation. 

As shown in Figure 9, the sliding window is selected as 5 * 5 and has 25 inputs. Since the code 
node has 3 children, the resulting feature vector can produce 23=8 different values. If the values 
obtained from the branches of the code node are greater than 0, the binary code is converted into 1 
and if it is less than 0 the binary code is converted into 0. In the program representation, the binary 
code is obtained as (011)2. The code is converted to decimal and the value of the partition in the feature 
vector (histogram) is increased by 1. For example, a histogram of the model is obtained by moving 
the sliding window over the instance. In the process of ABCP-descriptor, 2 instances are selected for 
each class, c is defined class number and 2 *c histogram is obtained. The test instances are classified 
by taking into account the distances between the histograms obtained in the training instances and 
the histograms of the test instances generated with the best model. 

3.4. Fitness Function 

In this paper, only a few random instances are selected from the training set and the classification 
success is evaluated only after the training of the instances. Therefore, it is aimed to obtain more 
information from the instances. The classification accuracy is not used as a fitness function alone in 
order to avoid models over-fitting training instances. Instead, the fitness function that evaluates the 
distance along with the classification accuracy. To make a reliable and fair comparison, same 
parameter values are chosen as in [29] and the fitness function (objective function) is adapted as 
defined in Equation (4). 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1 − (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 ) (4) 

The classification accuracy is obtained by the ratio of the number of correctly classified instances 
to the total number of instances. Accuracy is defined Equation (5). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁௖௢௥௥௘௖௧𝑁௧௢௧௔௟  (5) 

Ncorrect is the number of correctly classified instances and Ntotal is the total number of instances. 
Distance is the function that calculates the distance between classes and the distance within classes. 
Since the logical function range is in the range [–5, 5], the range of [–1, 1] has been adjusted by 
adapting the function. The representation of the logical function is given in Figure 10. 

Figure 9. ABCP program representation.

As shown in Figure 9, the sliding window is selected as 5 * 5 and has 25 inputs. Since the code
node has 3 children, the resulting feature vector can produce 23=8 different values. If the values
obtained from the branches of the code node are greater than 0, the binary code is converted into 1 and
if it is less than 0 the binary code is converted into 0. In the program representation, the binary code is
obtained as (011)2. The code is converted to decimal and the value of the partition in the feature vector
(histogram) is increased by 1. For example, a histogram of the model is obtained by moving the sliding
window over the instance. In the process of ABCP-descriptor, 2 instances are selected for each class, c
is defined class number and 2 *c histogram is obtained. The test instances are classified by taking into
account the distances between the histograms obtained in the training instances and the histograms of
the test instances generated with the best model.

3.4. Fitness Function

In this paper, only a few random instances are selected from the training set and the classification
success is evaluated only after the training of the instances. Therefore, it is aimed to obtain more
information from the instances. The classification accuracy is not used as a fitness function alone in
order to avoid models over-fitting training instances. Instead, the fitness function that evaluates the
distance along with the classification accuracy. To make a reliable and fair comparison, same parameter
values are chosen as in [29] and the fitness function (objective function) is adapted as defined in
Equation (4).

Fitness = 1− (
Accuracy + Distance

2
) (4)

The classification accuracy is obtained by the ratio of the number of correctly classified instances
to the total number of instances. Accuracy is defined Equation (5).

Accuracy =
Ncorrect

Ntotal
(5)

Ncorrect is the number of correctly classified instances and Ntotal is the total number of instances.
Distance is the function that calculates the distance between classes and the distance within classes.
Since the logical function range is in the range [–5, 5], the range of [–1, 1] has been adjusted by adapting
the function. The representation of the logical function is given in Figure 10.



Appl. Sci. 2019, 9, 1930 9 of 18

Appl. Sci. 2019, 9, x 9 of 19 

 
Figure 10. Logical Functions; (a): logical function range is in the range [–5, 5], (b): logical function 
range is in the range [–1, 1]. 

