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Featured Application: Texture classification aims to identify textures using few samples.
Local Binary Pattern (LBP) and GP-descriptor are most used texture classification algorithms.
Artificial Bee Colony Programming-Descriptor (ABCP-Descriptor) evaluates samples to extract
mathematical models. Comparative results show that proposed ABCP-Descriptor is a successful
texture classification method.

Abstract: Texture classification is one of the machine learning methods that attempts to classify textures
by evaluating samples. Extracting related features from the samples is necessary to successfully
classify textures. It is a very difficult task to extract successful models in the texture classification
problem. The Artificial Bee Colony (ABC) algorithm is one of the most popular evolutionary
algorithms inspired by the search behavior of honey bees. Artificial Bee Colony Programming (ABCP)
is a recently introduced high-level automatic programming method for a Symbolic Regression (SR)
problem based on the ABC algorithm. ABCP has applied in several fields to solve different problems
up to date. In this paper, the Artificial Bee Colony Programming Descriptor (ABCP-Descriptor) is
proposed to classify multi-class textures. The models of the descriptor are obtained with windows
sliding on the textures. Each sample in the texture dataset is defined instance. For the classification of
each texture, only two random selected instances are used in the training phase. The performance of
the descriptor is compared standard Local Binary Pattern (LBP) and Genetic Programming-Descriptor
(GP-descriptor) in two commonly used texture datasets. When the results are evaluated, the proposed
method is found to be a useful method in image processing and has good performance compared to
LBP and GP-descriptor.

Keywords: Texture classification; artificial bee colony programming-descriptor; image descriptor;
local binary pattern; genetic programming-descriptor

1. Introduction

The image descriptor provides information about the image by extracting / determining features
such as shape or color. Image descriptors have two different types: dense / sparse. Dense descriptors
are the approaches that extract features from the image in a pixel-by-pixel. One of the most common
dense descriptors is the Local Binary Pattern (LBP). Scale Invariant Feature Transform (SIFT) and
Speeded up Robust Features (SURF) are examples of instances in which sparse descriptors evaluate
each pixel in the image and extract the models [1].

Automatic programming is the process which the machine generates program code
automatically [2]. GP, the most well-known automatic programming method, was developed by
Koza [3]. GP is an extension of the Genetic Algorithm (GA) and the basic steps for the GP algorithm
are similar to the GA steps. ABCP is the recently proposed automatic programming method based on
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Artificial Bee Colony (ABC) algorithm [4]. In this paper, the ABCP image descriptor was first proposed
and the success of the extracted models in the texture classification problem was evaluated.

In recent years, automatic programming methods have been used more frequently in image
processing problems. Tackett [5] used GP to classify feature vectors derived from images into
categories. A domain adaptive learning method based on Multi-Objective Genetic Programming
(MOGP) was proposed to automatically generate field-adaptive global property descriptors for image
classification in [6]. GP was suggested for feature detection in [7]. The method separated the image
into the sub-regions, extracted the Speeded up Robust Features (SURF) points and achieved successful
classification results using the Support Vector Machine (SVM) classifier. Iqbal et al. proposed an image
classification method using transfer learning and GP [8]. The GP trees are extracted by the fragments
of the transfer learning improved classification performance producing more useful initial population.
In [9], they introduced new GP method that automatically differentiated the regions in the image and
sorted them out by extracting Histograms of Oriented Gradients (HOG). All stages of the method were
optimized with wide search space. Al-Sahaf et al. proposed a Two-Tier GP (Two-Tier GP, Two-Tier
GP-line, and Two-Tier GP-mix) with three different variations [10]. Instead of using them as input
values, they defined special functions that can convert line pixel values into a single numeric value, and
in the other tier, classification was made by using the outputs of special functions. Two Tier GP-mix
was considered the most successful method because of the flexibility of the window range.

Comparative studies of ABC with Particle Swarm Optimization, GA and other evolutionary
computational algorithms have shown that ABC has better performance in terms of achieving local and
global optimum results in engineering problems [11]. ABC is an algorithm that is successfully applied
in image processing, especially in image clustering [12], image registration [13], pattern recognition [14],
image segmentation [15–19], and image classification [20]. ABC algorithm was used in the diagnosis
of computed tomography images in [20]. The images are classified with k Nearest Neighbor (k-NN)
and SVM classifiers by selecting features with ABC. The ABC-SVM hybrid is highly successful. The
ABCP algorithm has been proposed as an ABC-based method that improves functions on symbolic
regression [4]. This is the first paper that observes the performance of the ABCP algorithm in texture
classification and extracts mathematical models.

