A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms
Abstract
Featured Application
Abstract
1. Introduction
2. Measurement Setup and Method
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gál, P.; Mokrý, M.; Vidinský, B.; Kilík, R.; Depta, F.; Harakalová, M.; Longauer, F.; Mozes, S.; Sabo, J. Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats. Lasers Med. Sci. 2009, 24, 539–547. [Google Scholar] [CrossRef]
- Vasilenko, T.; Slezák, M.; Kovác, I.; Bottková, Z.; Jakubco, J.; Kostelníková, M.; Tomori, Z.; Gál, P. The effect of equal daily dose achieved by different power densities of low-level laser therapy at 635 and 670 nm on wound tensile strength in rats: A short report. Photomed. Laser Surg. 2010, 28, 281–283. [Google Scholar] [CrossRef]
- Clark, C.; Cameron, H.; Moseley, H.; Ferguson, J.; Ibbotson, S.H. Treatment of superficial cutaneous vascular lesions: Experience with the KTP 532 nm laser. Lasers Med. Sci. 2004, 19, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Malek, R.S.; Kang, H.W.; Peng, Y.S.; Stinson, D.; Beck, M.T.; Koullick, E. Photoselective vaporization prostatectomy: Experience with a novel 180 W 532 nm lithium triborate laser and fiber delivery system in living dogs. J. Urol. 2011, 185, 712–718. [Google Scholar] [CrossRef]
- Qadri, T.; Miranda, L.; Tunér, J.; Gustafsson, A. The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J. Clin. Periodontol. 2005, 32, 714–719. [Google Scholar] [CrossRef]
- Angelis, N.D.; Hanna, R.; Signore, A.; Amaroli, A.; Benedicenti, S. Effectiveness of dual-wavelength (Diodes 980 Nm and 635 Nm) laser approach as a non-surgical modality in the management of periodontally diseased root surface: A pilot study. Biotechnol. Biotechnol. Equip. 2018, 32, 1575–1582. [Google Scholar] [CrossRef]
- WLBK. Available online: http://fototerapialaserowa.pl/pl/wlbk.html (accessed on 22 March 2019).
- Mundinger, J.; Houser, K. Adjustable correlated colour temperature for surgical lighting. Light. Res. Technol. 2019, 51, 280–290. [Google Scholar] [CrossRef]
- Wróbel, M.S.; Popov, A.P.; Bykov, A.V.; Kinnunen, M.; Jędrzejewska-Szczerska, M.; Tuchin, V.V. Measurements of fundamental properties of homogeneous tissue phantoms. JBO 2015, 20, 045004. [Google Scholar] [CrossRef][Green Version]
- Wróbel, M.S.; Popov, A.P.; Bykov, A.V.; Kinnunen, M.; Jędrzejewska-Szczerska, M.; Tuchin, V.V. Multi-layered tissue head phantoms for noninvasive optical diagnostics. J. Innov. Opt. Health Sci. 2014, 8, 1541005. [Google Scholar] [CrossRef]
- Karpienko, K.; Gnyba, M.; Milewska, D.; Wróbel, M.S.; Jędrzejewska-Szczerska, M. Blood equivalent phantom vs whole human blood, a comparative study. J. Innov. Opt. Health Sci. 2015, 9, 1650012. [Google Scholar] [CrossRef]
- Wróbel, M.S.; Jędrzejewska-Szczerska, M.; Galla, S.; Piechowski, L.; Sawczak, M.; Popov, A.P.; Bykov, A.V.; Tuchin, V.V.; Cenian, A. Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy. J. Biomed Opt. 2015, 20, 85003. [Google Scholar] [CrossRef]
- Feder, I.; Wróbel, M.; Duadi, H.; Jędrzejewska-Szczerska, M.; Fixler, D. Experimental results of full scattering profile from finger tissue-like phantom. Biomed. Opt. Express 2016, 7, 4695–4701. [Google Scholar] [CrossRef]
- Ramírez-Miquet, E.E.; Romero, L.M.M.; Darias, J.G.; Martínez-Celorio, R.A. Ex-vivo assessment of tissue viability using dynamic laser speckle. In Proceedings of the SPECKLE 2015: VI International Conference on Speckle Metrology, Guanajuato, Mexico, 24–26 August 2015; Volume 9660, p. 96601U. [Google Scholar]
- Zakian, C.; Dickinson, M. Laser Doppler imaging through tissues phantoms by using self-mixing interferometry with a laser diode. Opt. Lett. 2007, 32, 2798–2800. [Google Scholar] [CrossRef]
- Ali Ansari, M.; Alikhani, S.; Mohajerani, E. A hybrid imaging method based on diffuse optical tomography and optomechanical method to detect a tumor in the biological phantom. Opt. Commun. 2015, 342, 12–19. [Google Scholar] [CrossRef]