The logical function shown in Figure 10a is defined Equation (6); Figure 10b is defined Equation 
(7). 𝑆(𝑡) = 11 + 𝑒𝑥𝑝ି௧ (6) 

𝑆(𝑡) = 11 + 𝑒𝑥𝑝ିହ௧ (7) 

Adapted version of the distance function according to the logical function (Equation (7)) is 
shown in Equation (8). Db (between distances) calculates the average distance between classes, and 
Dw (within Distances) calculates the average distance within classes. Db and Dw, respectively are 
defined in Equations (9) and (10). 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 11 + 𝑒𝑥𝑝ିହ(஽್ି஽ೢ) (8) 

𝐷௕ = 1𝑧(𝑧 − 𝑛) ෍ 𝜒ଶ(𝑢ሬ⃗ ,𝑣⃗), 𝛼, 𝛽 ∈ [1, 𝑐], 𝛼 ≠ 𝛽௨ഀ,௩ഁ∈ௌ೟ೝ∀௨ሬሬ⃗ ∈௨ഀ∀௩ሬሬ⃗ ∈௩ഁ
 

(9) 

𝐷௪ = 1𝑧(𝑛 − 1) ෍ 𝜒ଶ(𝑢ሬ⃗ ,𝑣⃗)𝛼 ∈ [1, 𝑐]௨ഀ,௩ഁ∈ௌ೟ೝ∀ ೠ→∈௨ഀ∀ ೡ→∈௩ഀ
 

(10) 

where 𝑆௧௥ = {(𝑥పሬሬሬ⃗ , 𝑦௜)} the set of instances is selected in the training set, 𝑥పሬሬሬ⃗  is the feature vector of each 
instance, and 𝑦௜  is the class label. 𝑖 ∈ {1, … , 𝑧}; c and n respectively define the total number of classes 
and the number of instances per class. The total number of instances in the training set is z (c*n); xα is 
all instances of the class in Str. The distance between vectors with two normalized equal number of 
elements is shown in Equation (11). 𝜒ଶ = 12 ෍ (𝑢௜ − 𝑣௜)ଶ𝑢௜ + 𝑣௜௜  (11) 

where ui and vi, respectively are defined i. element is u and v vectors. If the divisor of Equation (11) is 
0, the protected function returns 0 as a result. The classification accuracy (Equation (5)) and the 
distance (Equation (8)) take the value 1 in the best case and 0 in the worst case. Therefore, the fitness 
function (Equation (4)) for the automatic programming method can be defined as a minimization 
problem. 

In summary, the following steps are followed to extract the feature vector from the image 
descriptor. 

Figure 10. Logical Functions; (a): logical function range is in the range [–5, 5], (b): logical function
range is in the range [–1, 1].

The logical function shown in Figure 10a is defined Equation (6); Figure 10b is defined Equation (7).

S(t) =
1

1 + exp−t (6)

S(t) =
1

1 + exp−5t (7)

Adapted version of the distance function according to the logical function (Equation (7)) is shown
in Equation (8). Db (between distances) calculates the average distance between classes, and Dw (within
Distances) calculates the average distance within classes. Db and Dw, respectively are defined in
Equations (9) and (10).

Distance =
1

1 + exp−5(Db−Dw)
(8)

Db =
1

z(z− n)

∑
uα,vβ∈Str

∀
→
u∈uα

∀
→
v∈vβ

χ2(
→
u ,
→
v ), α, β ∈ [1, c], α , β (9)

Dw =
1

z(n− 1)

∑
uα,vβ∈Str
∀→

u
∈uα

∀→
v
∈vα

χ2(
→
u ,
→
v )α ∈ [1, c] (10)

where Str =
{
(
→
xi, yi)

}
the set of instances is selected in the training set,

→
xi is the feature vector of each

instance, and yi is the class label. i ∈ {1, . . . , z}; c and n respectively define the total number of classes
and the number of instances per class. The total number of instances in the training set is z (c*n); xα is
all instances of the class in Str. The distance between vectors with two normalized equal number of
elements is shown in Equation (11).

χ2 =
1
2

∑
i

(ui − vi)
2

ui + vi
(11)

where ui and vi, respectively are defined i. element is u and v vectors. If the divisor of Equation (11) is 0,
the protected function returns 0 as a result. The classification accuracy (Equation (5)) and the distance
(Equation (8)) take the value 1 in the best case and 0 in the worst case. Therefore, the fitness function
(Equation (4)) for the automatic programming method can be defined as a minimization problem.