Nowadays, due to its simplicity of calculation and its robustness against light changes, LBP-based
descriptors have been extensively researched due to its importance in various fields such as image
classification problem, pattern recognition and computer vision [21–25]. [21] was proposed a GP-based
LBP image descriptor using one instance per class. The method was shown to be more successful
against five different methods with / without GP-based. Ojala et al. presented a uniform LBP (uniform
LBP) approach in rotation-sensitive, simple and gray-scale variances [22]. Sinha et al. proposed the
Wigner-based LBP identifier (WLBP, Wigner-Based Local Binary Patterns), which uses the Wigner
distribution together with LBP [23]. In experiments using different classifiers, the method performed
better than conventional LBP. [24] was presented a two-part Feature Based Local Binary Pattern (FB-LBP)
approach. In the first part, traditional LBP is used, while in the other part the mean and variance
of the magnitude vector is used. Liu et al. proposed a novel local texture descriptor, generalizing
the well-known LBP approach. Four LBP-like descriptors, two local intensity-based Central Intensity
LBP (CI-LBP) and Neighbors Intensity LBP (NI-LBP), and two local difference-based descriptors
Radial Difference LBP (RD-LBP) and Angular Difference LBP(AD-LBP), were presented to extract
complementary texture information of local spatial patterns [1]. The descriptors had the same structure
as the standard LBP and not require training and parameter adjustment. In the study conducted in
three different texture, the descriptors showed better performance in gray-scale and rotation-sensitive
pattern classification compared to traditional LBP.

A plethora of neural networks have been presented image processing [25–27]. Zhang et al.
introduced a two-stage approach to the use of pixel based neural networks trained by back propagation
and GA [26]. The network is trained on samples, which cut out of from large pictures. In the first stage,
weights of networks are adjusted GA and in the second stage they tested the method on three object
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detection problems. The results show that the back-propagation algorithm has stronger generalization
ability than GA. In [27] is proposed two phase GP method compared neural network approach [25,26]
on three object detection problems. The experimental results show that GP has better performance
neural network in terms of object detection accuracy.

The paper is organized as follows: Background, which includes subsections of Local Binary
Pattern and GP-descriptor are introduced in Section 2. Section 3 explains in detail general procedure
of algorithm, ABCP, suggesting ABCP-descriptor and fitness function. Section 4 provides detailed
information on the experimental design, including datasets and parameters. The performance analysis,
which includes subsections overall results and discussion of the results from the extracted models are
explained in Section 5. The paper is finalized with Conclusions in Section 6.

2. Background

2.1. Local Binary Pattern

Local Binary Pattern [28] is one of the most common methods in image processing. The LBP
operator assigns binary values as a result of comparing them to each other by scrolling floating
windows and selecting the center pixel value in the middle of these windows as the threshold level.
The generated binary number sequence is called the LBP code, which is used to specify different
properties in the image, such as edges, corners, light or dark areas, line regions. The size of the window
can be changed according to the problems in order to capture different properties. The length of the
LBP code is circularly defined by two parameters, such as the number of sample pixels p and the
radius r of the symmetric circular neighborhood as shown in Figure 1. LBPp,r defines the appropriate
2p different output value from the neighboring pixel set.
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The histogram of the image is obtained by Equation (1) using LBP. (xc, yc) is the location of the
given pixel and ip and ic are the gray level of the center pixel.

LBPp,r(xc, yc) =

p−1∑
p=0

s(ip, ic)2p, s(x) =
{

1, i f x ≥ 0
0, i f x < 0

(1)

The process of extracting the feature vector (histogram) using the sliding windows of the LBP
operator is shown in Figure 2. The center pixel of the window is set as the threshold value using sliding
windows. The neighboring pixel values greater than the threshold value assigned to 1 and the small
values assigned to 0. The obtained values multiplied by the mask and collected.
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Ojala et al. [22,29] divide LBP codes into two different classes: uniform and non-uniform. A code
with a uniform distribution has maximum of 2 times different bits transitions. Examples of uniform
and non-uniform LBP code are shown in Figure 3. Figure 3a has 2 transitions; uniform LBP code;
Figure 3b is the non-uniform LBP code because it has 4 transitions.
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2.2. GP-Descriptor

The GP-descriptor is a GP-based image descriptor, is proposed by Al-Sahaf et al., inspired by
the LBP algorithm [30]. The GP-descriptor targets to automatically generate an image descriptor
similar to the LBP. As in the standard LBP, the corresponding division of the resulting value in the
decimal is increased by 1. The fitness function consists of two components: The classification accuracy
and distance. The classification accuracy measures the ability of accurate classification of training
instances using the k-NN classifier when evaluating histograms. Distance function calculates distance
of between-classes and distance of within classes.