- Kanick, S.C.; Gamm, U.A.; Schouten, M.; Sterenborg, H.J.C.M.; Robinson, D.J.; Amelink, A. Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: Fiber diameter and phase function dependence. Biomed. Opt. Express 2011, 2, 1687–1702. [Google Scholar] [CrossRef]
- Sthalekar, C.C.; Miao, Y.; Koomson, V.J. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 279–286. [Google Scholar] [CrossRef]
- Monte, A.F.G.; Reis, A.F.; Junior, L.B.C.; Antunes, A. Preparation and quantitative characterization of polydimethylsiloxane optical phantoms with zinc-phthalocyanine dye absorbers. Appl. Opt. 2018, 57, 5865–5871. [Google Scholar] [CrossRef]
- Shahin, A.; Bachir, W. Broadband spectroscopy for characterization of tissue-like phantom optical properties. Pol. J. Med. Phys. Eng. 2017, 23, 121–126. [Google Scholar] [CrossRef]
- Hall, G.; Jacques, S.L.; Eliceiri, K.W.; Campagnola, P.J. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient. Biomed. Opt. Express 2012, 3, 2707–2719. [Google Scholar] [CrossRef]
- Moes, C.J.M.; van Gemert, M.J.C.; Star, W.M.; Marijnissen, J.P.A.; Prahl, S.A. Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm. Appl. Opt. 1989, 28, 2292–2296. [Google Scholar] [CrossRef]
- Royston, D.D.; Poston, R.S.; Prahl, S.A. Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm. J. Biomed. Opt. 1996, 1, 110–116. [Google Scholar] [CrossRef]
- Labsphere. Internationally Recognized Photonics Company. Available online: https://www.labsphere.com/ (accessed on 28 January 2019).
- Prahl, S.A. The Adding-Doubling Method. In Optical-Thermal Response of Laser-Irradiated Tissue; Welch, A.J., Van Gemert, M.J.C., Eds.; Springer US: Boston, MA, USA, 1995; pp. 101–129. [Google Scholar]
- Krainov, A.D.; Mokeeva, A.M.; Sergeeva, E.A.; Agrba, P.D.; Kirillin, M.Y. Optical properties of mouse biotissues and their optical phantoms. Opt. Spectrosc. 2013, 115, 193–200. [Google Scholar] [CrossRef]
- Bhandari, A.; Hamre, B.; Frette, Ø.; Zhao, L.; Stamnes, J.J.; Kildemo, M. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light. Appl. Opt. 2011, 50, 2431–2442. [Google Scholar] [CrossRef]
- Wagnières, G.; Cheng, S.; Zellweger, M.; Utke, N.; Braichotte, D.; Ballini, J.P.; van den Bergh, H. An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy. Phys. Med. Biol. 1997, 42, 1415–1426. [Google Scholar] [CrossRef]
- Sensing, K.M. CS-200 Color and Luminance Meter Konica Minolta Sensing. Available online: https://sensing.konicaminolta.us/products/cs-200-color-and-luminance-meter/ (accessed on 28 January 2019).
- Wróbel, M.S.; Popov, A.P.; Bykov, A.V.; Tuchin, V.V.; Jędrzejewska-Szczerska, M. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering. Biomed. Opt. Express 2016, 7, 2088–2094. [Google Scholar] [CrossRef]
Phantom | Rd | Td | µa | µs′ |
---|---|---|---|---|
light source—635 nm | ||||
A | 0.37 | 0.57 | 0.07 ± 0.02 | 1.67 ± 0.05 |
B | 0.39 | 0.48 | 0.18 ± 0.03 | 2.67 ± 0.1 |
C | 0.23 | 0.25 | 0.92 ± 0.03 | 1.83 ± 0.1 |
light source—532 nm | ||||
A | 0.38 | 0.57 | 0.05 ± 0.02 | 1.75 ± 0.05 |
B | 0.40 | 0.47 | 0.19 ± 0.03 | 2.75 ± 0.1 |
C | 0.24 | 0.22 | 0.98 ± 0.03 | 2.04 ± 0.1 |
light source—447 nm | ||||
A | 0.39 | 0.56 | 0.06 ± 0.02 | 1.83 ± 0.05 |
B | 0.42 | 0.48 | 0.14 ± 0.03 | 2.86 ± 0.1 |
C | 0.25 | 0.22 | 0.97 ± 0.03 | 2.11 ± 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Listewnik, P.; Wąsowicz, M.; Kosowska, M.; Mazikowski, A. A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms. Appl. Sci. 2019, 9, 1632. https://doi.org/10.3390/app9081632
Listewnik P, Wąsowicz M, Kosowska M, Mazikowski A. A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms. Applied Sciences. 2019; 9(8):1632. https://doi.org/10.3390/app9081632
Chicago/Turabian StyleListewnik, Paulina, Michał Wąsowicz, Monika Kosowska, and Adam Mazikowski. 2019. "A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms" Applied Sciences 9, no. 8: 1632. https://doi.org/10.3390/app9081632
APA StyleListewnik, P., Wąsowicz, M., Kosowska, M., & Mazikowski, A. (2019). A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms. Applied Sciences, 9(8), 1632. https://doi.org/10.3390/app9081632