In summary, the following steps are followed to extract the feature vector from the image descriptor.



Appl. Sci. 2019, 9, 1930 10 of 18

• Step 1. Instances are converted to feature vectors of the previously defined window size
(for example 5*5). (Figure 8)

• Step 2. Leaf nodes are fed the root code node and the binary status of the branches is checked by
checking the negativity of the branches.

• Step 3. By converting the binary code to the decimal, the corresponding value of the number is
increased by 1 in the histogram.

• Step 4. Using histograms of instances.

Calculation of distance between vectors (Figure 11)
Calculation of distance within classes (Dw) and distance between classes (Db) (Figure 12)
The fitness values of the trees (individuals) are calculated.

• Step 5. The ABCP algorithm (Figure (6)) is operated according to the fitness values.

Pseudo-Code 1 calculates the distance between vectors (Equation (11)), shown in Figure 11.

Figure 11. Calculation of the distance between two vectors is the pseudo code.

Db, Dw and accuracy are calculated according to pseudo-code 2 is shown in Figure 12.

Figure 12. Calculation of between classes and within classes distance pseudo code.



Appl. Sci. 2019, 9, 1930 11 of 18

ABCP-descriptor is expected to improve the trees according to their fitness values. When stopping
criteria are provided, the best individual is classified in test data.

4. Experimental Design

For the performance analysis of the proposed method, experiments were conducted using two
different datasets and the results were evaluated. This section provides detailed information about the
parameters used in datasets and automatic programming methods.

4.1. Datasets

The methods were tested on two different texture datasets DS-Broadtz (Dover Publications,
New York, NY, USA) and DS-Kylberg (Swedish University of Agricultural Sciences, Uppsala, Sweden)
which are commonly used in image processing. To compare with [29], we selected the same classes
in both texture datasets in [30]. The first dataset DS-Broadtz was obtained from the Broadtz texture
set [33]. The original set consists of 112 classes, each 640*640 pixels. In this paper, 20 classes of 112 class
are compared. Texture instances of the selected classes are shown in Figure 13. Texture instances of
each class are divided into 64*64 pixel samples and 100 instances are obtained.

Appl. Sci. 2019, 9, x 11 of 19 

4. Experimental Design 

For the performance analysis of the proposed method, experiments were conducted using two 
different datasets and the results were evaluated. This section provides detailed information about 
the parameters used in datasets and automatic programming methods. 

4.1. Datasets 

The methods were tested on two different texture datasets DS-Broadtz (Dover Publications, New 
York, USA) and DS-Kylberg(Swedish University of Agricultural Sciences, Uppsala, Sweden) which 
are commonly used in image processing. To compare with [29], we selected the same classes in both 
texture datasets in [30]. The first dataset DS-Broadtz was obtained from the Broadtz texture set [33]. 
The original set consists of 112 classes, each 640*640 pixels. In this paper, 20 classes of 112 class are 
compared. Texture instances of the selected classes are shown in Figure 13. Texture instances of each 
class are divided into 64*64 pixel samples and 100 instances are obtained. 

 
Figure 13. Instances samples of DS-Broadtz dataset. 

The second dataset DS-Kylberg was obtained from the Kylberg dataset [34]. The Kylberg dataset 
is divided into two parts, originally rotated and non-rotated. As in the Broadtz dataset from the non-
rotated Kylberg data set, 20 selected classes were used. Each class contains 160 instances with       
576* 576 pixels. In this paper, each instance was reduced to 115 *115 pixels in order to reduce the cost 
of calculation. Texture instance samples of the selected Kylberg dataset are shown in Figure 14. 

 
Figure 14. Instances samples of DS-Kylberg dataset. 

Figure 13. Instances samples of DS-Broadtz dataset.

The second dataset DS-Kylberg was obtained from the Kylberg dataset [34]. The Kylberg dataset
is divided into two parts, originally rotated and non-rotated. As in the Broadtz dataset from the
non-rotated Kylberg data set, 20 selected classes were used. Each class contains 160 instances with
576* 576 pixels. In this paper, each instance was reduced to 115 *115 pixels in order to reduce the cost
of calculation. Texture instance samples of the selected Kylberg dataset are shown in Figure 14.