GP-criptor is adopted tree-based GP to represent the solution. GP-criptor is designed to operate
directly on image raw pixel values [30]. The criptor uses a sliding window of a predetermined size and
the pixel values that fall within the window are used as inputs in the system. Criptor has a special
node called code node that represents the root of the program tree. The node uses the input parameters
to generate a binary code at each position of the sliding window.

In this paper, ABCP-descriptor was proposed for the first time, inspired by the proposed
GP-descriptor in [30], and performance was monitored with two texture datasets.

3. The Proposed Method

This section provides an overview of the overall operation of the ABCP-based image descriptor,
the program structure, the terminal and the function set, and the evaluation of the program.

3.1. General Procedure of Algorithm

Each dataset consists of different texture classes, and each texture class consists of multiple
instances of small sizes. The data sets are divided into two instances randomly selected as 50% training
and 50% test. From the training set, two random instances are selected from each class. The algorithm
feeds ABCP using 2 instances from each class in the training phase. By using the fitness function, ABCP
solutions are improved and when the stopping criteria is achieved, the ABCP model with the best
fitness value is extracted. For each instance in the test set, feature vectors (histograms) are obtained
using the best model. Histograms are classified by simple and rapid method 1-Nearest Neighbor
(1-NN). The performance of the model is evaluated by the classification success. Details of the steps of
the algorithm are presented in the following sections. The steps of the descriptor are given in Figure 4.
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3.2. Artificial Bee Colony Programming

ABCP is a high-level automatic programming method based on ABC algorithm [4,31,32]. The steps
of the ABCP are similar to the ABC algorithm. The two fundamental differences between these
algorithms are the representation of the solution structure and the information sharing mechanism
that enables the development of solutions. In ABC, the positions of the food sources, i.e. solutions, are
carried out with fixed size arrays and displays the values found by the algorithm for the predetermined
variables as in GA. In the ABCP, the positions of food sources are expressed in tree structure that is
composed of different combinations of terminals and functions. The smallest unit of trees is called
a node. Nodes are selected from the specially defined terminal set (variables such as x, y, variables
and constants) and the function set (arithmetic operators, logical functions, mathematical functions).
Trees representing the solutions are created with the combination of the nodes. The representation
of a solution tree for ABCP is the shown in Figure 5. The mathematical model of the tree in Figure 5
is as in Equation (2) where x and y are defined independent variable and f(x) is dependent variable.
The equation of the tree is obtained by combining the terminals and functions in the nodes from the
leaves to the root.

f (x) = (8.1x− 3.7) + (
log (4) ∗ x

cos (y)
) (2)
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The complexity of the solution trees is calculated by Equation (3) in proportion to the number of
nodes and the depth of trees.

C =
d∑

k=1

n ∗ k (3)
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The flow diagram for the ABCP method is given in Figure 6. As in the GP, solutions at the
initial phase in ABCP can be produced with “full”, “grow” and “ramped half and half” methods [3].
The quality of each solution tree is determined by considering the fitness function, which is specifically
determined to each problem.

Since solutions are represented by fixed-size arrays in ABC, the candidate solution generation
cannot be used directly in ABCP. In order to produce the candidate solution (vi) in the ABCP where
solutions are represented tree structures have variable depth and different numbers of nodes, the
crossover operator in GP [3] has been adapted to the neighborhood research process on ABC.

