Towards Bimodal Optical Monitoring of Photodynamic Therapy with Targeted Nanoconstructs: A Phantom Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorescence Imaging Setup Combined with the Irradiation Module
2.2. Optoacoustic (OA) Imaging Setup
2.3. Phantom Design
2.4. Numerical Simulations
3. Results
3.1. Fluorescence and Optoacoustic Imaging
3.2. Monte Carlo Simulations of Fluorescence Imaging
3.3. Numerical Simulations of Optoacoustic Imaging
3.4. Monitoring of Photobleaching
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- De Paula, L.B.; Primo, F.L.; Tedesco, A.C. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys. Rev. 2017, 9, 761–773. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mallidi, S.; Spring, B.Q.; Hasan, T. Optical imaging, photodynamic therapy and optically-triggered combination treatments. Cancer J. 2015, 21, 194. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.; Hopper, C.; Sahota, A.; Springett, R.; McIlroy, B.; Bown, S.; MacRobert, A. Fluorescence photodiagnostics and photobleaching studies of cancerous lesions using ratio imaging and spectroscopic techniques. Lasers Med. Sci. 2000, 15, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Novotny, A.; Stepp, H.; Goetz, C.; Bise, K.; Reulen, H.J. Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ala-induced porphyrins: A prospective study in 52 consecutive patients. J. Neurosurg. 2000, 93, 1003–1013. [Google Scholar] [CrossRef]
- Shirmanova, M.V.; Zagainova, E.V.; Sirotkina, M.A.; Snopova, L.B.; Balalaeva, I.V.; Krutova, I.M.; Lekanova, N.; Turchin, I.V.; Orlova, A.G.; Kleshnin, M.S. In vivo study of photosensitizer pharmacokinetics by fluorescence transillumination imaging. J. Biomed. Opt. 2010, 15, 048004. [Google Scholar] [CrossRef]
- Khilov, A.; Kirillin, M.Y.; Loginova, D.; Turchin, I. Estimation of chlorin-based photosensitizer penetration depth prior to photodynamic therapy procedure with dual-wavelength fluorescence imaging. Laser Phys. Lett. 2018, 15, 126202. [Google Scholar] [CrossRef]
- Khilov, A.; Kurakina, D.; Turchin, I.V.; Kirillin, M.Y. Monitoring of chlorin-based photosensitiser localisation with dual-wavelength fluorescence imaging: Numerical simulations. Quantum Electron. 2019, 49, 63. [Google Scholar] [CrossRef]
- Gamayunov, S.; Turchin, I.; Fiks, I.; Korchagina, K.; Kleshnin, M.; Shakhova, N. Fluorescence imaging for photodynamic therapy of non-melanoma skin malignancies–a retrospective clinical study. Photonics Lasers Med. 2016, 5, 101–111. [Google Scholar] [CrossRef]
- Turchin, I.V. Methods of biomedical optical imaging: From subcellular structures to tissues and organs. Physics-Uspekhi 2016, 59, 487. [Google Scholar] [CrossRef]
- Rizvi, I.; Nath, S.; Obaid, G.; Ruhi, M.K.; Moore, K.; Bano, S.; Kessel, D.; Hasan, T. A combination of visudyne and a lipid-anchored liposomal formulation of benzoporphyrin derivative enhances photodynamic therapy efficacy in a 3d model for ovarian cancer. Photochem. Photobiol. 2019, 95, 419–429. [Google Scholar] [CrossRef]
- Iinuma, S.; Schomacker, K.T.; Wagnieres, G.; Rajadhyaksha, M.; Bamberg, M.; Momma, T.; Hasan, T. In vivo fluence rate and fractionation effects on tumor response and photobleaching: Photodynamic therapy with two photosensitizers in an orthotopic rat tumor model. Cancer Res. 1999, 59, 6164–6170. [Google Scholar]
- Glidden, M.D.; Celli, J.P.; Massodi, I.; Rizvi, I.; Pogue, B.W.; Hasan, T. Image-based quantification of benzoporphyrin derivative uptake, localization, and photobleaching in 3d tumor models, for optimization of pdt parameters. Theranostics 2012, 2, 827. [Google Scholar] [CrossRef]
- Obaid, G.; Jin, W.; Bano, S.; Kessel, D.; Hasan, T. Nanolipid formulations of benzoporphyrin derivative: Exploring the dependence of nanoconstruct photophysics and photochemistry on their therapeutic index in ovarian cancer cells. Photochem. Photobiol. 2019, 95, 364–377. [Google Scholar] [CrossRef]
- Te Velde, E.; Veerman, T.; Subramaniam, V.; Ruers, T. The use of fluorescent dyes and probes in surgical oncology. Eur. J. Surg. Oncol. 2010, 36, 6–15. [Google Scholar] [CrossRef][Green Version]
- Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 2015, 9, 219. [Google Scholar] [CrossRef]
- Chen, Z.; Deán-Ben, X.L.; Gottschalk, S.; Razansky, D. Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomed. Opt. Express 2018, 9, 2229–2239. [Google Scholar] [CrossRef][Green Version]
- Kirillin, M.Y.; Kurakina, D.; Perekatova, V.; Orlova, A.G.; Sergeeva, E.A.; Khilov, A.; Subochev, P.V.; Turchin, I.V.; Mallidi, S.; Hasan, T. Complementary bimodal approach to monitoring of photodynamic therapy with targeted nanoconstructs: Numerical simulations. Quantum Electron. 2019, 49, 43. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef][Green Version]
- Subochev, P.; Orlova, A.; Mikhailova, I.; Shilyagina, N.; Turchin, I. Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure, and ultrasonic scattering. Biomed. Opt. Express 2016, 7, 3951–3957. [Google Scholar] [CrossRef]
- Jaeger, M.; Schüpbach, S.; Gertsch, A.; Kitz, M.; Frenz, M. Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation. Inverse Probl. 2007, 23, S51. [Google Scholar] [CrossRef]
- Tsoukas, M.M.; Lin, G.C.; Lee, M.S.; Anderson, R.R.; Kollias, N. Predictive dosimetry for threshold phototoxicity in photodynamic therapy on normal skin: Red wavelengths produce more extensive damage than blue at equal threshold doses. J. Investig. Dermatol. 1997, 108, 501–505. [Google Scholar] [CrossRef]
- Marshall, M.V.; Draney, D.; Sevick-Muraca, E.M.; Olive, D.M. Single-Dose Intravenous Toxicity Study of IRDye 800CW in Sprague-Dawley Rats. Mol. Imaging Biol. 2010, 12, 583–594. [Google Scholar] [CrossRef][Green Version]
- Loginova, D.A.; Sergeeva, E.A.; Krainov, A.; Agrba, P.D.; Kirillin, M.Y. Liquid optical phantoms mimicking spectral characteristics of laboratory mouse biotissues. Quantum Electron. 2016, 46, 528. [Google Scholar] [CrossRef]
- Orlova, A.G.; Maslennikova, A.V.; Golubyatnikov, G.Y.; Suryakova, A.S.; Kirillin, M.Y.; Kurakina, D.A.; Kalganova, T.I.; Volovetsky, A.B.; Turchin, I.V. Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation. Biomed. Phys. Eng. Exp. 2019, 5. [Google Scholar] [CrossRef]
- Treeby, B.E.; Cox, B.T. K-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef]
- Ho, C.J.; Balasundaram, G.; Driessen, W.; McLaren, R.; Wong, C.L.; Dinish, U.S.; Attia, A.B.E.; Ntziachristos, V.; Olivo, M. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging. Sci. Rep. 2014, 4, 5342. [Google Scholar] [CrossRef]
Murine Brain | Phantom | |||
---|---|---|---|---|
λ, nm | µa (mm−1) | µs’(mm−1) | µa (mm−1) | µs’(mm−1) |
690 | 0.09 | 1.96 | 0.06 | 3.6 |
725 | 0.071 | 1.89 | 0.06 | 3.25 |
785 | 0.06 | 1.78 | 0.05 | 3 |
835 | 0.05 | 1.65 | 0.05 | 3 |
λ, nm | 690 nm | 785 nm | ||
---|---|---|---|---|
Marker/phantom | FL | OA | FL | OA |
BPD + DMSO/water | 4.6 | 3.8 | 0 | 0 |
IRDye800 + DMSO/water | 0 | 0.7 | 29.1 | 4.4 |
BPD + DMSO/agar mixture | 2.8 | 1.1 | 0 | 0 |
IRDye800 + DMSO/agar mixture | 0 | 0.6 | 15 | 3.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurakina, D.; Kirillin, M.; Perekatova, V.; Plekhanov, V.; Orlova, A.; Sergeeva, E.; Khilov, A.; Nerush, A.; Subochev, P.; Mallidi, S.; et al. Towards Bimodal Optical Monitoring of Photodynamic Therapy with Targeted Nanoconstructs: A Phantom Study. Appl. Sci. 2019, 9, 1918. https://doi.org/10.3390/app9091918
Kurakina D, Kirillin M, Perekatova V, Plekhanov V, Orlova A, Sergeeva E, Khilov A, Nerush A, Subochev P, Mallidi S, et al. Towards Bimodal Optical Monitoring of Photodynamic Therapy with Targeted Nanoconstructs: A Phantom Study. Applied Sciences. 2019; 9(9):1918. https://doi.org/10.3390/app9091918
Chicago/Turabian StyleKurakina, Daria, Mikhail Kirillin, Valeriya Perekatova, Vladimir Plekhanov, Anna Orlova, Ekaterina Sergeeva, Aleksandr Khilov, Anastasiya Nerush, Pavel Subochev, Srivalleesha Mallidi, and et al. 2019. "Towards Bimodal Optical Monitoring of Photodynamic Therapy with Targeted Nanoconstructs: A Phantom Study" Applied Sciences 9, no. 9: 1918. https://doi.org/10.3390/app9091918