Appl. Sci. 2019, 9, x 11 of 19 

4. Experimental Design 

For the performance analysis of the proposed method, experiments were conducted using two 
different datasets and the results were evaluated. This section provides detailed information about 
the parameters used in datasets and automatic programming methods. 

4.1. Datasets 

The methods were tested on two different texture datasets DS-Broadtz (Dover Publications, New 
York, USA) and DS-Kylberg(Swedish University of Agricultural Sciences, Uppsala, Sweden) which 
are commonly used in image processing. To compare with [29], we selected the same classes in both 
texture datasets in [30]. The first dataset DS-Broadtz was obtained from the Broadtz texture set [33]. 
The original set consists of 112 classes, each 640*640 pixels. In this paper, 20 classes of 112 class are 
compared. Texture instances of the selected classes are shown in Figure 13. Texture instances of each 
class are divided into 64*64 pixel samples and 100 instances are obtained. 

 
Figure 13. Instances samples of DS-Broadtz dataset. 

The second dataset DS-Kylberg was obtained from the Kylberg dataset [34]. The Kylberg dataset 
is divided into two parts, originally rotated and non-rotated. As in the Broadtz dataset from the non-
rotated Kylberg data set, 20 selected classes were used. Each class contains 160 instances with       
576* 576 pixels. In this paper, each instance was reduced to 115 *115 pixels in order to reduce the cost 
of calculation. Texture instance samples of the selected Kylberg dataset are shown in Figure 14. 

 
Figure 14. Instances samples of DS-Kylberg dataset. Figure 14. Instances samples of DS-Kylberg dataset.



Appl. Sci. 2019, 9, 1930 12 of 18

Table 1 shows the total number of selected classes (Nclasses) from the Broadtz and Kylberg datasets,
the number of instances contained in each class (Ninstances), the number of instances used in the training
and test (Ntrain_in , Ntest_in) and the instance dimensions (width* height).

Table 1. Datasets.

Dataset Nclasses Ninstances Ntrain_in Ntest_in Instance Dimensions

Broadtz 20 100 50 50 64*64
Kylberg 20 160 80 80 115*115

As shown in Table 1, DS-Broadtz has 1000 instances (20 classes*50 instances); DS-Kylberg used
1600 instances (20 classes*50 instances) in total for training and testing.

4.2. Parameters

The parameter values of the ABCP-descriptor are shown in Table 2. In all methods, the initial
solutions are produced with Ramped Half and Half method. In order to increase the quality of sources
in the descriptor, Information Sharing Mechanism was used in all solutions. The number of sub-trees /

branches connected to the code node has a fixed number of 7. Thus, the histogram can have 27 = 128
different values (0, 1, . . . , 127). The division (/) function in the function set is the protected version.
In this function, if the divisor value is equal to 0, then 1 is returned, in other cases normal division
is performed. p and r are assigned respectively 8 and 1 for the LBPp,r operator. In this paper, the
limit parameter was set to half of the colony size in ABCP-criptor. When the limit is exceeded, the
abandoned food source is randomly changed with a new food source. The identifier does not use
weight for subtrees. The maximum depth of the subtrees is set to 6.

Table 2. Parameters.

Parameters Artificial Bee Colony Programming-Descriptor
(ABCP-Descriptor)

Colony Size 100
Iteration Number 30

Maximum Tree Depth 6
Number of Branches in the Code node 7

Initial Method Ramped Half and Half
Functions + (plus), −(minus), ∗ (times), / (rdivide)

Limit 50

5. Performance Analysis

The experimental results of the methods are given and discussed in this section. ABCP-descriptor
and LBP8,1 were run 10 times independently. In each run, the methods analyzed randomly selected
instances from datasets and tried to assign test instances to the correct texture class. We evaluated the
ability to learn the descriptors in the training set.

5.1. Overall Results

The simulation results for ABCP-descriptor, LBP8,1 and GP-descriptor [30] are presented in Table 3.
In [30] is tested the performance of GP-criptor against nine of the widely used classical methods
in machine learning. The performances of the methods are significantly low compared to that of
GP-criptor. For this reason, we compared the results with the GP-criptor [30] by proposing the
ABCP-criptor, which is a new method that can rival the GP-criptor, which has a higher result than the
classical methods.