In the ABCP algorithm, there three different types of bees: employed bees, onlooker bees and
scout bees. Employed bees leave the hives and they have a specific food source in their memory. When
they return to the hive, they share information about the food sources with onlooker bees. The onlooker
bees decide which source they will go to base on the amount of the nectar of the source shared by the
employed bees. During the scout bee phase, it is checked to see whether all food sources are exhausted.
If the food source is exhausted, the source is abandoned. The bees formally used with an abandoned
source turn into scout bees and search randomly for a new source. Unlike other bees, scout bees find
new food sources without sharing information. The exhausted of food resources controls a parameter
called “limit”. For each source, the number of improving trials is kept, and in each cycle, it is checked
to see whether the number of trials exceeds the “limit” parameter.
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Figure 6. Flowchart ABCP algorithm.

When generating the candidate solution vi, the neighbor node solution xk (i , k), taken from a
different solution in the population is randomly selected as a mechanism considering the probability of
Pip. The node xk is randomly selected from the neighbor solution and determines what information to
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share in the current solution. Similarly, a function node is selected in the probability of Pip (set to 0.9)
and a terminal in the probability of (1−Pip ) is selected from the current solution xi. The candidate
solution vi is generated by replacing the nodes of the current solution node xi and the neighbor solution
node xk. This sharing mechanism is shown in Figure 7. Figure 7a,b are node xi representing the
current solution and a neighbor node xk taken from the tree respectively, Figure 7c shows neighboring
information and the generated candidate solution is given in Figure 7d. After the candidate solution is
generated, a greedy selection process is applied between the node xi expressing the current solution
and the candidate solution vi. The candidate solution is evaluated, and greedy selection is used for
each employed bee.
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3.3. ABCP-Descriptor Program Representation

ABCP-descriptor is an ABCP-based image descriptor that generates models using raw pixel
values. The descriptor presents the pixel values in a certain size of sliding windows. The pixel values
are used inputs of a feature vector. Figure 8 shows representation of the feature vector. In the example
in Figure 8, window size 5 × 5 is selected. The window has a value of 5 × 5 = 25 pixels. The first pixel
is labelled with P0 and is labeled up to P24 in total. Pixels are sequenced from left to right and feature
vector is generated. Therefore, the inputs of the ABCP are (P0, P1, . . . , P24) in feature vector.

The ABCP function set consists of simple arithmetic operators {+, -, *, /} and the code root node.
The divide (/) function in the function set is a protected version where the divisor value is equal to 0, it
is later revised to 1, otherwise, normal division is performed. The code node creates binary code using
the inputs in row vectors. The number of children of the code node determines the length and range of
the generated code. For example, if the number of children is 5, the length of the binary code is 5 bits



Appl. Sci. 2019, 9, 1930 8 of 18

and the program can produce different values up to 25 = 32 (0.1, . . . , 31). The representation of the
ABCP-descriptor is given in Figure 9.
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As shown in Figure 9, the sliding window is selected as 5 * 5 and has 25 inputs. Since the code
node has 3 children, the resulting feature vector can produce 23=8 different values. If the values
obtained from the branches of the code node are greater than 0, the binary code is converted into 1 and
if it is less than 0 the binary code is converted into 0. In the program representation, the binary code is
obtained as (011)2. The code is converted to decimal and the value of the partition in the feature vector
(histogram) is increased by 1. For example, a histogram of the model is obtained by moving the sliding
window over the instance. In the process of ABCP-descriptor, 2 instances are selected for each class, c
is defined class number and 2 *c histogram is obtained. The test instances are classified by taking into
account the distances between the histograms obtained in the training instances and the histograms of
the test instances generated with the best model.

3.4. Fitness Function

In this paper, only a few random instances are selected from the training set and the classification
success is evaluated only after the training of the instances. Therefore, it is aimed to obtain more
information from the instances. The classification accuracy is not used as a fitness function alone in
order to avoid models over-fitting training instances. Instead, the fitness function that evaluates the
distance along with the classification accuracy. To make a reliable and fair comparison, same parameter
values are chosen as in [29] and the fitness function (objective function) is adapted as defined in
Equation (4).

Fitness = 1− (
Accuracy + Distance

2
) (4)

The classification accuracy is obtained by the ratio of the number of correctly classified instances
to the total number of instances. Accuracy is defined Equation (5).

Accuracy =
Ncorrect

Ntotal
(5)

Ncorrect is the number of correctly classified instances and Ntotal is the total number of instances.
Distance is the function that calculates the distance between classes and the distance within classes.
Since the logical function range is in the range [–5, 5], the range of [–1, 1] has been adjusted by adapting
the function. The representation of the logical function is given in Figure 10.
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The logical function shown in Figure 10a is defined Equation (6); Figure 10b is defined Equation (7).