Appl. Sci. 2019, 9, 1930 13 of 18

Table 3. Simulation results of descriptor.

Descriptor Dataset Criteria Best Test Fitness Test Classification Success (%)

ABCP-descriptor

Broadtz

Mean 0.03 94.55
Maximum 0.03 97.3
Minimum 0.01 93.3

Standard deviation 0.01 1.17

Kylberg

Mean 0.05 89.71
Maximum 0.14 95.19
Minimum 0.02 71.63

Standard deviation 0.03 6.38

LBP8,1

Broadtz

Mean 90.63
Maximum 93.8
Minimum 87.3

Standard deviation 1.92

Kylberg

Mean 90
Maximum 93.13
Minimum 87.13

Standard deviation 1.9

GP-descriptor [30]

Broadtz
Mean 94.40

Standard deviation 0.81

Kylberg Mean 93.21
Standard deviation 1.14

When the results were evaluated, successful results were obtained with ABCP-descriptor and LBP.
The average test success of the methods in the DS-Broadtz is higher than the DS-Kylberg. The highest
test accuracy was found in the ABCP-descriptor as 97.3% for the DS-Broadtz and 95.188 for the
DS-Kylberg. The highest standard deviation has the ABCP-descriptor in the DS-Kylberg data set with
6.38. The higher the deviation, the greater the difference between the maximum and the minimum
test accuracy compared to LBP. The GP-descriptor [30] has the highest mean as 93.21% in DS-Kylberg.
The ABCP-descriptor is considered to be comparable to the GP-descriptor because its classification
success is high.

5.2. Model Analysis Results

In this section, the best models of test accuracy with ABCP-descriptor for each dataset will
be analyzed.

Table 4 shows the general information about the parse trees of the best model with has highest
test classification with 97.3% in DS_Broadtz. The complexity in Table 4 was calculated according to
Equation (3). As shown in the table, the sub-trees connected to the code node depend on different depth
and number of nodes. A tree representation of the model test success for the DS-Broadtz dataset is
shown in Table 5. The equations of the sub-trees of the best model in Figure 15 is shown in Table 6.

Table 4. Information about Subtrees of Best Model of ABCP-Descriptor for DS-Broadtz.

Node Depth Complexity

Tree 1 7 3 17
Tree 2 5 3 11
Tree 3 7 3 17
Tree 4 19 5 69
Tree 5 21 6 83
Tree 6 3 2 5
Tree 7 19 6 87



Appl. Sci. 2019, 9, 1930 14 of 18
Appl. Sci. 2019, 9, x 14 of 19 

 

Figure 15. Best Model of ABCP-Descriptor for DS-Broadtz. 

Table 5. Equations of Subtrees of Best Model of ABCP-Descriptor for DS-Broadtz. 

 Equation 

Tree 1 (𝑥ଵସ/𝑥଼) ∗ (𝑥ଵଷ/𝑥ଵଵ) 
Tree 2 𝑥଼/(𝑥ଵସ + 𝑥ଶଷ) 

Figure 15. Best Model of ABCP-Descriptor for DS-Broadtz.



Appl. Sci. 2019, 9, 1930 15 of 18

Table 5. Equations of Subtrees of Best Model of ABCP-Descriptor for DS-Broadtz.

Equation

Tree 1 (x14/x8) ∗ (x13/x11)
Tree 2 x8/(x14 + x23)
Tree 3 (x7 − x3)/(x25/x8)

Tree 4 ((x9 − x6)/(x14/x20))/(
((

x20
x5

)
− x2

)
∗ ((x8 ∗ x12) + x4)

Tree 5 ((x24 ∗ x6) − x4) −
(
(x2 − x14) ∗

(
x8 + ( x13

x8
)
))
∗ ((x24 + x2) ∗ x8)

Tree 6 (x10/x6)

Tree 7 x16 − (
(
(x18 − x4) +

(
x18
x22

))
− ((x5 + x18) + (x1 + x2))

Table 6. Information about Subtrees of Best Model of ABCP-Descriptor for DS-Kylberg.

Node Depth Complexity

Tree 1 5 3 11
Tree 2 7 3 17
Tree 3 3 2 5
Tree 4 13 6 51
Tree 5 9 4 27
Tree 6 33 6 145
Tree 7 11 4 33

A tree representation of the model test success for the DS-Kylberg dataset is shown in Figure 16.
The equations of the sub-trees of the best model in Figure 16 are shown in Table 7. When the tables of
the highest classification test accuracy for the DS-Kylberg dataset (Table 6, Table 7) are evaluated, it can
be seen that the sub-trees of the model are more complex than the best model sub-trees of DS-Broadtz.
Many inputs in the lower trees (such as x14, x15, x20) are common in the model. The code node of the
best models for both datasets have 7 subtrees and the trees have depth of 2-6. As the number of nodes
and depth of the tree increase, the tree complexity increases.

Table 7. Equations of Subtrees of Best Model of ABCP-Descriptor for DS-Kylberg.

Equation

Tree 1 x22/(x9 ∗ x20)
Tree 2 (x2 ∗ x22) ∗ (x19 + x14)
Tree 3 (x3 − x5)

Tree 4
(
x15 + (x7 − x15) ∗

(
x23−x20

x12

))
− x18

Tree 5 x4 − ((x24 − x11) ∗ (
x17
x13

))

Tree 6
(
((x11 + x14) − (x12 − x14)) ∗

(
x15∗(x9−x16)

x22
x7

))
− ((x5 ∗ ((x15 + x5) − (x9 + x15)) −

(
x24 − (

x19
x15

)
)
)

Tree 7 (x15 − (x1/x20))/((x9 + x14) ∗ x5)



Appl. Sci. 2019, 9, 1930 16 of 18
Appl. Sci. 2019, 9, x 16 of 19 

 

Figure 16. Best Model of ABCP-Descriptor for DS-Kylberg 

Table 7. Equations of Subtrees of Best Model of ABCP-Descriptor for DS-Kylberg. 

 Equation 

Tree 1 𝑥ଶଶ/(𝑥ଽ ∗ 𝑥ଶ଴) 
Tree 2 (𝑥ଶ ∗ 𝑥ଶଶ) ∗ (𝑥ଵଽ + 𝑥ଵସ) 

Figure 16. Best Model of ABCP-Descriptor for DS-Kylberg.

6. Conclusions

In this paper, ABCP-descriptor is proposed to identify texture by selecting only two instances
randomly in the training set for each texture. In the proposed method, the instances were transformed
into feature vectors using a window of 5*5 dimensions. Feature vectors were used as inputs for
models in the ABCP-descriptor. Similar to LBP algorithm, the binary codes obtained by the models



Appl. Sci. 2019, 9, 1930 17 of 18

are converted to decimal and the corresponding value is increased by 1 in the histogram. The fitness
function in the descriptor is composed of two components: classification accuracy and distance.
The classification accuracy measures the ability to accurately classify training instances using the 1-NN
classifier when evaluating histograms. The distance function calculates the distance between classes
and within classes in the training set. ABCP-descriptor is evaluated performance to standard LBP and
GP-descriptor. The comparative results show that ABCP-descriptor is a new method that can be used
in this field. In the future, we aim to test the success of classification of models using different tree
sizes and different arithmetic functions (such as sin, cos etc.). In addition, attempts will be made to
extract new models will by changing the parameters, rotated textures.

Author Contributions: All sections are implemented and written S.A. and C.O.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, L.; Zhao, L.; Long, Y.; Kuang, G.; Fieguth, P. Extended Local Binary Patterns for Texture Classification.
Image Vis. Comput. 2012, 30, 86–99. [CrossRef]

2. Biermann, A.W. Automatic Programming: A Tutorial on Formal Methodologies. J. Symb. Comput. 1985, 1,
119–142. [CrossRef]

3. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press:
Cambridge, MA, USA, 1992; Volume 4, pp. 87–112.

4. Karaboga, D.; Ozturk, C.; Karaboga, N.; Gorkemli, B. Artificial Bee Colony Programming for Symbolic
Regression. Inf. Sci. 2012, 209, 1–15. [CrossRef]

5. Tackett, W.A. Genetic Programming for Feature Discovery and Image Discrimination. In Proceedings of the
5th International Conference on Genetic Algorithms, Urbana, IL, USA, 17–21 July 1993; pp. 303–311.