S(t) =
1

1 + exp−t (6)

S(t) =
1

1 + exp−5t (7)

Adapted version of the distance function according to the logical function (Equation (7)) is shown
in Equation (8). Db (between distances) calculates the average distance between classes, and Dw (within
Distances) calculates the average distance within classes. Db and Dw, respectively are defined in
Equations (9) and (10).

Distance =
1

1 + exp−5(Db−Dw)
(8)

Db =
1

z(z− n)

∑
uα,vβ∈Str

∀
→
u∈uα

∀
→
v∈vβ

χ2(
→
u ,
→
v ), α, β ∈ [1, c], α , β (9)

Dw =
1

z(n− 1)

∑
uα,vβ∈Str
∀→

u
∈uα

∀→
v
∈vα

χ2(
→
u ,
→
v )α ∈ [1, c] (10)

where Str =
{
(
→
xi, yi)

}
the set of instances is selected in the training set,

→
xi is the feature vector of each

instance, and yi is the class label. i ∈ {1, . . . , z}; c and n respectively define the total number of classes
and the number of instances per class. The total number of instances in the training set is z (c*n); xα is
all instances of the class in Str. The distance between vectors with two normalized equal number of
elements is shown in Equation (11).

χ2 =
1
2

∑
i

(ui − vi)
2

ui + vi
(11)

where ui and vi, respectively are defined i. element is u and v vectors. If the divisor of Equation (11) is 0,
the protected function returns 0 as a result. The classification accuracy (Equation (5)) and the distance
(Equation (8)) take the value 1 in the best case and 0 in the worst case. Therefore, the fitness function
(Equation (4)) for the automatic programming method can be defined as a minimization problem.

In summary, the following steps are followed to extract the feature vector from the image descriptor.
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• Step 1. Instances are converted to feature vectors of the previously defined window size
(for example 5*5). (Figure 8)

• Step 2. Leaf nodes are fed the root code node and the binary status of the branches is checked by
checking the negativity of the branches.

• Step 3. By converting the binary code to the decimal, the corresponding value of the number is
increased by 1 in the histogram.

• Step 4. Using histograms of instances.

Calculation of distance between vectors (Figure 11)
Calculation of distance within classes (Dw) and distance between classes (Db) (Figure 12)
The fitness values of the trees (individuals) are calculated.

• Step 5. The ABCP algorithm (Figure (6)) is operated according to the fitness values.

Pseudo-Code 1 calculates the distance between vectors (Equation (11)), shown in Figure 11.

Figure 11. Calculation of the distance between two vectors is the pseudo code.

Db, Dw and accuracy are calculated according to pseudo-code 2 is shown in Figure 12.

Figure 12. Calculation of between classes and within classes distance pseudo code.
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ABCP-descriptor is expected to improve the trees according to their fitness values. When stopping
criteria are provided, the best individual is classified in test data.

4. Experimental Design

For the performance analysis of the proposed method, experiments were conducted using two
different datasets and the results were evaluated. This section provides detailed information about the
parameters used in datasets and automatic programming methods.

4.1. Datasets

The methods were tested on two different texture datasets DS-Broadtz (Dover Publications,
New York, NY, USA) and DS-Kylberg (Swedish University of Agricultural Sciences, Uppsala, Sweden)
which are commonly used in image processing. To compare with [29], we selected the same classes
in both texture datasets in [30]. The first dataset DS-Broadtz was obtained from the Broadtz texture
set [33]. The original set consists of 112 classes, each 640*640 pixels. In this paper, 20 classes of 112 class
are compared. Texture instances of the selected classes are shown in Figure 13. Texture instances of
each class are divided into 64*64 pixel samples and 100 instances are obtained.
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The second dataset DS-Kylberg was obtained from the Kylberg dataset [34]. The Kylberg dataset
is divided into two parts, originally rotated and non-rotated. As in the Broadtz dataset from the
non-rotated Kylberg data set, 20 selected classes were used. Each class contains 160 instances with
576* 576 pixels. In this paper, each instance was reduced to 115 *115 pixels in order to reduce the cost
of calculation. Texture instance samples of the selected Kylberg dataset are shown in Figure 14.
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Table 1 shows the total number of selected classes (Nclasses) from the Broadtz and Kylberg datasets,
the number of instances contained in each class (Ninstances), the number of instances used in the training
and test (Ntrain_in , Ntest_in) and the instance dimensions (width* height).

Table 1. Datasets.

Dataset Nclasses Ninstances Ntrain_in Ntest_in Instance Dimensions

Broadtz 20 100 50 50 64*64
Kylberg 20 160 80 80 115*115

As shown in Table 1, DS-Broadtz has 1000 instances (20 classes*50 instances); DS-Kylberg used
1600 instances (20 classes*50 instances) in total for training and testing.

4.2. Parameters

The parameter values of the ABCP-descriptor are shown in Table 2. In all methods, the initial
solutions are produced with Ramped Half and Half method. In order to increase the quality of sources
in the descriptor, Information Sharing Mechanism was used in all solutions. The number of sub-trees /

branches connected to the code node has a fixed number of 7. Thus, the histogram can have 27 = 128
different values (0, 1, . . . , 127). The division (/) function in the function set is the protected version.
In this function, if the divisor value is equal to 0, then 1 is returned, in other cases normal division
is performed. p and r are assigned respectively 8 and 1 for the LBPp,r operator. In this paper, the
limit parameter was set to half of the colony size in ABCP-criptor. When the limit is exceeded, the
abandoned food source is randomly changed with a new food source. The identifier does not use
weight for subtrees. The maximum depth of the subtrees is set to 6.

Table 2. Parameters.

Parameters Artificial Bee Colony Programming-Descriptor
(ABCP-Descriptor)

Colony Size 100
Iteration Number 30

Maximum Tree Depth 6
Number of Branches in the Code node 7

Initial Method Ramped Half and Half
Functions + (plus), −(minus), ∗ (times), / (rdivide)

Limit 50

5. Performance Analysis

The experimental results of the methods are given and discussed in this section. ABCP-descriptor
and LBP8,1 were run 10 times independently. In each run, the methods analyzed randomly selected
instances from datasets and tried to assign test instances to the correct texture class. We evaluated the
ability to learn the descriptors in the training set.

5.1. Overall Results

The simulation results for ABCP-descriptor, LBP8,1 and GP-descriptor [30] are presented in Table 3.
In [30] is tested the performance of GP-criptor against nine of the widely used classical methods
in machine learning. The performances of the methods are significantly low compared to that of
GP-criptor. For this reason, we compared the results with the GP-criptor [30] by proposing the
ABCP-criptor, which is a new method that can rival the GP-criptor, which has a higher result than the
classical methods.
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Table 3. Simulation results of descriptor.

Descriptor Dataset Criteria Best Test Fitness Test Classification Success (%)

ABCP-descriptor

Broadtz

Mean 0.03 94.55
Maximum 0.03 97.3
Minimum 0.01 93.3

Standard deviation 0.01 1.17

Kylberg

Mean 0.05 89.71
Maximum 0.14 95.19
Minimum 0.02 71.63

Standard deviation 0.03 6.38

LBP8,1

Broadtz

Mean 90.63
Maximum 93.8
Minimum 87.3

Standard deviation 1.92

Kylberg

Mean 90
Maximum 93.13
Minimum 87.13

Standard deviation 1.9

GP-descriptor [30]

Broadtz
Mean 94.40

Standard deviation 0.81

Kylberg Mean 93.21
Standard deviation 1.14

When the results were evaluated, successful results were obtained with ABCP-descriptor and LBP.
The average test success of the methods in the DS-Broadtz is higher than the DS-Kylberg. The highest
test accuracy was found in the ABCP-descriptor as 97.3% for the DS-Broadtz and 95.188 for the
DS-Kylberg. The highest standard deviation has the ABCP-descriptor in the DS-Kylberg data set with
6.38. The higher the deviation, the greater the difference between the maximum and the minimum
test accuracy compared to LBP. The GP-descriptor [30] has the highest mean as 93.21% in DS-Kylberg.
The ABCP-descriptor is considered to be comparable to the GP-descriptor because its classification
success is high.

5.2. Model Analysis Results

In this section, the best models of test accuracy with ABCP-descriptor for each dataset will
be analyzed.

Table 4 shows the general information about the parse trees of the best model with has highest
test classification with 97.3% in DS_Broadtz. The complexity in Table 4 was calculated according to
Equation (3). As shown in the table, the sub-trees connected to the code node depend on different depth
and number of nodes. A tree representation of the model test success for the DS-Broadtz dataset is
shown in Table 5. The equations of the sub-trees of the best model in Figure 15 is shown in Table 6.