6. Shao, L.; Liu, L.; Li, X. Feature Learning for Image Classification via Multiobjective Genetic Programming.
IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1359–1371. [CrossRef]

7. Lensen, A.; Sahaf, H.A.; Zhang, M.; Xue, B. A Hybrid Genetic Programming Approach to Feature Detection
and Image Classification. In Proceedings of the International Conference on Image and Vision Computing,
New Zealand (IVCNZ), Auckland, New Zealand, 23–24 November 2015.

8. Iqbal, M.; Xue, B.; Al-Sahaf, H.; Zhang, M. Cross-Domain Reuse of Extracted Knowledge in Genetic
Programming for Image Classification. IEEE Trans. Evol. Comput. 2017, 21. [CrossRef]

9. Lensen, A.; Al-Sahaf, H.; Zhang, M.; Xue, B. Genetic Programming for Region Detection, Feature Extraction,
Feature Construction and Classification in Image Data. In Proceedings of the European Conference on
Genetic Programming EuroGP Genetic Programming, Porto, Portugal, 30 March–1 April 2016; pp. 51–67.

10. Al-Sahaf, H.; Song, A.; Neshatian, K.; Zhang, M. Two-Tier Genetic Programming: Towards Raw Pixel-Based
Image Classification. Expert Syst. Appl. 2012, 39, 12291–12301. [CrossRef]

11. Karaboga, D.; Basturk, B. On the Performance of Artificial Bee Colony (ABC) Algorithm. Appl. Soft Comput.
2008, 8, 687–697. [CrossRef]

12. Hancer, E.; Ozturk, C.; Karaboga, D. Artificial Bee Colony Based Image Clustering Method. In Proceedings
of the WCCI IEEE World Congress on Computational İntelligence, Brisbane, Australia, 10–15 June 2012;
pp. 10–15.

13. Wang, S. Artificial Bee Colony used for Rigid Image Registration. Int. J. Res. Rev. Soft Intell. Comput. (Ijrrsic)
2011, 1, 1936–1953.

14. Karaboga, D.; Ozturk, C. Neural Networks Training by Artificial Bee Colony Algorithm on Pattern
Classification. Neural Netw. World 2009, 19, 279–292.

15. Maa, M.; Lianga, J.; Guoa, M.; Fana, Y.; Yinb, Y. SAR Image Segmentation Based on Artificial Bee Colony
Algorithm. Appl. Soft Comput. 2011, 11, 5205–5214. [CrossRef]

16. Hu, Z.; Yu, W.; Lv, S.; Feng, J. Multi-level threshold Image Segmentation Using Artificial Bee Colony
Algorithm. In Proceedings of the Fifth Conference on Measuring Technology and Mechatronics Automation,
Hong Kong, China, 16–17 January 2013.

http://dx.doi.org/10.1016/j.imavis.2012.01.001
http://dx.doi.org/10.1016/S0747-7171(85)80010-9
http://dx.doi.org/10.1016/j.ins.2012.05.002
http://dx.doi.org/10.1109/TNNLS.2013.2293418
http://dx.doi.org/10.1109/TEVC.2017.2657556
http://dx.doi.org/10.1016/j.eswa.2012.02.123
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.asoc.2011.05.039


Appl. Sci. 2019, 9, 1930 18 of 18

17. Dakshitha, B.A.; Deekshitha, V.; Manikantan, K. A Novel Bi-Level Artificial Bee Colony Algorithm and Its
Application to Image Segmentation. In Proceedings of the IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC), Madurai, India, 10–12 December 2015.

18. Sag, T.; Cunkas, M. Color Image Segmentation Based on Multiobjective Artificial Bee Colony Optimization.
Appl. Soft Comput. 2015, 34, 389–401. [CrossRef]

19. Hancer, E.; Ozturk, C.; Karaboga, D. Extraction of Brain Tumors from MRI Images with Artificial Bee Colony
Based Segmentation Methodology. In Proceedings of the 8th International Conference on Electrical and
Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2013.