Table 4. Information about Subtrees of Best Model of ABCP-Descriptor for DS-Broadtz.

Node Depth Complexity

Tree 1 7 3 17
Tree 2 5 3 11
Tree 3 7 3 17
Tree 4 19 5 69
Tree 5 21 6 83
Tree 6 3 2 5
Tree 7 19 6 87
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Table 5. Equations of Subtrees of Best Model of ABCP-Descriptor for DS-Broadtz.

Equation

Tree 1 (x14/x8) ∗ (x13/x11)
Tree 2 x8/(x14 + x23)
Tree 3 (x7 − x3)/(x25/x8)

Tree 4 ((x9 − x6)/(x14/x20))/(
((

x20
x5

)
− x2

)
∗ ((x8 ∗ x12) + x4)

Tree 5 ((x24 ∗ x6) − x4) −
(
(x2 − x14) ∗

(
x8 + ( x13

x8
)
))
∗ ((x24 + x2) ∗ x8)

Tree 6 (x10/x6)

Tree 7 x16 − (
(
(x18 − x4) +

(
x18
x22

))
− ((x5 + x18) + (x1 + x2))

Table 6. Information about Subtrees of Best Model of ABCP-Descriptor for DS-Kylberg.

Node Depth Complexity

Tree 1 5 3 11
Tree 2 7 3 17
Tree 3 3 2 5
Tree 4 13 6 51
Tree 5 9 4 27
Tree 6 33 6 145
Tree 7 11 4 33

A tree representation of the model test success for the DS-Kylberg dataset is shown in Figure 16.
The equations of the sub-trees of the best model in Figure 16 are shown in Table 7. When the tables of
the highest classification test accuracy for the DS-Kylberg dataset (Table 6, Table 7) are evaluated, it can
be seen that the sub-trees of the model are more complex than the best model sub-trees of DS-Broadtz.
Many inputs in the lower trees (such as x14, x15, x20) are common in the model. The code node of the
best models for both datasets have 7 subtrees and the trees have depth of 2-6. As the number of nodes
and depth of the tree increase, the tree complexity increases.

Table 7. Equations of Subtrees of Best Model of ABCP-Descriptor for DS-Kylberg.

Equation

Tree 1 x22/(x9 ∗ x20)
Tree 2 (x2 ∗ x22) ∗ (x19 + x14)
Tree 3 (x3 − x5)

Tree 4
(
x15 + (x7 − x15) ∗

(
x23−x20

x12

))
− x18

Tree 5 x4 − ((x24 − x11) ∗ (
x17
x13

))

Tree 6
(
((x11 + x14) − (x12 − x14)) ∗

(
x15∗(x9−x16)

x22
x7

))
− ((x5 ∗ ((x15 + x5) − (x9 + x15)) −

(
x24 − (

x19
x15

)
)
)

Tree 7 (x15 − (x1/x20))/((x9 + x14) ∗ x5)



Appl. Sci. 2019, 9, 1930 16 of 18
Appl. Sci. 2019, 9, x 16 of 19 

 

Figure 16. Best Model of ABCP-Descriptor for DS-Kylberg 

Table 7. Equations of Subtrees of Best Model of ABCP-Descriptor for DS-Kylberg. 

 Equation 
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6. Conclusions

In this paper, ABCP-descriptor is proposed to identify texture by selecting only two instances
randomly in the training set for each texture. In the proposed method, the instances were transformed
into feature vectors using a window of 5*5 dimensions. Feature vectors were used as inputs for
models in the ABCP-descriptor. Similar to LBP algorithm, the binary codes obtained by the models
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are converted to decimal and the corresponding value is increased by 1 in the histogram. The fitness
function in the descriptor is composed of two components: classification accuracy and distance.
The classification accuracy measures the ability to accurately classify training instances using the 1-NN
classifier when evaluating histograms. The distance function calculates the distance between classes
and within classes in the training set. ABCP-descriptor is evaluated performance to standard LBP and
GP-descriptor. The comparative results show that ABCP-descriptor is a new method that can be used
in this field. In the future, we aim to test the success of classification of models using different tree
sizes and different arithmetic functions (such as sin, cos etc.). In addition, attempts will be made to
extract new models will by changing the parameters, rotated textures.
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