20. Agrawal, V.; Chandra, S. Feature Selection Using Artificial Bee Colony Algorithm for Medical Image
Classification. In Proceedings of the Eighth International Conference on Contemporary Computing (IC3),
Noida, India, 20–22 August 2015.

21. Al-Sahaf, H.; Zhang, M.; Johnston, M. Binary Image Classification Using Genetic Programming Based on
Local Binary Patterns. In Proceedings of the 28th International Conference on Image and Vision Computing,
Wellington, New Zealand, 27–29 November 2013.

22. Ojala, T.; Pietikaè, M.; Maèenpaè, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification
with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–981. [CrossRef]

23. Sinha, A.; Banerji, S.; Liu, C. Scene Image Classification Using a Wigner-Based Local Binary Patterns
Descriptor. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing,
China, 6–11 July 2014.

24. Pan, Z.; Li, Z.; Fan, H.; Wu, X. Feature Based Local Binary Pattern for Rotation Invariant Texture Classification.
Expert Syst. Appl. 2017, 88, 238–248. [CrossRef]

25. Bunna, N. Multi-Class Object Classification and Detection Using Neural Networks. BSc Honours Research,
Project/Thesis, School of Mathematical and Computing Sciences, Victoria University of Wellington, Wellington,
New Zealand, October 2003.

26. Zhang, M.; Ciesielski, V. Using back propagation algorithm and genetic algorithm to train and refine neural
networks for object detection. In Lecture Notes in Computer Science, Proceedings of the 10th International Conference on
Database and Expert Systems Applications (DEXA’99), Florence, Italy, 30 August–3 September 1999; Bench-Capon, T.,
Soda, G., Tjoa, A.M., Eds.; Springer: Berlin, Germany, 1999; LNCS Volume 1677, pp. 626–635.

27. Zhang, M.; Bhowan, U.; Ny, B. Genetic programming for object detection: A two-phase approach with an
improved fitness function. Electron. Lett. Comput. Vis. Image Anal. 2007, 6, 27–43. [CrossRef]

28. Ojala, T.; Pietikäinen, M.; Harwood, D. Performance Evaluation of Texture Measures with Classification
Based on Kullback Discrimination of Distributions. In Proceedings of the 12th International Conference on
Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 582–585.

29. Ojala, T.; Pietikäinen, M.; Mäenpää, T. Gray Scale and Rotation Invariant Texture Classification with Local
Binary Patterns. In Proceedings of the European Conference on Computer Vision, Dublin, Ireland, 26 June–
1 July 2000; pp. 404–420.

30. Al-Sahaf, H.; Zhang, M.; Johnston, M.; Verma, B. Image Descriptor: A Genetic Programming Approach to
Multiclass Texture Classification. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation
(CEC), Sendai, Japan, 25–28 May 2015; pp. 2460–2467.

31. Gorkemli, B.; Ozturk, C.; Karaboga, D. Yapay Arı Kolonisi Programlama ile Sistem Modelleme. In Proceedings
of the Otomatik Kontrol Türk Milli Komitesi 2012 Ulusal Toplantısı (TOK), Niğde, Turkey, 11–13 October
2012; pp. 857–860.

32. Arslan, S.; Ozturk, C. Multi Hive Artificial Bee Colony Programming for high dimensional symbolic
regression with feature selection. Appl. Soft Comput. J. 2019, 78, 515–527. [CrossRef]

33. Brodatz, P. Textures: A Photographic Album for Artists and Designers; Dover: New York, NY, USA, 1999.
34. Kylberg, G. The Kylberg Texture Dataset V. 1.0; Technical Report 35; Centre Image Anal., Swedish University of

Agricultural Sciences: Uppsala, Sweden, 2011.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2015.05.016
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1016/j.eswa.2017.07.007
http://dx.doi.org/10.5565/rev/elcvia.135
http://dx.doi.org/10.1016/j.asoc.2019.03.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Local Binary Pattern 
	GP-Descriptor 

	The Proposed Method 
	General Procedure of Algorithm 
	Artificial Bee Colony Programming 
	ABCP-Descriptor Program Representation 
	Fitness Function 

	Experimental Design 
	Datasets 
	Parameters 

	Performance Analysis 
	Overall Results 
	Model Analysis Results 

	Conclusions 
	References

